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Introduction: A complex scientific environment requires multiple considerations

for handling critical and emergency conditions with an addressing solution.

Indexing and prioritizing are standard methods that are used in such settings

to improve itinerary solutions. Significance of an indexing system relies on the

benchmark solution and the strategy it implies.

Methods: The present study introduces an indexing strategy evaluation method

(ISEM) to validate the e�ciency of indexing systems. The proposed method

identifies the root implication and the strategy parameters to address complex

problems. The environmental and problem-specific parameters are determined

to estimate the system’s initial response. The capability through solution response,

lag, and failure analysis is identified post the estimation through linear regression

learning. The indexing system’s operations are designed through linear itineraries

to prevent interrupting failures. In addition, the environmental features are

identified as augmenting factors to prevent strategy pausing across multiple

indices.

Results and discussion: The proposed method employs linear analysis through

itinerary levels of index evaluation for optimal, lagging, and failed implications. It

also helps to identify specific reasons for solution improvement or retention from

previous operations.

KEYWORDS

emergency management, index system, linear analysis, scientific environment, indexing

strategy evaluation method

Introduction

Emergency management is an organization that gathers resources to deal with all

humanitarian aspects and disasters. The main aim of this emergency management is to

prevent harmful effects from wreaking havoc during disasters. Emergency management

provides various disaster management schemes to ward off people from attacks and

other natural calamities (Deng et al., 2015; Amon et al., 2022). Emergency management

in a scientific environment is a crucial and complicated task in every disaster

management system. Specific education and studies are provided to students to gain

more knowledge about emergency management (Sjostrom et al., 2021). Education

provides optimal information relevant to the disaster and reduces the complexity

range in the prevention process. The scientific environment contains certain aspects

that cause severe disasters and accidents (Carapuço et al., 2021). A combination of

both traditional and modern skills is required to operate such emergency management

systems. Traditional skills provide responsible content, thereby reducing the computation

time and energy consumption ratio in delivering preventive services to people.
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Emergency management capability requires accurate information,

which maximizes accuracy in the decision-making process.

Therefore, emergency management improves the performance and

feasibility range of the scientific environment (Jena et al., 2022;

Prabhishek et al., 2022).

An indexing system is a process method that organizes

documents or contents based on priorities and concepts. An

indexing system is mainly used in various fields to manage tasks

based on specific functions and patterns. An indexing system is

also used for emergency management (Liu et al., 2021). Emergency

management, in turn, requires a proper management system to

maintain the database and studies. The indexing system is mainly

used for classification and segmentation (Olma et al., 2020). The

actual goals of the indexing system for emergency management

are mitigation, preparedness, response, prevention, and recovery.

A specific set of features and patterns are analyzed by an

indexing system that provides relevant data to further emergency

services (Toepfer and Seifert, 2020). Indexing system reduces both

time and energy consumption range in computation, thereby

enhancing the efficiency of emergency management systems. A

processing framework based on an indexing system is used in

emergency management that identifies important patterns and

factors (Wellenzohn et al., 2022). The processing framework is

widely used for online emergency management systems. It first

understands the exact emergency content that is provided by the

user and indices it based on conditions. Social media data are

used here to provide the necessary information for such emergency

management systems (Paludo Licks et al., 2020).

The indexing system evaluation process uses machine learning

(ML) techniques. TheML technique is mainly used here to improve

the accuracy of prediction and evaluation processes. Indexing

systems require accurate data provided by the evaluation process

(Bu et al., 2021). The deep reinforcement learning (DRL) algorithm

is mainly used for evaluation. The feature extraction method in

DRL extracts the essential features, factors, and patterns relevant

to the indexing system. DRL evaluates emergency management

systems’ content and the indexing accuracy (Wortman andChandy,

2020). A deep neural network (DNN) is also used in the evaluation,

which helps to predict the exact features of an indexing system.

Logistics regression is used in DNN, which indicates the risk

indexing content presented in the database. DNN maximizes

the accuracy in evaluation that enhances the performance and

efficiency ratio of systems. DNN also reduces latency and error

range in the evaluation process, thereby improving the feasibility

of emergency management systems (Wortman and Chandy,

2020; Ning et al., 2022). Multiple linear regression (MLR) is

used in emergency management to identify the exact indexing

patterns for different processes. In addition, MLR predicts the

relevant characteristics and variables of the contents (Dazzi and

Mordacchini, 2020).

Related works

Domingues et al. (2022) proposed a new interval inverted

index approach, named 3icubing, to data cubes. The main aim of

the proposed system is to provide feasible indexing and cubing.

Indexation and querying operations are identified from real-time

datasets that provide relevant indexing information. The proposed

approach reduces the runtime and energy consumption range in

indexing systems and the overall memory consumption range in

the index representation process.

Saad et al. (2020) designed a filter shape index modulation

(FSIM) based on the filter domain for index modulation (IM).

FSIM allows the system to gain more spectral efficiency (SE).

The proposed FSIM is also used in single-input single-output

(SISO) systems that reduce the time consumption level in specific

tasks. Experimental results show that the proposed FSIM approach

increases the performance and SE of the IM systems.

Wang et al. (2022) developed a new evaluation method for a

performance index system. The main aim of the proposed method

is to improve the performance level of the index system. A practical

evaluation approach addresses the navigation confrontation for the

index system construction process. Furthermore, index systems

provide relevant data that are required for indexing and evaluation

processes. Therefore, this approach maximizes the system’s quality,

performance, and efficiency ratio.

Using commutation control, Chen et al. (2022) developed a

three-phase imbalance treatment function. The proposed method

is mainly used for index evaluation, providing information for

analytics and management processes. An improved entropy weight

method is used here to identify the load imbalance presented in

the indexing system. The proposed evaluation method improves

index system’s effectiveness and feasibility range compared to

other methods.

Sangiorgio et al. (2020) introduced a new performance-level

evaluation method for railway transportation systems. The analytic

hierarchy process (AHP) is used to predict the safety index of

the database. AHP defines the indices that reduce the complexity

ratio in the analytic process. In addition, AHP analyzes the

data required for the evaluation process, thereby reducing the

computation time consumption range. This process increases

the accuracy in prediction and detection, thereby enhancing the

systems’ performance and reliability levels.

Yuan et al. (2021) proposed a detailed evaluation index system

for intellectual capital. Machine learning (ML) algorithms are

used in evaluation methods to predict the detailed index. In

addition, random forest (RF) and support vector machine (SVM)

are used here to verify the indices required for different processes.

Experimental results show that the proposed method maximizes

accuracy in classification and prediction, thereby improving the

systems’ performance and significance level.

Zouaoui and Rezeg (2021) developed an ontology-based

semantic indexing system for the Quranic search engine. The main

aim of the proposed approach is to retrieve information based

on indices. The proposed system obtains feasible grammatical

functions and information from the Quran book, reducing

computational complexity. In addition, semantic indexing provides

reliable data for prediction and analysis. The developed approach

employs a user interface that offers multiple inputs to the

search engine.

Elmeiligy et al. (2021) proposed a new parallel indexing system

based on spark (ParISSS). The proposed ParISSS is mainly used

for the analysis of multidimensional big data. Both reception

and representation nodes are detected from the database that

provides optimal data for the indexing process. ParISSS reduces
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the computation time and energy consumption range, thereby

reducing the computation cost of the systems. The proposed

ParISSS enhances an indexing systems’ performance and efficiency

range compared with those of other methods.

Guzun and Canahuate (2020) introduced a query-dependent

equi-depth (QED) for indexing systems. Distributed and parallel

algorithms are used here to identify the features for indexing.

Nearest-neighbor (NN) queries are detected from the database,

thereby producing relevant data for indexing systems. QED

achieves high accuracy in classification and identification processes.

The introduced QED improves the quality and feasibility level

of indexing, thereby increasing the systems’ effectiveness and

scalability ratio.

Horasan (2022) designed a hybrid collaborative filtering using

latent semantic indexing (LSI) for recommender systems (RSs).

LSI is mainly used to develop user-based and item-based models

for indexing. RS provides objects based on user profiles, thereby

improving the systems’ efficiency. It helps to reduce the complexity

range in computation and prediction latency. The proposed model

maximizes the prediction accuracy that enhances the performance

of indexing systems.

Maroulis et al. (2022) developed a resource-aware adaptive

indexing mechanism for in situ data management systems.

Visual analysis is used here to identify the in situ scenarios

for indexing. Real and synthetic datasets are implemented

here, which provide feasible data for queries. Resource-

aware indexing systems are run to reduce time and energy

consumption range.

Experimental results show that the proposed mechanism

improves the performance level in indexing systems.

Sun et al. (2020) proposed a dynamic covering with

cross-range constraints (DCRC) for a time series indexing

system. An insertion algorithm is used here to develop a new

hierarchical DCRC for indexing. Lower and upper bound

nodes are detected from the index tree, thereby reducing

the complexity range in time series indexing systems.

In addition, DCRC reduces the child node requirement,

enhancing the systems’ performance range. The proposed

DCRC improves the efficiency and feasibility level of

indexing systems.

Huang et al. (2021) introduced an evaluation index system for

the natural gas pipeline network. The proposed system is mainly

used to meet user satisfaction to evaluate the indexing factors. The

main aim of the proposed system is to classify the user aspects based

on specific characteristics and functions. An indicator identifies

the demands that users in the gas pipeline network provide. The

proposed evaluation method maximizes accuracy in the evaluation

and prediction processes.

Ali et al. (2022) developed a dynamic flexibility index for the

evaluation process. The analysis is used here to gather the necessary

data from the database, providing feasible information for different

approaches. As a result, the complexity ratio and time consumption

levels in the computation process are reduced, which improves

efficiency levels in the evaluation process. Furthermore, compared

with other traditional methods, the proposed method achieves high

accuracy in evaluation, enhancing the application’s performance

and feasibility.

Proposed indexing strategy evaluation
method

Priority strategy evaluation of index and capability has been

analyzed for critical and emergency conditions in the scientific

environment, and some strategies for identifying solutions have

been planned. Despite strategy solution addressing the complex

scientific environment for a better output, verification is performed

by computing the root causes and benchmark solutions for

determining themaximum availability of location set covering issue

based on environmental and problem-specific parameters. The

benchmark solution is challenging when used tomeet the allocating

demands and their strategic features pertaining to emergency

services, first alerting fire departments and allocating SDMA and

NDMA services to manage the problem. Due to environmental and

strategy features, such as input, output, and algorithm processes,

for handling emergency conditions and critical situations it is

necessary to compute the efficiency of priority indexing through a

linear analysis. The objective of indexing and essential emergency

management capability in a scientific environment with addressing

solutions is sequentially monitored and analyzed for validating the

system’s response in that location.

Multiple hazards can be considered in the scientific

environment, and its emergency service is allocated based on

priority indexing. The priority index-wise queued tasks are

assigned and processed individually to improve itinerary solutions.

In that environment, the location set covering issue due to

different model behaviors and server availability maximizes the

indexing of the maximum area set covering and allocation model

with waiting and queuing times. The emergency management

capability is computed for addressing complex problems in a

scientific environment through solution response, lag, and failure

analysis for reducing interrupting failures. The root implication

and environmental strategy parameters with maximum covering

and problem capability with constrained priority-wise indexing

time for queue length are computed. A continuous monitoring of

such an environment prevents interrupting failures and improves

the efficiency of indexing systems. Figure 1 presents the proposed

ISEM processes.

The scientific environment is sequentially monitored with

some strategic features, and associated data are observed from the

satellite, wireless sensors, server availability, and behavior in each

region. The proposedmodel operates betweenmonitoring scientific

environment for emergencies and its indexing system process to

achievemaximum efficiency. In thismodel, the benchmark solution

and strategy parameters for identifying the root implication and

computation of strategic parameters are easy ways to satisfy the

system’s response to address complex situations. Furthermore, the

aim of handling critical and emergency management for addressing

the location–allocation model and its maximum coverage is to

reduce the complexity and increase the waiting and queuing times.

The ISEM is used to compute the efficiency of indexing systems

and thus reduce lags and failures in such regions. The linear

regression learning output is used to classify the environmental

strategy features for identifying complex problems with a final

output solution and index system efficiency in that environment.

An indexing strategy evaluation model is proposed that joins
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FIGURE 1

Schematic diagram of the ISEM process.

the capability of maximum covering the location with priority

indexing theory.

Results from indexing theory

Priority indexing has been computed for analyzing the complex

scientific environment’s capability of handling critical emergency

management. In this priority indexing system, we assume that the

strategy features in a complex scientific environment belong to

priority class C (C = 1, 2, . . . , c). The priority index of this analysis

is smaller than the priority class in such an environment. This

model considers it a non-preemptive priority scheduling when low

environmental emergencies are not important to handle or process

first. Thus, the low-level emergencies will be rejected during service

and sent back to the queue. First, the higher-priority emergency

conditions are handled. Multiple considerations from priority c

may appear on the benchmark solution rate C . Every critical

condition in this environment has its emergency service time TS

computed independently from the root implication RImp
(

TS
)

with

strategy parameters SP (C). Here, i + 1 refers to determining the

allocation function. This model also monitors the Head of Line

discipline at each priority level. Communication is forwarded in

one direction, as determined by the Head of Line discipline. It is

necessary to establish and create continuity between sender and

receiver stations before data transfer is required to coordinate half-

duplex transmission, which allows data to be delivered in both

ways on a network of data communication and not simultaneously.

For instance, the average waiting time for priority C for the first

emergency service is expressed as in Equations (1a) and (1b),

WTC =
WTi

(

1−
(

RImp
)

C

)

(

1−
(

SP
)

C−1

) if 1−
(

RImp
)

C−1

> i = 0 (1a)

= i+ 1 (1b)

Where

(

RImp
)

C
=

c
∑

i=1

ρ
(

∇p

)

i
, with

(

RImp
)

0
= 0 (2)

And

ρ
(

∇p

)

i
=

(

1C
)

i
(

SrC
)

i

= SP (C) 1C (3)

In Equations (2) and (3), the variable
(

SrC
)

i
is the emergency

service rate based on the priority class c for computing itinerary

solutions. The interpretation of probability of addressing a

complex problem ∇p in such an environment is the fraction

of the second process, whereas the server is busy (as long

as ρ

(

∇p

)

i
< 1). Identifying emergency conditions in a complex

scientific environment takes several minutes. The variable WT0
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indicates the average delay that the previous emergency service

experienced is analyzed for providing the same service or adding

additional features to the service is planned and then computing

the following equation which is expressed as,

WT0 =

SP
∑

i=1

(

1C
)

i

(

SP (C)
)2

2
(4)

In Equation (4),
(

SP (C)
)2

represents the second emergency

service with the service processing time and waiting time

computed. The priority class assignment is illustrated in Figure 2.

The C assignment pursues RImp and c ∀TS in determining a new

solution. Depending on c availability and SP(c), the augmentation

is decided. Contrarily, the C is allocated for the implied RImp, such

that 1 to ∇p is the assigned class for (Src)i. Hence, the ρ (∇P) is

obtained as either 1 or 0, such that the o returning instances are

implied with RImp. This implication requires SP (c) and augmenting

1c (Figure 2). The objective is used to minimize interrupting

failures; it determines that at least one strategy is planned to achieve

success through linear analysis for improving the efficiency of

indexing systems.

Problem identification

The framework for a complex problem structure comprises

a discrete space, in which critical and emergency conditions,

allocating demand, and system’s response are maintained. Strategy

parameters are used for precise decision-making. Tasks are

assumed for each network node, similar to the emergency

conditions assigned for providing services. The service call for

each emergency condition in that environment is used to perform

linear analysis with a processing rate
(

1C
)

i
. The complex problem

will identify multiple considerations for handling emergency

conditions and providing the service. We assume that the strategy

solution used to provide maximal location coverage to the

allocation demand has been addressed. For this model, the final

strategy solution and linear analysis-based indexing output are

compared by estimating the problem capability, and average service

time is defined as the summation of the emergency service call rates

of all allocation demands in such environment which is j.

ρ
(

∇p

)

j
=
(

SP (C)
)2 (

1C
)

i
=
(

SP (C)
)2
∑

i=0

DC
pA

C
ij (5)

In Equation (5), AC
ij is used to denote the determining

allocation of demand for addressing solution i in the environment

at j for priority-wise C services for indexing systems. If DC
p

represents the emergency service call rate based on priority

indexing C at multiple location–allocation demand points i. For

example, DC
p = 0.07 indicates the demand allocation point

i with waiting time; the number of emergency service calls

per unit of time for system’s response equals 7% of the total

population estimated.

Priority indexing for addressing
problem location

The priority indexing for addressing problem location assumes

static assignments of output solution to indexing efficiency. This

isn’t easy in the case of identifying the server locations for

identifying a best-afford solution across different scientific systems.

From this instance, the two constraints are followed to provide

services: First, we have to inform the central authority and gain help

from their services in critical situations. Second, each individual can

decide to stay or escape in those situations.

In this model, the addressing solution indicates separate

allocations for the various priorities based on problems that may or

may not coincide with strategy parameters. The demand point for

addressing complex issues may be allocated to a new environment

at j indexing-based instance in priority-wise and to center C 6=

j for other priorities. The main goal is to cover most problems

in all preferences and provide services. Multiple considerations

require various time constraints imposed for different indexing

priorities. The proposed model’s formulation is expressed as in

Equations (6–11),

MaxZ =
∑

C

∑

i

∑

j

xiA
C
ij (6)

Such that

AC
ij ≤ Bj, if ∀i ∈ In, ∀j ∈ Ca, ∀C (7)

∑

j∈Ca

AC
ij ≤ 1, if ∀i ∈ In, ∀C (8)

∑

j

Bj = Nc (9)

WTC
j ≤C , ∀j, ∀C (10)

AC
ij ;Bj ∈ {0, 1} , if ∀i ∈ In, ∀j ∈ Ca (11)

Where AC
ij = 1, the location demand i is allocated to different

nearby solutions at j instance based on priority of urgency and

critical situation for other cases. The variable Bj = 1 represents the

solution at j and 0 for all other cases. The variableWTC
j denotes the

average waiting time for indexing In priority at the closest solution

j for gaining precise treatment. Strategy parameters have limits to

impose the waiting time for index priority class C.Nc is the number

of solutions to be sited in that environment, xi is the problem at

location–allocation demand i; In is the set of all demand points

for indexing systems, Ca is the critical emergency management

capability analysis. The above conditions state that the solution i

is allocated to the optimal list and provides service priority-wise.

The indexing process is illustrated in Figure 3.

The indexing process relies on two distinct inputs, namely,

SP (c) and Dc
p. These inputs are required for Ac

ij under the common

factor, time (i.e.) TS and WTD are independently required. The

indexing system thus classifies Bj = 0 or Bj = 1 for SP (c) and

Nc, respectively. In the identified process, In ∀ j is the complexity

utilized for (Src)i. In the unidentified process, Ca is required for the

new allocation of RImp, such that lag is estimated (Figure 3).
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FIGURE 2

Priority class assignment.

FIGURE 3

Indexing process.

Linear regression learning implication

In this linear analysis, the solution response, lag, and failure are

sequentially identified based on RImp × WT with an addressing

output solution based on InP index priority estimation. The

probability of index priority
(

ρInp

)

is processed continuously,

which is expressed as,

ρInp = (sRs + L+ F − 1)i−1 (12)

Where

ρsRs =

(

1−
AC
ij ∈ Nc

AC
ij ∈ WT

)

(13)

As per Equations (12) and (13), the complex sequential problem

addressed through index system operations and solution response

is the probability of location covering such an environment.

Therefore, this model has no lag and failure; hence, the precise

evaluation index system of emergency conditions in such an

environment is estimated as per equations. Therefore, based on

the problem capability, the new features are added in ρsRs and the

efficiency of index evaluation is expressed as,

Inefficiency (Nc) =
1

∣

∣

∣
AC
ij + L+ F − 1

∣

∣

∣

.
(

ρsRs
)

ij
(14)

In Equation (14), the precise index evaluation for achieving

maximum efficiency and the environmental features are augmented

as per the services. Waiting time is valid for all the itinerary levels

of index estimation for optimal, lagging, and failed implication

analysis. The root implication is identified based on the study

due to solution improvement or retention from the previous

operations. Themultiple indices pausing across strategy parameters

cause lagging, and failures are reduced through linear regression
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FIGURE 4

Regression analysis.

learning with itinerary layers. The regression analysis for efficiency

evaluation is presented in Figure 4.

The linear analysis splits the evaluation for TS and WTD

independently without increasing the complexity. In the TS

validation, Bj > 0 alone is validated for ρ (∇P) such that ρInp
is the priority constraint. This linear analysis is performed across

the varying TS until RImp
(

TS
)

is applied. In the WTD based

on linear analysis, the C process is considered for Bj = 1 or

Bj = 0 conditions. In this case, the NC is completely utilized

for ρSRS for preventing prolonged waiting time (Figure 4). The

index evaluation efficiency is analyzed using strategy parameters.

The output solution is compared at that WT interval to prevent

interrupting failures and lagging in providing a solution. The

accurate linear analysis helps to identify a particular reason

for a better explanation from the previous operations through

the learning paradigm. Hence, identifying root implication and

strategy parameters for optimal, lagging, and failed operation

analysis is performed to achieve a successful indexing. Contrarily,

the final output solution used under conditions where similar

strategy features are available serves as the optimal analysis.

Therefore, the waiting and processing times for the evaluation of an

index system result in lag. Thus, the response of the actual system in

the scientific environment identifies the different root implications

in itinerary layers with the same strategy features. From the

output solution and priority indexing, efficiency toward critical and

emergency conditions is analyzed until multiple indices and failures

are identified. Here, the processing rate and waiting time are used

for validating the efficiency of the index system, at the time some

additional strategy features are added for a better solution and

decision-making. Therefore, the priority class lagging is identified

when matching the best solution with the final output solution

through linear regression learning for offering optimal services

to the population. This model processes the priority-wise index

system operations without increasing the complexity and failures

and preventing lagging. Hence, the itinerary solutions based on

indexing and priority are computed to improve the indexing

system’s efficiency and follow new strategy parameters with linear

analysis for augmenting the solution. In a complex scientific

environment, this present research introduced an indexing strategy

evaluation method (ISEM) for multiple considerations to handle

critical and emergency conditions with an addressing solution for

validating the efficiency of indexing systems.

Performance assessment

The cognitive modeling of complex system datasets (Vitalii,

2022) is exploited to analyze the performance of the proposed

method. This dataset provides weights, edges, inputs, and states for

achieving the precise target of a complex system. In this system

analysis, five different weights (priorities A to E) are assigned for

analyzing the proposed method. The linear analysis for system

validation using the given dataset is presented in Figure 5.

The weights are assigned at two different controls: testing and

strategy. The testing encloses the results across the linear and non-

linear analyses. The new weight (priority) type is assigned based

on the allocated weights. This step is required to be carried out to

prevent failures. Similarly, the lag time between Bj = 1 (weights)

and Bj = 0 (weights) is estimated as the lag time. If the actual time

exceeds the lag, then it is considered a failure (Figure 5). From the

data provided, the linear analysis for TS andWTD is independently

performed (as in Figure 4). First, for varying the indexing (A to E),

the extracted and actual NS is analyzed in Table 1.

As the prioritization increases in TS, the WTD decreases, for

which new augmentation is preferred. If further boost is desired,

indexing is varied, and environmental features are considered.

Therefore, the consecutive differences in WTD reduce the current

capability for which lags are measured. The indefinite lags are

pursued to prevent multiple indexing instances (Table 2). The
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FIGURE 5

Linear analysis representation.

TABLE 1 Ns analysis for varying indexing.

Ns Sr @ Ts = 10 min Extracted Ns

A = 0.2 B = 0.4 C = 0.6 D = 0.8 E = 1.0

100 53.67 56.30 60.23 66.69 71.23 90

200 62.36 63.21 71.25 75.36 81.23 125

300 58.85 90.21 89.36 92.36 94.82 187

400 59.47 60.56 81.36 85.23 89.36 269

500 62.89 71.21 69.36 71.23 75.69 209

600 71.45 75.60 70.25 76.36 80.25 398

Sr @ Ts = 20 min

100 55.63 65.23 74.25 74.23 80.36 95

200 54.12 59.26 72.36 74.36 79.36 198

300 69.45 63.21 75.30 81.23 86.32 245

400 58.25 74.23 78.69 80.23 81.45 369

500 56.47 79.32 69.58 81.23 91.36 451

600 62.36 65.89 74.12 75.66 89.6 525

Sr @ Ts = 30 min

100 64.23 69.32 72.36 77.23 87.36 98

200 69.32 71.25 75.69 78.69 82.36 178

300 65.36 70.26 78.65 81.23 89.36 289

400 74.12 72.54 81.23 84.23 90.36 369

500 71.23 75.69 79.36 82.36 93.25 474

600 73.25 81.25 67.45 85.36 88.39 538

analysis based on the minimum and maximum waiting times is

presented in Figures 6, 7.

The analysis of C ∀ NS

(

ρInp and Bj

)

and Sr is presented in

Figures 6, 7. As the waiting time increases, the need for prioritizing

(indexing) increases, and therefore Bj is validated. For the Bj = 1,

the C ∀NS is high compared to 0 < Bj < 1; this is contrarily less for

Bj = 0. In this case alone, the C ∀ NS drops and hence the Sr (%).

Therefore, the Sr (%)dropping for Bj = 1 prolonged, such that the

variations are compressed. Post this analysis, the lag and failure of

the prolonged TS intervals andWTD are analyzed in Figure 8.

The proposed method achieves less lag and failures; the failures

are filtered from the lag within WTD. This is invariable due

to the linear analysis from ρ

(

∇p

)

perspective, and therefore

j from C is increased for Dc
p and hence Ca is suppressed.

Considering the invariable imbalance, the consecutive WTD is

confined within the range, and therefore as TS increases failures

are less. This indicates that the WTD is achieved (balanced)

within a prolonged time (Figure 8). The comparative study uses

efficiency validation, response, operation implications, failures, and

lag time. The itineraries are between 10 and 140, and the index
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TABLE 2 Summary of related works.

Author Proposed
method

Findings

Domingues

et al. (2022)

Interval inverted index

approach named

3icubing for data cubes

It reduces the runtime and energy

consumption range in indexing

systems and reduces the overall

memory consumption range

Saad et al.

(2020)

Filter shapes index

modulation (FSIM)

Reduce the time consumption level

and increases the performance

Wang et al.

(2022)

New evaluation method Maximizes the systems’ quality,

performance, and efficiency ratio.

Chen et al.

(2022)

Three-phase imbalance

treatment function

Improves index systems’

effectiveness and feasibility range

Sangiorgio

et al. (2020)

New performance-level

evaluation method

Increases accuracy in prediction

and detection, enhancing the

systems’ performance and

reliability level

Yuan et al.

(2021)

Machine learning

(ML) algorithms

Maximizes accuracy in

classification and prediction,

improving the systems’

performance

Zouaoui and

Rezeg (2021)

Ontology-based

semantic indexing

Reducing computation complexity

Elmeiligy

et al. (2021)

New parallel indexing

system based on spark

(parisss)

Enhances indexing systems’

performance and efficiency range

Guzun and

Canahuate

(2020)

Query-dependent

equi-depth (qed)

Improves the quality and feasibility

level of indexing, increasing the

systems’ effectiveness and

scalability ratio

Horasan

(2022)

Hybrid collaborative

filtering

Maximizes the prediction accuracy

that enhances the performance of

indexing systems.

Maroulis

et al. (2022)

Resource-aware adaptive

indexing mechanism

Improves the performance level in

indexing systems

Sun et al.

(2020)

Dynamic covering with

cross-range constraints

(dcrc)

Improves the efficiency and

feasibility level of indexing systems.

Huang et al.

(2021)

Evaluation index system Maximizes accuracy in the

evaluation and prediction process

Ali et al.

(2022)

Dynamic flexibility index Achieves high accuracy in

evaluation, enhancing the

application’s performance and

feasibility

features are between 1 and 15 in this assessment. The methods

of hierarchical dynamic covering with cross-range constraints

(HDCRC) (Sun et al., 2020), parallel indexing system based

on spark (ParISSS) (Elmeiligy et al., 2021), and latent semantic

indexing (LSI) for recommender systems (RS) (LSI-CRS) (Horasan,

2022) are accounted for from the Related Works section in this

comparative study.

E�ciency validation

In Figure 9, the priority indexing system operations are

evaluated for augmenting the efficiency and capability of

identifying critical and emergency conditions in a scientific

environment relying on addressing solutions and benchmark

solutions. The strategy parameters and benchmark solutions are

computed to perform the efficiency validation for addressing

complex problems in such an environment. Managing multiple

indices across the pausing strategy interrupts failures that

simultaneously lead to complex issues with root implications. The

monitoring and observing data from the scientific environment

are analyzed and compared with previous environmental features.

Then, services or first aid are provided to the population

for a successive emergency management. The problem-specific

parameters are identified and studied for improving the capability

of critical emergency management, whereas the complex problem

causing lagging and failure is identified through linear regression

learning. The lag in strategy solution is addressed through linear

analysis for maximizing the response of the system to the condition

C = 1 and C ∈ {0, 1} satisfies successive itinerary solutions. In

this article, strategy solution and index system evaluation are the

essential factors that prevent lagging under waiting time. Hence,

priority-wise, the complex problems will handle and allocate

locations for service outputs in high index efficiency validation due

to maximum capacity through a system’s response.

Response

The environmental features and problem-specific parameters

rely on benchmark solutions, and some strategies to identify

the importance of indexing system in the proposed model are

presented in Figure 10. The non-preemptive priority scheduling-

based problem-solving model satisfies a high system’s response

by applying the root implication and strategy parameters to

address complex problems through a linear analysis. In this

manner, the current environmental features are identified in

itinerary layers at issue addressing time, preventing the waiting

time for allocating location to gain services in that place.

Critical and emergency management is handled to manage the

location–allocation model and its increasing covering location

to reduce service failures and the waiting and processing time.

The lagging in the priority index system is analyzed to improve

system response with strategy parameters, which helps to identify

multiple indices under waiting time. The environmental features

are identified and augmenting the parameters for estimation

of the maximum indexing efficiency. Therefore, the addressing

solution is computed to maximize the efficiency of index

systems through linear analysis using learning results in a high

solution response.

Operation implications

The proposed model achieves high operation implications in

complex scientific environments relying on addressing solutions

with multiple indices, and the output solution is compared to

the best solution. The root implication is aided for augmenting

the emergency management capability with a priority indexing

system, in which the environmental factor changes are identified

for a successive itinerary solution, as depicted in Figure 11. The

lagging in indexing operation and waiting time is mitigated
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FIGURE 6

C Analysis based on WT
D.

FIGURE 7

Sr analysis based on WTD.

due to the handling of higher-priority emergency conditions.

Multiple considerations from priority c may appear to compute

the benchmark solution rate C and waiting time. The operation

implication is identified for addressing the complex problem

and maximizing linear analysis through itinerary levels to reduce

interrupting failures simultaneously. The problematic issue will be

determined based on multiple considerations and then decided

to provide service. Observing people in a critical situation is

identified through varying environmental features and linear

regression learning for allocating nearby healthcare centers to

gain benefit during emergency times. For instance, let us

compare the final output solution with efficiency validation to

compute the best key in that condition. Contrarily, the solution

response increases at the initial stage of designing the index

system operations and employs linear analysis with other factors.

Therefore, the operation implication is high, and the capability is

also increased.

Failures

The ISEM that uses a linear analysis to compute multiple

considerations or responses for successful solutions in the

complex scientific environment under waiting time is illustrated

in Figure 12. This proposed model satisfies fewer interrupting

failures by validating the continuous index system operations

depending on varying environmental features at different time

intervals and scrutinizes the solution response. In this article,

based on the indexing system priority-wise, the problems are

analyzed for defining the allocation of demand for addressing

solution i in such environment at j for priority-wise C services for

indexing systems. Augmenting factors aid the ISEM and increase

the index system’s operation efficiency for addressing complex

problems. The multiple indices are identified in the strategy

parameters through linear regression learning until achieving the

maximum efficiency validation. The addressing demand point in

that complex problem may or may not be allocated location to

a healthcare center at j indexing instance based on priority-wise

indexing system and to center C 6= j for other priorities.

Therefore, the interrupting failure is less than this model’s

other factors.

Lag time

In Figure 13, the increasing output solution and system

response result in high lag time and waiting time for an

index system’s operation through linear analysis to identify

complex problems in the scientific environment. The maximum

efficiency and capability of critical emergency management

contain less lag time and failure at any interval with an

addressing solution. The solution response, lag, and loss are

computed continuously with RImp × WT to estimate the best
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FIGURE 8

Lag and failure analysis.

FIGURE 9

E�ciency validation.
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FIGURE 10

Response vs. Itineraries and index features.

FIGURE 11

Analysis of operation implications.

solution based on InP index priority estimation. The available

output solution and strategy parameters are considered for

improving the capability of critical emergency management.

Therefore, there is a high lag, and failures are identified when

addressing the complex problem in that environment. Hence,

the precise evaluation index system of emergency conditions

is estimated as per the above condition. The multiple indices

pausing across different environmental features cause lagging,

and failures are reduced through linear regression learning along

with itinerary layers, preventing lag time. The optimal analysis

is the final output solution for conditions where similar strategy

features are available. Therefore, the waiting and processing

time for index system evaluation results in less lag time.

This study is summarized in Table 3 (Itineraries) and Table 4

(Index features).

The proposed ISEM improves efficiency validation, response,

and implication by 9.32, 9.87, and 10.12%, respectively. In addition,

it reduces the failures and lag time by 7.53 and 9.52%, respectively.

The proposed ISEM improves efficiency validation, response,

and implication by 9.73, 10.79, and 11.13%, respectively. In

addition, it reduces the failures and lag time by 7.33 and

9.78, respectively.
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FIGURE 12

Graphical presentation of failures.

FIGURE 13

Lag time analysis.

TABLE 3 Comparative summary (Itineraries).

Metrics HDCRC ParISSS LSI-CRS ISEM

Efficiency

Validation

0.634 0.753 0.832 0.9261

Response (%) 65.64 73.64 85.37 94.631

Implication

(/Validation)

0.402 0.519 0.622 0.7167

Failures 16.00 10.00 5.00 1.00

Lag Time (s) 2.42 1.866 1.43 0.817

Conclusion

The present study introduced an indexing strategy evaluation

method for validating the performance of solution-providing

TABLE 4 Comparative summary (Index Features).

Metrics HDCRC ParISSS LSI-CRS ISEM

Efficiency

Validation

0.623 0.723 0.836 0.9219

Response (%) 64.55 71.39 80.86 93.853

Implication

(/Validation)

0.402 0.492 0.579 0.7136

Failures 12.00 9.00 4.00 1.00

Lag Time (s) 2.41 2.075 1.367 0.806

systems in complex scientific environments. This method

identifies root implications for providing lag-less and problem-

specific solutions. In problem identification and importance,

linear regression analysis is employed. First, the indexing
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system is evaluated by determining the demand allocation

and its solution implication with less waiting time. Second,

the strategy parameters are verified for their need under

probability-based benchmark solutions. This feature is required

for identifying lag to failures through linear regression under

different service time tenures. In all assignments, the itineraries

for solution response (post implication), lag, and losses

are identified, for which either a new feature-augmented

solution or an existing benchmark solution is provided. The

consecutive waiting time suppression between the actual

service times instances reduces the recurrent indexing for

complex environment handling systems. Therefore, the final

probability for a new feature implication is verified across

multiple priority classes in extracting the solution. The

proposed ISEM improves efficiency validation, response, and

importance by 9.73, 10.79, and 11.13% for the varying index

features. It reduces the failures and lag time by 7.33 and

9.78%, respectively.
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