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Urbanization is a key stressor of freshwater habitats, possibly contributing to

global insect declines. However, scientific understanding of urbanization’s e�ects

on aquatic insect communities has largely been based on studies of temperate

streams. We reviewed global urban freshwater macroinvertebrate community

studies, classifying habitat type, location, urbanization metrics, biodiversity

metrics, and focal taxa, drawing from 114 studies in 32 di�erent countries. Our

goals were to: (1) investigate the extent of research on urbanization across

a variety of freshwater habitats, (2) examine the representation in empirical

literature across the globe by comparing cities in di�erent geographic regions,

and (3) highlight how study approaches including taxonomic resolution and the

inclusion of trait data impact interpretation of these patterns. Most studies were

conducted in North America and Europe, but there is growing representation from

other continents. Additionally, lentic environments were underrepresented in the

literature on community responses to urbanization compared to lotic studies.

Therefore, we suggest that lentic habitats should be investigatedmore thoroughly.

We suggest that future empirical studies should incorporate traits of the taxa

investigated to better predict how communities respond to urban stressors. The

lack of consistent results from the reviewed studies showed that there is no single,

predictable e�ect of urbanization, indicating that future meta-analyses and review

papers should consider the potential context-dependency of freshwater insect

responses to anthropogenic pressures. Our goal in highlighting understudied

environmental and regional contexts is to move toward holistically addressing

the ongoing challenges of urban freshwater insect conservation and freshwater

ecology research.
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1. Introduction

Human activities deplete biodiversity across the globe (Wagner, 2020; Wagner et al.,
2021), and continued biodiversity loss is forecasted (Sala et al., 2000). Recently, reports have
drawn attention to widespread insect declines (Leather, 2018; Sánchez-Bayo andWyckhuys,
2019; Cardoso et al., 2020; Eggleton, 2020;Wagner et al., 2021). Insects comprise themajority
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of animal biomass, playing vital roles in food webs (Eggleton,
2020; Wagner et al., 2021) and providing ecosystem services
(Kim, 1993; Losey and Vaughan, 2006; Vanbergen and the Insect
Pollinators Initiative, 2013; DeWalt and Ower, 2019; Morse et al.,
2019; Sánchez-Bayo and Wyckhuys, 2019; Cardoso et al., 2020),
thus observed declines have potential to threaten the integrity of
ecosystems around the world.

While most research on insect declines has occurred in
terrestrial systems, freshwater ecosystems have also experienced
persistent and emerging threats, such as habitat modification,
invasive species, and pollution (Ricciardi and Rasmussen, 1999;
Dudgeon et al., 2006; Vörösmarty et al., 2010; Reid et al.,
2019). Research focusing on freshwater insect populations has
shown declines in abundance and biomass (DeWalt et al., 2005;
Bojková et al., 2014; Murray-Stoker et al., 2020; Roth et al.,
2020; Stepanian et al., 2020), though conflicting conclusions
have also been reached through meta-analysis (van Klink
et al., 2020). More research on declines in freshwater insects
is needed, especially with respect to community responses.
Nuanced investigations into freshwater insects’ responses to
global change can help develop clear policies to minimize
further degradation and aid recovery (Dornelas and Daskalova,
2020).

Here, we study the effects of urbanization on global

communities of freshwater insects and other macroinvertebrates.
The “urban stream syndrome” describes consistent changes in
physical, chemical, and biological aspects of urbanized streams

(Meyer et al., 2005; Walsh et al., 2005). However, this syndrome
was characterized from studies primarily in North America and

Australia, and symptoms underlying the urban stream syndrome
may show inconsistent trends across cities differing in climatic,
physiographic, and social conditions (Walsh et al., 2005; Booth

et al., 2016). Similarly, meta-analyses and reviews of insect
population changes typically lack data from the tropics (Stendera

et al., 2012; Sánchez-Bayo and Wyckhuys, 2019; Eggleton, 2020),
and tropical environments are expected to experience greater
levels of land use change compared to other biomes (Sala et al.,

2000). Additionally, whether urban pond environments will exhibit
patterns of biological and chemical changes similar to streams
has yet to be fully understood. While the identification of this

syndrome has been useful in developing tractable approaches to
understand temperate urban streams, these limitations should also

motivate research efforts to encompass the diversity of freshwater
habitats worldwide.

A recent review identified priorities with respect to

macroinvertebrate communities and the effects of urbanization,
including (1) investigating specific macroinvertebrate taxa, and
(2) examining the impacts of urbanization on diversity in specific

habitat types (Gál et al., 2019). Given these gaps, our review
synthesizes the current status of the literature on global freshwater

biodiversity in urban environments by examining: (1) the extent of
research across freshwater habitats that span the gradient of lotic to

lentic, as well as the metrics commonly used in these assessments,
(2) the representation of studies from cities in different geographic

regions, and (3) how study approaches including taxonomic
resolution and the inclusion of trait data impact the interpretation

of these patterns.

2. Methods

We conducted a literature review using Web of
Science (© Clarivate 2022) and Google Scholar databases
(https://scholar.google.ca/).We focused on empirical investigations
of insects and co-existing macroinvertebrates (e.g., crustaceans,
oligochaetes) at the community level in freshwater habitats. We
selected studies that examined macroinvertebrate community
responses (e.g., diversity, percent abundance, richness) to urban
influences. Search terms included: “urban∗,” “communit∗,”
“aquatic,” “freshwater,” “macroinvertebrate,” “diversity,” “river,”
“wetland,” “pond,” and “stream.” To maximize geographic
coverage, we included continents, countries, or biomes in search
terms. We only evaluated English language papers and thus
acknowledge we are not fully representing global literature with
this review.

For each article, we noted the location, habitat type, focal taxa
(whether this was the whole macroinvertebrate community or a
specific taxon), the metric used to distinguish “urban” vs. “non-
urban” habitats (e.g., percent impervious surface cover), whether
the article specifically mentioned the presence of human-created
aquatic habitats, the response variable(s) used (e.g., taxonomic
richness, Shannon’s diversity index), and the main finding(s) of
the article. We used seven different geographic regions to divide
the study locations: Africa, Asia, Central America/Caribbean,
Europe, North America, Australia/New Zealand, and South
America. We considered “human-created aquatic habitats” to
include constructed stormwater ponds, garden ponds, significantly
dammed or channelized rivers, or effluent-dominated streams.

We obtained GPS coordinates based on site descriptions
outlined in each study. We first classified study locations as either
temperate (>23.43631 N/S) or tropical (<23.43631 N/S), based on
the latitudes of the Tropic of Cancer and the Tropic of Capricorn.
Study regions, particularly those that fall just outside of these
latitudes, were further assessed to include a subtropical category
by examining the overlay of site points with the ESRI USGS
World Climate Regions geospatial dataset (ESRI, USGS, TNC 2020;
https://arcg.is/1jHifW; Sayre et al., 2020). We summarized the
papers by calculating percentages of various categories. In total,
we compiled 114 relevant articles (Supplementary Table 1) that
spanned a 30-year period (1991–2021) and 32 countries (Figure 1).

3. Results

3.1. Global contexts of urban freshwater
biodiversity

The studies we reviewed spanned Africa (8.77% of studies,
Figure 1), Asia (7.02%), Central America/Caribbean (3.51%),
Europe (22.81%), North America (33.33%), Australia/New Zealand
(7.02%), and South America (17.54%). In terms of climate, 68.4%
of evaluated articles were in temperate regions, 13.2% were in
subtropical areas, and 18.4% were in tropical regions (Figures 1,
2B). Nearly all studies of lentic habitats were in temperate areas
(Supplementary Table 1), with single articles reporting results from
subtropical (Argentina; Gallardo et al., 2019) and tropical (Ethiopia;
Gezie et al., 2017) lentic habitats.
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FIGURE 1

Locations of the empirical studies examined in this review (n = 114 papers) investigating freshwater macroinvertebrate community responses to

urbanization. The freshwater habitat type investigated in each study and the climatic regions globally are provided in the legend.

Since the development of the primarily temperate urban stream
syndrome (Meyer et al., 2005; Walsh et al., 2005), there have
been recent calls for more attention on tropical urban freshwater
systems and the development of the “Southern urban hydrosystem
syndrome,” which integrates urban lakes and wetlands in the
Global South (Wantzen et al., 2019). Ramírez et al. (2009) pointed
out that unique characteristics of tropical and island streams,
such as their naturally flashier hydrograph, will result in these
habitats experiencing urbanization differently. Indeed, climate,
physical structure, and resident biota should be accounted for
when predicting effects of urbanization, but our review indicates
a community approach remains useful when analyzing urban and
non-urban habitats around the globe. Correspondence analyses
allowed for detection of important and region-specific stressors
on aquatic insects and other macroinvertebrates such as heavy
metal contamination (Bere et al., 2016), changes in flow regime
(Chadwick et al., 2006), increased nitrogen (Docile et al., 2016), or
reduced dissolved oxygen (Wan Abdul Ghani et al., 2018). Finally,
seasonal determinants of freshwater insect communities in the
context of urbanization were rarely studied (though see work in
temperate streams:Walsh et al., 2007; Hepp et al., 2010; Violin et al.,
2011). As impacts of region-specific stressors may change among
seasons (e.g., road salt inputs in temperate winters), more insight is

needed into how climate and seasonality may interact with urban
pressures on freshwater biodiversity.

3.2. Lotic vs. lentic environments

Most studies investigated river and stream habitats (n = 95,
83.3%; Figure 2). Lentic environments comprised 16.7% of studies
evaluated (n = 19), and wetlands were sparsely represented,
at 6.1% of the total (n = 7; Figure 2). The predominance of
lotic habitats in urban freshwater literature may be partially due
to historical differences between the persistence of urban lotic
and lentic environments. Destruction of ponds and wetlands
through draining and filling has been historically common in
cities (Davidson, 2014; Birch et al., 2022), while rivers have been
maintained, albeit often in a highly impaired state, for urban usage
for transportation, waste removal, and power (Winiwarter et al.,
2016).

Encouragingly, there has been recent attention to urban
stormwater management and wetland preservation, in part due
to increasing urban sprawl (Oertli and Parris, 2019; Birch et al.,
2022). Lentic studies reviewed here tended to focus on some
type of created habitat, such as stormwater or garden ponds
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FIGURE 2

Summary of the 114 articles reviewed for this synthesis, highlighting: (A) the proportion of studies that analyzed all freshwater macroinvertebrates

(88.59%), Ephemeroptera, Plecoptera, and Trichoptera (“EPT;” 3.51%), a single order (e.g., Odonata; 6.14%), a single suborder (i.e., one article focused

on Zygoptera; 0.88%, or a single family (i.e., one article focused on Dytiscidae; 0.88%), and (B) the representation of various habitats, especially those

that may have been previously underrepresented in urban freshwater research. All papers were classified as either focusing on “lotic” or “lentic”

habitats. Wetland habitats are also included within the total lentic percentage. Created habitats include stormwater and other human-made ponds,

e	uent-dominated streams, and dammed and channelized streams. Figure photographs by K.M. Murray-Stoker. (C) Based on the representation of

our review, we summarize key research gaps to be considered both for forming the context for current meta-analyses of global insect trends and for

future research e�orts examining the community responses to urbanization.

(84.2%, n= 16), while only 18.9% of lotic studies specifically
mentioned the inclusion of created habitats (n = 18), such
as effluent-dependent or channelized streams; across all studies,

created habitats make up 29.8% of studies (n = 34; Figure 2).
We noted that it was common for urban ponds to have
comparable biodiversity to reference habitats (Le Viol et al., 2009;
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Hassall and Anderson, 2015; Liao et al., 2020). Increased habitat
availability across the landscape may improve urban biodiversity
for lentic specialists (Gledhill et al., 2008; Hill et al., 2016), thus
the mere presence of urban pond habitats may mitigate the
effects of anthropogenic impairment in certain contexts. From a
biodiversity perspective, pollutants are a concern in stormwater
runoff ponds, though manifestations are context-specific: odonate
(dragonfly and damselfly) abundance decreased with increased
chloride in Canadian ponds (Perron and Pick, 2020), whereas
macroinvertebrate communities were unaffected by heavy metal
accumulation in ponds of western Denmark (Stephansen et al.,
2016).

Created habitats may also be beneficial to lotic specialists,
depending upon regional context and level of modification.
Bogan et al. (2020) found that urban wastewater effluent in
an arid region (Santa Cruz River, Arizona, USA) reduced the
risk of stream drying and facilitated odonate diversity. By
contrast, however, Canobbio et al. (2009) reported that the
pollutant load and hydrologic alterations introduced by wastewater
in an Italian effluent-dominated stream resulted in reduced
insect taxonomic richness and density. Commonly, a watershed
approach has been used to study the effect of land use on
lotic macroinvertebrate communities (Roy et al., 2003; Urban
et al., 2006; Walsh et al., 2007; Pavel et al., 2016; White and
Walsh, 2020), and dominant stressors can be specific to a
watershed, as reported in a study of emerging contaminants
(e.g., pharmaceuticals and pesticides) (De Castro-Català et al.,
2015).

3.3. Taxon-specific metrics

Lotic and lentic studies also differed in the taxa-specific metrics
used. Univariate biodiversity metrics have been developed for
rivers and streams: percent community composition of richness or
abundance of Ephemeroptera, Plecoptera, and Trichoptera (EPT;
mayflies, stoneflies, and caddisflies) was a focus of 3.51% of total
articles (n= 4/114, Figure 2), though 35.6% of studies (n= 36/101)
examining the broader macroinvertebrate community also used
an EPT-specific metric to complement other analyses. Family- or
genus-level identifications of specimens wasmost common (but see
for example Bozóki et al., 2018). EPT metrics are restricted to lotic
systems, as stoneflies typically do not occur in lentic habitats. Lunde
and Resh (2012) adjusted this approach for California wetlands
(United States) by evaluating effects of urbanization using the
percentage of Ephemeroptera, Odonata, and Trichoptera (EOT).
However, in general, there is a lack of applicable taxon-specific
metrics of biodiversity among urban lentic studies. This may hinder
urban pond biomonitoring and conservation, as % EPT or EPT
richness efficiently assesses the integrity of lotic environments
due to the sensitivity of these taxa to disturbance. There remains
some uncertainty regarding which macroinvertebrate taxa should
be used as indicators of urbanization or anthropogenic pressure
(e.g., whether the most sensitive or the most tolerant should be
used). Some researchers suggest that organisms less sensitive to
anthropogenic disturbance may be useful in the biomonitoring
of urban waters (Bonada et al., 2004, 2005; Tszydel et al., 2015),

because they would provide a more continuous measure of
anthropogenic impacts.

While some authors provided specialized insight through
examination of a particular taxonomic order (6.14%), suborder
(one study on Amazonian damselflies; Brasil et al., 2017), or family
(one study on dytiscid beetles in Finnish ponds, Liao et al., 2020),
it was most common for studies to evaluate diversity metrics
of the entire macroinvertebrate community (88.59%, Figure 1).
Additional focal metrics often aimed to capture the degree of
disturbance tolerance by highlighting specific taxa, such as the
prevalence of Chironomidae or Oligochaeta (non-biting midge or
aquatic worms, e.g., Marchamalo et al., 2018). Acknowledging the
range of tolerance values within a single insect order, some studies
specified the ratio of Hydropsychidae (a typically tolerant caddisfly
family) to the rest of Trichoptera taxa in the benthic community
(Rogers et al., 2002; Tszydel et al., 2015). Taxonomic resolution
varied among the studies; species identification allows for more
precise ecological conclusions about the habitat state (Resh and
Unzicker, 1975), but this is typically not feasible unless focusing on
only one order or family of insects.

3.4. Functional facets of diversity

Connecting stressors directly with freshwater insect
communities might be best approached with functional traits.
Studies that assessed overall diversity or richness of traits tended
to find that urbanization results in functional homogenization
(Barnum et al., 2017; Castro et al., 2018). Some literature suggests
that specific traits should be expected for the “winners” of biotic
homogenization, such as wide tolerance to environmental changes,
low trophic specialization, and high fecundity (McKinney and
Lockwood, 1999; Pavel et al., 2016). Tests of trait composition
changes for urban lentic environments remain particularly
limited, though Le Viol et al. (2009) showed that taxa with
small body size, short life span, multivoltine, passive dispersal
mode, and a range of feeding modes (scavengers, herbivores,
shredders, piercers, and scrapers) were most associated with urban
highway ponds in France. In this study, taxonomic diversity was
comparable in highway ponds and surrounding reference ponds,
with functional analyses providing additional insight into the
changes in community structure in response to specific stressors,
e.g., increased nutrients and salt (Le Viol et al., 2009). Edegbene
et al. (2020) and Akamagwuna et al. (2021) determined traits that
predicted urbanization sensitivity in South African and Nigerian
streams, respectively, using a fourth-corner or RQL approach
in which environment, taxa, and trait matrices are correlated
(e.g., Legendre et al., 1997); however, these studies emphasize the
importance of local context, as invertebrate body size was found by
both studies to be significantly correlated with urban tolerance, but
in opposite directions.

Various databases have been developed to aid researchers
in associating traits with taxa for North American lotic insects
(Poff et al., 2006), freshwater insects of the United States
(Twardochleb et al., 2021), European freshwater organisms
(Schmidt-Kloiber and Hering, 2015), European dispersal
traits of aquatic macroinvertebrates (Sarremejane et al., 2020),
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freshwater invertebrates in North America, Europe, Australia,
and New Zealand (Kunz et al., 2022), macroinvertebrates of
the Three Parallel Rivers Region in China (Ao et al., 2022),
macroinvertebrates in South African rivers (Odume et al., 2018),
and freshwater macroinvertebrates of New Zealand (Phillips and
Smith, 2018). Several were utilized by the articles evaluated in
this review.

4. Conclusions and future directions

Our goal was to facilitate comparison between urban freshwater
habitats so that perceptions of freshwater insect responses
to human-induced environmental change are accurate to the
habitat type encountered. Even after reviewing more than
100 studies, it is difficult to provide any definitive effects of
urbanization on freshwater macroinvertebrate communities due
to the disproportionate representation of all habitats in all
climate zones (for example, the dearth of studies focusing on
tropical and subtropical lentic habitats). When solely focusing
on lotic studies, increasing impervious surface cover was
generally associated with a decline in sensitive taxa. Overall,
however, the studies investigated exhibited a range of effects
of urbanization on biodiversity ranging from negative (e.g.,
Moyo and Rapatsa, 2016), to negligible (e.g., Hassall and
Anderson, 2015), to positive (e.g., Bogan et al., 2020), to varied
(e.g., Sitati et al., 2021), depending on the habitat, taxa, and

stressors studied.
Given the current state of the field, we lack a comprehensive

understanding of the impacts of urbanization on freshwater

insects, and we argue that the complexity generated by unique

contexts needs to be investigated to a greater degree before

making definitive conclusions. Our review identified key gaps
to be considered for future research examining community

responses to urbanization (summarized in Figure 2). We therefore

suggest that future reviews and meta-analyses distinguish

patterns within these specific subgroups as opposed to treating

all freshwater habitats and locations similarly. When researchers

are focusing specifically on freshwater insect declines due
to anthropogenic pressures, we argue that such nuanced

approaches can also benefit from considering changes in regional

community diversity and functional composition of freshwater

communities rather than solely focusing on total abundances or

biomass changes.
Beyond the explorations of this review, we suggest there

is great potential for research on freshwater habitats in urban

landscapes by studying location-specific social and historical

elements. The field of ecology has been reluctant until recent

years to evaluate urban environments in the same fashion

as nonurban environments, which has led to biases against

prioritizing assessment of biodiversity in created habitats (Clifford
and Heffernan, 2018). Rather, we advocate for embracing a
“natureculture” perspective (Haraway, 2016) in which heavily

human-influenced habitats are not assigned a lesser intrinsic value
than nonurban sites but are instead substantially included in

the conversation about maintenance and protection of global

biodiversity. Future urban freshwater ecology research may
consider evaluating the effects of factors such as city organization
and age through interdisciplinary collaboration with city planners,
engineers, and architects. Additionally, the effects of systemic
racism in cities, long a focus of environmental justice discourse
(Hare, 1970), have been shown to affect biodiversity in terrestrial
urban environments (Schell et al., 2020) and distribution of
urban greenspaces (Boone et al., 2009) in North America.
As global urbanization increases, we need to understand how
legacies of social histories have shaped the lotic and lentic
habitats of cities around the world and the biodiversity contained
within them.

Finally, we argue that given differences in the way
climate change and future global development will
impact different biogeographic regions (e.g., temperate
vs. tropical geographies), these distinctions are essential
to appropriate, targeted conservation and protection of
freshwater environments. By highlighting the existing
literature on how specific taxonomic groups or functional
traits might express differential responses to urbanization,
we hope to move closer toward predicting community
shifts to stressors associated with urban development
in these different freshwater habitats and improving
our understanding of the functional facets of freshwater
diversity responses.
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