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Diversemicroorganisms drive biogeochemical cycles and consequently influence

ecosystem-level processes in alpine peatlands, which are vulnerable to extreme

drought induced by climate change. However, there are few reports about the

effects of extreme drought on microbial function. Here we identify microbial

functional genes associated with carbon and nitrogen metabolisms of extreme

drought experiments that occurred at different periods of plant growth, the results

show that early extreme drought reduces the abundance of functional genes

involved in the decomposition of starch and cellulose; midterm extreme drought

increases the abundance of lignin decomposition functional genes; late extreme

drought reduces the hemicellulose but increases cellulose decomposition

functional genes. In the carbon fixation pathway, extreme drought mainly

changes the abundance of functional genes involved in the reductive citrate

cycle process, the 3-hydroxy propionate bi-cycle, the dicarboxylate-

hydroxybutyrate cycle and the incomplete reductive citrate cycle. Among the

nitrogen cycling functional genes, amoA involved in oxidizing ammonia to

hydroxylamine significantly increases under early extreme drought; midterm

extreme drought reduces nrtC and nifD genes, which participate in nitrate

assimilation and nitrogen fixation, respectively; late extreme drought

significantly increases hcp genes involved in ammonification. pH and TN had

the largest effects on the carbon degradation, fixation and nitrogen cycling

functional genes. The composition of microbial community structures involved

in carbon fixation differed between treatments in early extreme drought. There is

a good linear fit between the diversity of gene abundance and corresponding

microbial communities in the reductive citrate cycle, hydroxy propionate-

hydroxybutyrate cycle, dicarboxylate-hydroxybutyrate cycle and nitrogen

cycling, which suggests that the functional genes and community composition
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of microorganisms involved in these processes are consistent in response to

extreme drought. This study provides new insights into the adaptability and

response characteristics of microbial communities and functional genes in

plateau peatland ecosystems to extreme drought events.
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1 Introduction

Peatland is a carbon-rich ecosystem covering 185-423 million

hectares of the earth’s surface (Ribeiro et al., 2021). It is an

important organic carbon (C) and nitrogen (N) pool and its C

and N reserves account for 30% (ca. 644 Gt C) and 10% (8 – 15 Gt

N) of the total reserves of the whole terrestrial ecosystem,

respectively (Limpens et al., 2006; Wang et al., 2014). A large

amount of greenhouse gases is produced and discharged due to C

and Nmigration and transformation in peatlands (Chen et al., 2014;

Yao et al., 2022). Global warming is affecting precipitation patterns

in a complex way, as heating promotes evaporation, leading to soil

surface drying, thus increasing the duration and intensity of

drought events (Pokhrel et al., 2021). The global climate model

predicts that the frequency and intensity of extreme drought events

will increase in the future (Hoover and Rogers, 2016). Extreme

drought has seriously affected soil biogeochemical C and N cycling

and related greenhouse gas fluxes (Deng et al., 2021), leading to the

loss of ecosystem functions (Du et al., 2018; Kang et al., 2018).

Therefore, the fate of the large amount of C and N stored in

peatland and the response of peatland to extreme drought is very

important for the future climate. It is becoming increasingly

apparent that in addition to drought intensity, the timing of

drought has important effects on the ecosystem C and N cycling

(Dietrich and Smith, 2016). Some studies have shown that drought

events, occurring at different plant growth stages (i.e., rapid growth,

full bloom, and decline stages), have differently influenced

ecosystem production and functioning (Knapp et al., 2008;

Dietrich and Smith, 2016). However, the ecological implications

of greater intra-season variability of rainfall extremes have received

minimal notice, especially concerning variable timing of extreme

drought at different plant growth stages, which might have the

largest ecological consequences.

Extreme drought events mainly lead to water stress in plants,

which can alter the distribution pattern of plant biomass (Jentsch

et al., 2011), cause a decrease in photosynthetic, transpiration rates

(Lefi et al., 2004) and water use efficiency, then decrease in plant

suitability (Loik, 2007). Extreme drought events not only directly

affect plant growth, but also indirectly affect the supply of soil

nutrients through changes in soil moisture content. Studies have

shown that extreme drought in summer significantly reduces soil C

and N mineralization, leading to a decrease in soil nutrient supply

(Borken &Matzner, 2009). Soil microorganisms play an intermediary
02
role in the key steps of all biogeochemical cycles and maintain

ecosystem functions (Bell et al., 2005; Zhang et al., 2012; Bastida

et al., 2021). Therefore, the effect of extreme drought events on soil

water and nutrients regime is highly likely to cause changes in soil

microbial activity. As the soil dries, water membranes form on soil

particles, concentrating water-containing pore water components

(e.g., dissolved nutrients, solutes, toxins), limiting the diffusion of

stroma and extracellular enzymes and increasing interactions

between microbial populations (Malik and Bouskill, 2022). There is

overwhelming evidence that microorganisms will respond to drought

in terms of microbial community composition and diversity (Zhou

et al., 2012; Guo et al., 2020; Yuan et al., 2021). In addition, changes in

microbial communities can in turn regulate soil nutrient regimes

through metabolism and decomposition. Under drought conditions,

microorganisms can mediate soil C sequestration and alleviate the

impact of reduced soil water availability caused by climate change by

increasing soil carbon sequestration (Canarini et al., 2016). Drought

can reduce the decomposition of soil organic matter by reducing the

characteristics of microorganisms (e.g., enzyme activity and

functional gene abundance) (Alster et al., 2013; Vogel et al., 2013).

Therefore, the understanding of soil microbial ecology is crucial to

our ability to evaluate terrestrial C and N cycling, but the complexity

of soil microbial communities and the multiple ways that they may be

affected by extreme drought hinder our ability to draw clear

conclusions on this topic and the metabolic kinetics and

phenotypic characteristics of microbial communities are still

unclear (Bardgett et al., 2008; de Vries et al., 2018), though

microbial communities drive biogeochemical cycles through their

specific metabolic activities.

Litter decomposition is a key link between carbon budget and

nutrient cycling. In general, drought can cause a decrease in the rate

constant of litter decomposition, and the decomposition of C and N

in various plant litter leaves has decreased (Sardans and Penuelas,

2010). Sudden drought may have a greater effect on litter

decomposition than long-term drought (Garcıá-Palacios et al.,

2016). In addition, the decomposition rate of different carbon

components is also inhibited to varying degrees by drought. For

example, the proportion of cellulose in litter under drought

treatment in the Mediterranean region increased by 10.9%

compared to the ambient conditions, while the lignin content

increased by 17.5% (Tu et al, 2017). Some studies suggest that

drying conditions have a negative effect on soil microorganisms.

Drought can lead to a decrease in soil microbial biomass, diversity
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and relative abundance, thereby affecting the litter decomposition

rates (Zhou et al., 2018). Therefore, understanding the

decomposition, transformation, and sequestration of organic

matter in soil requires a further understanding of how microbial

physiology regulates the processes that control biogeochemical

cycling, climate change, and ecosystem sustainability (Bardgett

et al., 2008; Roth et al., 2019). Liang et al. (2017) defined two

pathways (i.e., ex vivo modification and in vivo turnover) to jointly

explain the dynamics of soil C driven by microbial catabolism and/

or anabolism. However, it has been difficult to link specific taxa to

these ecosystem processes and consequently predict the functional

responses of soil microorganisms (Fierer, 2017). Thus, a better

understanding of the diversity and abundance of microbial

functional genes that predict the functional potential of soil

microorganisms can link the knowledge of microbial

communities to their key ecosystem functions. Soil microbial

genes coding for specific enzymes related to particular ecosystem

processes can help us to establish links between genetic diversity,

community structure and further to ecosystem functions, such as

carbon cycling through studying carbohydrate-active enzymes

(CAZy) (Yang et al., 2014; Manoharan et al., 2017).

N cycling is a collection of important biogeochemical pathways

mediated by microbial communities. In most northern peatlands,

the slow decomposition of dead plant material returns organic N to

the soil and causes peat accumulation (Moore, 2002). Microbial

conversion of N is usually described as a cycling consisting of

denitrification, nitrification, nitrogen fixation and dissimilatory

nitrate reduction to ammonium (DNRA) (Glaze et al., 2022).

Drought stresses directly or indirectly affect the ecosystem N

cycling (Deng et al., 2021). The effect of drought on net N

mineralization and flux in soils of different climates, soil, and

ecosystem types varies (Hartmann et al., 2013). The increase in

duration and intensity of drought is usually related to N

mineralization, mobility, and a decrease in the plant uptake rate

of inorganic nutrients (Deng et al., 2021). Recent efforts have

focused on characterizing functional genes involved in multiple N

cycling processes using genetic approaches and relating genetic

information to ecosystem functioning. It has been made clear that

amoA genes regulate the availability of inorganic N and the

production of N2O through nitrification, while nirK and nirS

genes are involved in NO3
- consumption and N2O production,

nosZ genes mediate the conversion of N2O to N2 during

denitrification (Dai et al., 2020). Tu et al. (2017) have also

correlated soil N cycling with microbial genetic data, which were

mainly concentrated in a few gene families by PCR. Petersen et al.

(2012) analyzed nitrification and denitrification processes across a

vegetation gradient in Alaska by qPCR amplification of gene

families including amoA, nirK/S, and nosZ, and suggested that

the abundance of these functional genes can be used as good

predictors for biogeochemical process rates. Drought was

reported to affect the diversity and composition of microbial

communities, and therefore the abundance of functional genes

related to N cycling in arable land (Banerjee et al., 2016) and

pasture soils (Radl et al., 2015). However, comprehensive surveys of

genes involved in all N cycling processes in peatland ecosystems

under extreme drought events have rarely been carried out.
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The Qinghai-Tibet Plateau has large soil C and N stocks that

turn over at low rates (Chen et al., 2013; Fu et al., 2021). In alpine

peatland soils, microbial metabolism is limited by harsh

environments, such as low temperatures or oxygen levels, and

microorganisms are less able to decompose and recover soil

organic material. The purpose of this study is to conduct a

prospective study on whether the functional genes involved in the

process of C and N cycling changed significantly after extreme

drought events using metagenomics methods and to explore which

specific processes and microbial groups are most affected. To

address these objectives, an in-situ field extreme drought

simulation experiment was conducted for five years in an alpine

peatland ecosystem was performed and the functional genes of soil

C and N cycling were screened in detail. Finally, we explore the role

of drought-affected microbial communities in the C and N cycling

at the genetic level.
2 Materials and methods

2.1 Study area experimental design and
soil sampling

The location of the peatland investigated in this research is at an

altitude of 3430 m above sea level, located in the Zoige plateau (33°

47′56.61″N, 102°57′28.43″ E) on the northeast edge of the Qinghai-
Tibet Plateau. The largest alpine peatland in the world is found in

this area due to the region’s unique climatic and hydrological

regimes and its geomorphologic and soil conditions (Ma et al.,

2016). The mean annual temperature and mean annual

precipitation are -1.7°C to 3.3°C and 650 mm to 750 mm,

respectively and 90% of the annual precipitation occurs from

April to September. The soil is highland peat soil. For this study,

the vertical depth of peat at the study site was approximately 1.2 m.

The SOC content was between 179 g·kg-1 to 276 g·kg-1 and the soil

pH was between 6.8 to 7.2. The vegetation was primarily composed

of Carex meyeriana, Koeleria tibetica, Carex muliensis, Eriophorum

gracile, Blysmus sinocompressus, and Carex secbrirostris.

The extreme drought events were designed by statistical

extremity concerning a historical reference period (extreme value

theory) independent of biological effects. We focused on one extreme

drought event, not a long-term drought, so local rainfall statistics at

the study site have been collected over the past 50 years (China

Meteorological Data Network). Daily rainfall of ≤ 3 mm is defined as

non-effective rainfall and the minimum duration of non-effective

rainfall during the study period was set to 32 days (where the days

without effective rainfall are the duration of the drought) (Jentsch

et al., 2011), which has the same design idea with the previous

research(Zhou et al., 2019). Different periods of extreme drought

events were applied during the growing season. The experiment

consisted of a control (CK) with ambient precipitation and then

different periods of extreme drought. The names and dates of three

drought periods were: early drought (ED) from June 18 to July 20,

2019; midterm drought (MD) from July 20 to August 23, 2019; and

late drought (LD) from August 23 to September 25, 2019, following 5

years of continuous extreme drought events from 2014 to 2018.
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Precipitation was excluded from the study site using a

transparent awning (length × width × height: 2.5 m × 2.5 m ×

1.8 m). The light transmittance of the shelter material was more

than 90%. Each drought treatment consisted of three replicate plots

of 2 m × 2 m each, and these were selected randomly in the study

field. The iron plates around each experimental community are

smashed into the ground for 1m to prevent the lateral flow of water.

During rain, roof water was collected with gutters along the shelter

awning and transported 50 m downhill of the experimental site, and

after each extreme drought event, we removed the shelters and then

allow the extreme drought plots to receive natural precipitation.

Three soil cores of 0–20 cm in depth were collected and mixed from

each plot at the end of each simulated extreme drought period (i.e.,

ED, MD and LD). One part of the soil samples was transported to

the laboratory in coolers with dry ice and then were stored at −80°C

for later DNA extraction, the other part was passed through a 2–

mm sieve to remove the plant roots and determine soil

biochemical properties.
2.2 Measurements of soil properties

The soil pH was determined in a 1:2.5 soil/water solution using

a pH meter. soil water content (SWC) was determined using the

oven-drying method. Soil ammonium (NH4
+) and nitrate (NO3

−)

concentrations were determined by the colorimetric method. Soil

organic carbon (SOC) was determined by the rapid dichromate

oxidation-titration method. Dissolved organic carbon (DOC) was

measured using a continuous-flow analyzer. Soil total nitrogen

(TN) was determined by the Kjeldahl procedure. These have

already been demonstrated in our previous research (Kang et al.,

2022; Yan et al., 2022).
2.3 DNA extraction, library construction,
and metagenomic sequencing

Total genomic DNA was extracted from the soil samples using

the E.Z.N.A.® Soil DNA Kit (Omega Bio-tek, Norcross, GA, U.S.)

according to the manufacturer’s instructions. The concentration

and purity of extracted DNA were determined using TBS-380 and

NanoDrop2000, respectively. DNA extract quality was checked

using 1% agarose gel.

DNA extract was fragmented to an average size of about 400 bp

using Covaris M220 (Gene Company Limited, China) for paired-

end library construction. A paired-end library was constructed

using NEXTFLEX Rapid DNA-Seq (Bioo Scientific, Austin, TX,

USA). Adapters containing the full complement of sequencing

primer hybridization sites were ligated to the blunt-end of

fragments. Paired-end sequencing was performed on an Illumina

NovaSeq (Illumina Inc., San Diego, CA, USA) at Majorbio Bio-

Pharm Technology Co., Ltd. (Shanghai, China) using NovaSeq

Reagent Kits according to the manufacturer’s instructions

(www.illumina.com). Sequence data associated with this project

have been deposited in the NCBI Short Read Archive database

(Accession Number: SRP368675).
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2.4 Sequence quality control and
genome assembly

The data were analyzed on the free online platform, Majorbio

Cloud Platform (www.majorbio.com). The paired-end Illumina

reads were trimmed of adaptors, and low-quality reads

(length<50 bp or with a quality value <20 or having N bases)

were removed by fastp (Chen et al., 2018) (https://github.com/

OpenGene/fastp, version 0.20.0). Metagenomics data were

assembled using MEGAHIT (Li et al., 2015) (https://github.com/

voutcn/megahit, version 1.1.2), which makes use of succinct de

Bruijn graphs. Contigs with a length being or over 300 bp were

selected as the final assembling result, and then the contigs were

used for further gene prediction and annotation.
2.5 Gene prediction, taxonomy, and
functional annotation

Open reading frames (ORFs) from each assembled contig were

predicted using MetaGene (Noguchi et al., 2006) (http://

metagene.cb.k.u-tokyo.ac.jp/). The predicted ORFs with length being

or over 100 bp were retrieved and translated into amino acid sequences

using the NCBI translation table (http://www.ncbi.nlm.nih.gov/

Taxonomy/taxonomyhome.html/index.cgi?chapter=tgencodes#SG1.

A non-redundant gene catalog was constructed using CD-HIT

(Fu et al., 2012) (http://www.bioinformatics.org/cd-hit/,version4.6.1)

with 90% sequence identity and 90% coverage. Reads after

quality control were mapped to the non-redundant gene catalog

with 95% identity using SOAPaligner (Li et al., 2008) (http://

soap.genomics.org.cn/, version 2.21), and gene abundance in each

sample was evaluated.

Representative sequences of non-redundant gene catalog were

aligned to the NCBI and NR databases with an e-value cutoff of 1e-5

using Diamond (Buchfink et al., 2015) (http://www.diamondsearch.org/

index.php, version 0.8.35) for taxonomic annotations. The KEGG

annotation was conducted using Diamond (Buchfink et al., 2015)

(http://www.diamondsearch.org/index.php, version 0.8.35) against the

Kyoto Encyclopedia of Genes and Genomes database (http://

www.genome.jp/keeg/) with an e-value cutoff of 1e-5.
2.6 Statistical analyses

Independent sample t-tests were used to analyze the functional

genes related to C and N affected by extreme drought in different

periods. Linear discriminant analysis (LDA) effect size analysis

(LEfSe) was conducted using the Galaxy server (http://

huttenhower.sph.harvard.edu/galaxy) to analyze the microbial

communities at genus level affected by extreme drought in different

periods, and the linear fitting variance was used to test the consistency

of microbial community and functional gene diversity. Constrained

ordination (redundancy analysis, RDA) was used to investigate the

relationships between soil factors and the functional genes involved in

C degradation, C fixation and N cycling. The differences of microbial
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community structure between the control and extreme drought

treatments were determined using non-metric multidimensional

scaling analysis (NMDS) in the “vegan” package of R software.

Analysis of variance was performed by SPSS 26.0, and the figures

were drawn with OriginPro.
3 Results

3.1 The effects of extreme drought on C
cycling functional genes

In this study, a total of 65 functional genes (Table S1)

responsible for the process of soil C decomposition were selected

and 116 functional genes involved in the soil C sequestration

pathway were detected (Table S2).

Extreme drought significantly affected many important microbial

functional genes involved in C decomposition (Figure 1). Specifically,

the functional genes involved in Chitin, Pectin and Aromatics

decomposition were not significantly affected by ED. nplT

significantly decreased (P < 0.05) by 23.73% in the ED, and the

abundance of the PGM3 gene changed from 0.38% to 0, which

participated in the decomposition of starch, and the abundance of

bglB gene involved in cellulose decomposition was significantly

reduced (P < 0.05) by 6.16%; In the MD, pmm-pgm and xynB were

significantly reduced (P < 0.05) by 5.08% and 7.52%, while treS and

gmuG were significantly increased (P < 0.05) by 4.58% and 42.28%,

they participated in the decomposition of starch and hemicellulose,

and the glx gene involved in the decomposition of Lignin was

changed from 0 to 4.55%. The abf1 gene significantly decreased (P
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< 0.05) by 56.89%, but the glucan 1, 3-beta-glucosidase (EC: 32.1.58)

significantly increased (P < 0.05) by 84.94%. These are involved in the

decomposition of hemicellulose and cellulose, respectively. In general,

the ED reduced the abundance of functional genes involved in the

decomposition of starch and cellulose, and the MD increased the

abundance of genes involved in the decomposition of Lignin, but had

different effects on the functional genes involved in the different

processes of the decomposition of starch and cellulose. The LD

reduced the functional genes involved in the decomposition of

hemicellulose, but increased the functional genes involved in the

decomposition of cellulose.

Extreme drought also significantly affected many important

functional genes involved in different C fixation pathways

(Figure 2), including the reductive citrate cycle, the 3-

hydroxypropionate bi-cycle, the dicarboxylate-hydroxybutyrate

cycle and the incomplete reductive citrate cycle, while the hydroxy

propionate-hydroxybutyrate cycle, the reductive acetyl-CoA

pathway, and the phosphate acetyltransferase-acetate kinase

pathway were almost unchanged. In the ED, korC decreased by

30.78% and 28.39% (P < 0.05) in the Reductive citrate cycle and in the

Incomplete reductive citrate cycle, respectively. The abundance of

E4.2.1.2B, participating in the 3-Hydroxypropionate bi-cycle process,

increased significantly by 3.18%. In the MD, sdhC in the reductive

citrate cycle, the 3-hydroxy propionate bi-cycle and the

dicarboxylate-hydroxybutyrate cycle significantly increased (P <

0.05) by 7.63%, 9.42%, and 6.57%, respectively. mch and smtA1

decreased significantly (P < 0.05) by 18.58% and 19.78%, respectively,

while K15052 increased significantly (P < 0.05) by 38.46% in the 3-

Hydroxypropionate bi-cycle. In the LD, sucC significantly decreased

(P < 0.05) by 4.61% in the Dicarboxylate-hydroxybutyrate cycle.
FIGURE 1

Significantly changed C degradation functional genes are compared between extreme drought and control sites. CK: light color; Extreme drought:
dark color; Red: ED; Yellow: MD; Blue: LD. Error bars represent standard error (n = 3). The differences between extreme drought and control sites
were analyzed by two-tailed paired t-tests. *P < 0.05.
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Results of the RDA indicated that microbial functional genes

involved in C degradation and fixation across the different

treatments could be distinguished by soil factors (Figure 3). pH

and TN had the largest effects on the C degradation and fixation

functional genes. The first axis described 52.38% of the variation in

microbial C degradation functional genes, and the second axis

explained 4.26% of the variation. The first axis described 37.21%

of the variation in microbial C fixation functional genes, and the

second axis explained 4.58% of the variation.
3.2 The effects of extreme drought on N
cycling functional genes

In this study, a total of 50 genes (Table S3) related to the N

cycling were detected, including those associated with
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ammonification, nitrate assimilation, assimilatory N reduction,

dissimilatory N reduction, nitrification, denitrification and N

fixation. In different periods of extreme drought, the affected

functional genes and their response processes were different

(Figure 4). When the ED event occurred, the abundance of the

ammonia oxidation key gene of nitrification (amoA) in the extreme

drought soil increased significantly by 55.32% compared with the

control (P < 0.05). This gene is responsible for oxidizing ammonia

to hydroxylamine. The abundance of nrtC and nifD genes of soil

microorganisms significantly decreased by 13.51% and 25.21%,

respectively, compared with the control under the MD (P < 0.05),

they participate in the process of nitrate assimilation and N fixation

respectively. In the LD, the abundance of hcp genes involved in the

soil amelioration process was significantly reduced by 57.78%

compared with the control (P < 0.05). Results of the RDA

indicated that pH, TN and NO3
- had the largest effects on the N
FIGURE 2

Significantly changed C degradation functional genes compared between extreme drought test plots and control test plots. CK: light color; Extreme
drought: dark color Red: ED; Yellow: MD; Blue: LD. Error bars represent standard error (n = 3). The differences between extreme drought and
control sites were analyzed using two-tailed paired t-tests. **P < 0.01, *P < 0.05.
FIGURE 3

Ordination biplots of redundancy analysis (RDA) showing the relationship of C degradation and fixation functional genes to soil characteristics at 0–
20 cm soil layers.
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cycling functional genes. The first axis described 20.62% of the

variation in microbial C degradation functional genes, and the

second axis explained 12.59% of the variation (Figure 5).
3.3 The effects of extreme drought on soil
microbial communities

In all the samples in this study, the detection numbers at different

community classification levels were that Domain: 4; Kingdom: 7;

Phylum: 87; Class: 161; Order: 293; Family: 501; Genus: 1631; Species:

6269. The co-occurrence relationship between the sample and the

microbial community (Phylum and Genus level) is shown in Figure 6.

At the Phylum level, the dominant communities were mainly

Proteobacteria, Actinobacteria, Acidobacteria and Chroroflexi. They

accounted for about 40%, 20%, 9% and 3% of all communities in the

different drought treatments.
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Extreme drought also significantly affected many microbial

groups at the genus level (Figure 7). In the ED, MD and LD, there

were 32, 41 and 2 microbial communities at the genus level that

changed significantly, indicating that the impact of ED and MD on

microbial community structure was stronger than that of LD. Among

microbial communities that have undergone significant changes,

extreme drought during different periods leads to different

directions of change in microbial communities. ED reduced the

abundance of 90.63% of microbial communities, while MD

increased the abundance of 95.12% of microbial communities. LD

significantly reduced the community abundance of Thermobacterium

and Gallionella. In addition, only ED significantly reduced the

composition of the Mycobacteriaceae, which belongs to Archaea. In

other treatments, there were no significant changes in the Archaea or

Fungal categories, indicating that extreme drought mainly changed

the composition of bacterial groups.

Based on the abundance information of species and function, a
diversity of species and function were calculated, respectively, and

linear regression analysis was performed to evaluate the consistency of

species and function. In this study, the microbial communities of some

C sequestration processes exhibited good consistency with the

corresponding functional genes, including the reductive citrate cycle,

the hydroxypropionate-hydroxybutylate cycle and the dicarboxylate-

hydroxybutyrate cycle (Table 1), The associated linear fits were

y=1.643X+0.8031 (R2 = 0.37, P < 0.01), y=0.7463X+4.9030 (R2 =

0.28, P < 0.05) and y=0.6539X+4.2184 (R2 = 0.24, P < 0.05),

respectively. The species and functional gene a diversity of the N

cycling also showed good consistency, and the linear fit was y=0.3084X

+4.8109 (R2 = 0.28, P < 0.05). NMDS analyses showed that the

composition of microbial community structures involved in C

fixation differed between treatments in early extreme drought

(Figure 8), while the microbial community structure involved in C

degradation and N cycling has little change under extreme drought

treatment in different periods. Furtherly, the relative contributions of

the top ten functional genes to microbial communities involved in C

degradation, C fixation and N cycling processes (Figure 9) showed that

as the abundance of microbial communities decreased, although the

composition of related functional genes changed, the functional
FIGURE 4

The extreme drought effect on N cycling genes. The percentages in brackets indicate changes in average abundances of functional genes between
extreme drought and control sites. Red and green represent the increase and decrease in the average abundance by extreme drought, respectively.
FIGURE 5

Ordination biplots of redundancy analysis (RDA) showing the
relationship of N cycling functional genes to soil characteristics at
0–20 cm soil layers.
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categories did not show significant changes, indicating a complex

relationship between microbial community composition and

functional gene abundance. The changes in population abundance

were not consistent with the changes in function.

4 Discussion

4.1 Extreme drought changed C cycling
functional genes

Microorganisms have two distinct and critical roles in controlling

terrestrial C fluxes i.e., facilitating the release of C into the atmosphere
Frontiers in Ecology and Evolution 08
through their catabolic activities, but also blocking it by stabilizing it

into a form that is not easily decomposed (Liang and Balser, 2011;

Liang et al., 2017). Microbial necromass rather than standing biomass

may be a better indicator of microbial contributions to soil C pools,

and research increasingly shows a substantial microbial role in the

sequestration of C into stable soil C pools (Ludwig et al., 2015).

Our research showed that different periods of extreme drought

events have different effects on the functional genes involved in

organic C decomposition. After five years of extreme drought, only

15.38% of the selected key functional genes show significant

changes. The impact of extreme drought on the different organic

matter has certain complexities, and the time of occurrence of
A B

FIGURE 6

Co-occurrence relationship between samples and species. (A) Microbial community at phylum level; (B) Microbial community at genus level.
FIGURE 7

A linear discriminant analysis effect size (LEfSe) method identifies the responses of soil microbial abundant taxa under extreme drought treatment.
The threshold on the logarithmic LDA score was 3.0. Red indicates a significant increase in abundance in CK plots, and green indicates a significant
increase in abundance in extreme drought plots. The replicate (n = 3).
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extreme drought events within the seasonal cycle plays an

important role. In addition, although the changing trend of

functional genes is also not consistent, our research showed that

the change of functional genes for the decomposition of labile C is

relatively complex, and the functional genes for the decomposition

of lignin are significantly increased. The production of extracellular

degrading enzymes may be reduced under drought conditions

because of the lower rate of return of decomposition products

due to diffusion limitations (Sardans and Penuelas, 2010). The

microbial community is very sensitive to changes in precipitation

conditions and even a slight precipitation event can cause rapid

microbial response (Nielsen and Ball, 2015). Yue et al. (Yue et al.,
Frontiers in Ecology and Evolution 09
2015) used gene chips to study soil microorganisms in alpine

meadows and noted that the relative abundance of catabolic genes

related to C and N cycling decreased with the increase of

temperature, with the most obvious change being in genes related

to stable C. Our study also suggests that drought significantly

increases the catabolic genes related to lignin and has complex

effects on labile C such as cellulose and hemicellulose. This is

consistent with research that has indicated that extreme drought

promotes more gene expression in microorganisms degrading

stable C, and reduces the long-term stability of soil C. Due to the

huge diversity of microorganisms and the unclear ecological

functions of most species, detection methods for specific
TABLE 1 Regression relationship of a diversity (Shannon index) for species at the genus level and their corresponding functions in different processes.

Categary Subcategary P value R2 Formula

C degradation

Starch 0.7094 0.0089

Hemicellulose 0.2977 0.0675

Cellulose 0.8325 0.0028

Chitin 0.0854 0.1735

Pectin 0.4307 0.0392

Aromatics 0.7814 0.0049

Lignin 0.4307 0.0392

C fixation

Reductive citrate cycle 0.0077 0.3664 y=1.643X+0.8031

3-Hydroxypropionate bi-cycle 0.3362 0.0578

Hydroxypropionate-hydroxybutylate cycle 0.0235 0.2811 y=0.7463X+4.9030

Dicarboxylate-hydroxybutyrate cycle 0.0389 0.2402 y=0.6539X+4.2184

Reductive acetyl-CoA pathway 0.4449 0.0369

Phosphate acetyltransferase-acetate kinase pathway 0.102 0.1582

Incomplete reductive citrate cycle 0.1383 0.132

N cycling N cycling 0.0239 0.2801 y=0.3084X+4.8109
FIGURE 8

Non–metric multidimensional scaling (NMDS) ordination of the microbial community involved in C degradation, C fixation and N cycling at different
treatments. The Bray–Curtis distance matrix based on the abundance of microbial community at genus level was used to determine the
compositional variation.
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functional microbial groups need to be greatly improved (Rinke

et al., 2013).

Similar to the decomposition process of soil organic matter, the

genes involved in the C fixation process exhibited different changes

for different extreme drought periods, although the response trend

of related processes was not consistent, indicating that the response

of microorganisms to extreme drought is very complex. However, it

is difficult to deduce the change direction of the final C fixation

capacity from the change of a certain function. Assimilation of CO2

by soil autotrophic microorganisms is an important process of the

soil C cycling, particularly in vegetation-constrained ecosystems
Frontiers in Ecology and Evolution 10
with environmental stresses such as on the Tibetan Plateau which is

characterized by low temperature and high UV radiation levels.

Lynn et al. (2017) showed that the C sequestration rate of

autotrophic microorganisms in wetland soil was 85.1 mg C m-2 d-

1, and that of autotrophic microorganisms in grassland and

woodland soil was 21.9 mg C m-2 d-1 and 32.9 mg C m-2 d-1,

respectively. Precipitation and latitude together accounted for

76.00% difference in soil C sequestration microbial metabolic

pathways in differently vegetated areas. In addition, oxygen

sensitivity can also one of the reasons for differences in CO2

sequestration pathways (Liu et al., 2016).
FIGURE 9

The relative contributions of the top ten functional genes to microbial communities involved in C degradation, C fixation and N cycling processes.
The taxonomy of the bacterial communities is shown at the genus level, and the relative contributions are represented by different colors.
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4.2 Extreme drought changed N-related
functional genes involved in ammonia
oxidation, N fixation, nitrate assimilation
and denitrification processes

In our study, nirK and nirS genes in denitrifying microbial

communities for reducing nitrite (NO2
−) to nitric oxide (NO), and

nosZ genes in denitrifying bacterial communities for reducing N2O to

N2 (Jetten, 2008; Levy-Booth et al., 2014) were not affected by

extreme drought. This may greatly influence the nitrification and

denitrification rates and associated N2O emissions. Keil et al. (Keil

et al., 2015) used qPCR to study microbial communities. Their results

showed that the abundance of nirK, nirS and nosZ all changed, while

the abundance of the nosZ denitrifying gene decreased by 3.1%,

which was greatly affected by drought. Hartmann et al. (Hartmann

et al., 2013) studied the response of soil N cycling microorganisms to

simulated drought through qPCR. Drought increased the N

mineralization rate by 14%, and reduced the relative abundance of

denitrification gene nirS by 7%. In an incubation experiment, it was

found that under both flooded and non-flooded conditions, warming

increased the N mineralization rate, which was reflected in the

increase of denitrification rate and the abundance of copper

reductase (nirK) (Gao et al., 2009; Fang et al., 2021).

Snider et al. (2015) documented significant changes in

denitrification gene abundance (nirS, nosZ), which increased after

heavy rainfall events increased WFPS from < 40% to > 70%,

consistent with large fluxes of N2O. A meta-analysis found that the

effect sizes of nirK and nosZ showed a U-shaped relationship with the

effect sizes of soil moisture (Li et al., 2020), contrary to the belief that

lower soil moisture and correspondingly higher soil oxygen

concentration may inhibit nirK and nosZ genes under drought

conditions (Delgado-Baquerizo et al., 2014; Homyak et al., 2017).

Although our experiment was carried out continuously for 5 years,

rewetting during the period of non-shielding may play a great role in

the recovery of microorganisms. Some studies have pointed out that

the significant resistance and/or resilience of the functional microbial

community participating in the N cycling to extreme weather events

may indicate that the microorganisms in silt are better adapted to the

expected pressure conditions (Hammerl et al., 2019).

Ammonia oxidation is the first step of nitrification, which is the

key process in the global N cycling and forms nitrate through

microbial activities (Leininger et al., 2006). We observed an increase

in abundance of amoA genes from the ED plots. This suggests that the

ammonia oxidation process increases after extreme drought events.

Che et al. (2017) used N cycling gene abundance (amoA) to find that a

major shift in the N cycling led to a five-fold increase in nitrobacteria

during grassland degradation in Tibet. Nitrification produces easily

leached nitrates, which are the limiting substrate for denitrification in

alpine meadows (Xie et al., 2014). Therefore, nitrates increase during

periods of high soil moisture or in moist soil microhabitats. However,

it has also been reported that both ammoxidation archaea (AOA)

abundance and community composition are unaffected by drought,

supporting earlier observations of AOA resistance to drought stress

(Gleeson et al., 2010) and AOA’s good adaptation to a wide range of

growing conditions and substrate concentrations (Schleper, 2010).
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Our study did not distinguish between AOA and AOB, but the

increase of overall gene abundance indicates that extreme drought

events in peatland may enhance the ammonia oxidation process.

Previous studies have reported that although total N concentration

sharply decreases under drought, the availability of soluble organic N

and mineral N significantly increases, thereby promoting plant N

absorption in the short term (Rennenberg et al., 2009). The opposite

research results suggest that drought does not affect the inorganic N

content in the soil, even under long-term drought treatment. Part of

the reason for these two results is the difference in drought intensity

and timing (Hartmann et al., 2013). We demonstrated that the soil

pH, TN and NO3
- had the largest effects on the N cycling functional

genes (Figure 5).
4.3 Relationship between microbial
community composition and
functional potential

Most biogeochemical transformations appear to be mediated by a

limited set of metabolic pathways in multiple taxa (Louca et al., 2018).

We still do not know the appropriate solutions to establish links

between microbial diversity and ecosystem processes in order to be

able to capture the taxonomic distribution, metabolic capacity and

response to environmental perturbations of microorganisms, although

the diversity of microbes is incredible (Gans et al., 2005). The

relationship between microbial biodiversity and ecosystem function

is mainly inferred by measuring the change of species diversity and

community composition derived using the marker gene method, but

this inference does not explain the causal relationship between

microbial diversity and ecosystem function (Krause et al., 2014).

Research on the relationship between microbial biodiversity and

ecosystem function needs to further characterize the functional

performance and role of microorganisms in the ecosystem (Wang

et al., 2019).

Our results showed that the composition of microbial

community structures involved in C fixation function differed

between treatments in early extreme drought (Figure 8). In

addition to the derailed ecosystem function and microbial

community function mentioned above, microbial taxonomic

composition and functional potential may not always be linearly

correlated. In our study, microbial community diversity involved in

the N cycling process exhibited a good linear relationship with

functional gene diversity, and only 3 out of 7 microbial C fixation

processes had a good linear relationship. However, the diversity of

genes involved in soil C degradation screened by us showed no

linear relationship with the corresponding microbial communities,

indicating that the decomposition of organic matter was involved in

the decoupling between microbial groups and genes. This may be

caused by different microbial groups having the same functional

genes. This separation of microbial functional and taxonomic

composition raises key questions about the relative spatial and

temporal value of information on microbial phylogenetic diversity

versus metabolic diversity of functional microorganisms for

understanding biogeochemical reactions (Wertz et al., 2007).
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For microorganisms performing relatively “extensive” functions,

such as the decomposition and turnover of organic matter, the

recombination of functional gene diversity (i.e. the functional

potential of the community) does not necessarily lead to changes in

ecosystem functions, such as decomposition rate (Allison and

Martiny, 2008; Miki et al., 2014). A recent meta-analysis based on

a metagenomic dataset of 365 samples worldwide revealed a

consistent pattern in the relative frequencies of eight metabolic

pathways associated with N transformation, hinting at the ability of

metagenomic approaches to make potential inferences about the role

of microorganisms in mediating biogeochemical cycles (Nelson et al.,

2016). Studies have shown strong evidence to support the hypothesis

of functional redundancy in soil microorganisms, as the degree of

variation in microbial taxonomic composition is greater than the

functional potential based on metagenomic gene abundance in global

terrestrial ecosystems (Chen et al., 2022). In the future, we need to

further integrate macro genomics, experimental culture and field

measurement technology to link the information on microbial

classification, phylogeny and functional genes with the measured

phenotypic traits and environmental preferences (Barberan

et al., 2017).
5 Conclusion

In this study, it was shown that under extreme drought

conditions, microbial communities with low abundance underwent

more significant changes than those with high abundance, and the

abundance of functional genes involved in related processes showed a

similar pattern, pH and TN had the largest effects on microbial

functional genes. Changes in a diversity of microbial communities

and functional genes were consistent in some C fixation processes

and N cycling. In summary, progress has been made in

understanding the potential negative impacts and positive

contributions of soil microorganisms to extreme drought by

considering the direct and indirect impacts of climate change on

microorganisms and the ability of such impacts to amplify or inhibit

key processes in the C and N cycling, despite uncertainties in

predicting ecosystem function. We believe that in the future it will

be necessary to link microbial ecology with whole-ecosystem scale

flux measurements and C cycling feedback models. It is possible for

ecosystem models to make better predictions of the ecosystem effects

of future extreme drought by better evaluating microorganisms’

functional capacity and response.
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