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Climate has played a significant role in shaping the distribution of mammal
species across the world. Mammal community composition can therefore be
used for inferring modern and past climatic conditions. Here, we develop a novel
approach for bioclimatic inference using machine learning (ML) algorithms,
which allows for accurate prediction of a set of climate variables based on the
composition of the faunal community. The automated dataset construction
process aggregates bioclimatic variables with modern species distribution
maps, and includes multiple taxonomic ranks as explanatory variables for the
predictions. This yields a large dataset that can be used to produce highly
accurate predictions. Various ML algorithms that perform regression have been
examined. To account for spatial dependence in our data, we employed a
geographical block validation approach for model validation and selection. The
random forest (RF) outperformed the other evaluated algorithms. Ultimately, we
used unseen modern mammal surveys to assess the high predictive
performances and extrapolation abilities achieved by our trained models. This
contribution introduces a framework and methodology to construct models for
developing models based on neo-ecological data, which could be utilized for
paleoclimate applications in the future. The study aimed to satisfy specific criteria
for interpreting both modern and paleo faunal assemblages, including the ability
to generate reliable climate predictions from faunal lists with varying taxonomic
resolutions, without the need for published wildlife inventory data from the study
area. This method demonstrates the versatility of ML techniques in climate
modeling and highlights their promising potential for applications in the fields
of archaeology and paleontology.
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1 Introduction

Paleoclimate studies allow quantitative inferences of the
magnitudes, rates, and mechanisms of climate change and
provide direct evidence on biodiversity responses to past
environmental changes (Bertrand et al., 2011; Cerling et al,, 2011;
Lorenzen et al.,, 2011; Lyons et al., 2016; Clavel and Morlon, 2017;
Nogués-Bravo et al., 2018; Mondanaro et al., 2021; Timmermann
et al., 2022). Currently, a wide variety of climate proxy data can be
gathered to infer past climatic conditions at various temporal and
spatial coverage. Some of the most widely employed proxy data
include tree rings, corals, ice cores, sediments, plankton, and pollen
(see, e.g., Jansen et al., 2007; Jones et al., 2009; Birks et al., 2010;
Bartlein et al.,, 2011; Krapp et al,, 2021; Andrews et al.,, 2022).
However, many key archeological and paleontological deposits do
not preserve such sources of evidence. Where available, fossil faunas
can alternatively be used to help decipher more spatiotemporally
constrained environmental and climatic conditions, assuming that
many taxa are indicative of ecosystem structure (Grayson, 1981;
Andrews, 1995; Damuth and Janis, 2011; Lyman, 2017). Over the
years, paleontologists and archeozoologists have developed a pool of
new methods of paleoclimatic inference based on faunal fossil
remains, especially those of mammals, with a distinction being
drawn between taxonomic approaches (when fossils are identified
to the highest taxonomic level, ideally the species) and taxon-free
approaches (when analyses are independent of the taxonomy).
Taxonomic approaches typically use distribution, ecological niche
and habitat preference of modern related species, while taxon-free
methods are based on functional morphology, species richness or
community composition, for instance (for examples and syntheses,
see Mendoza et al., 2005; Reed et al., 2013; Andrews and Hixson,
2014; Lyman, 2017). Opting for one method over another may
result from several analytical and practical considerations such as
the number of fossil specimens available for a fossil site, the spatial
and temporal scale of the analysis, or the researcher’s expertise.
However, the performance of a climatic reconstruction ultimately
depends on the quality of the fossil record, which can be assessed
using taphonomic analyses (e.g., identifiability of the remains,
geochronology, taphonomic alterations).

More recently, advancements in multivariate statistical analysis
have led to improved accuracy and spatio-temporal resolution in
climatic inference methods based on faunal evidence, leveraging
techniques such as linear discriminant analysis and transfer
functions (in palaeoenvironmental research, a transfer function is
a statistical function that models the relationship between
paleobiotic data and climate or environmental parameters; see
Sachs et al., 1977). Two common recent approaches are the
Bioclimatic Analysis (Hernandez Fernandez, 2001; Hernandez
Fernandez, 2006; Royer et al.,, 2020) and the Mutual
Ecogeographic Range (Blain et al, 2009; Fagoaga et al, 2019),
which can be used to predict categorical and/or numerical
variables. Both methods are based on the geographical range of
identified species and provide high accuracy for environmental
interpretation. However, their application on fossil sites is not
always straightforward: they were initially developed for fossil
localities from across the Palearctic realm, which involved

Frontiers in Ecology and Evolution

10.3389/fevo.2023.1178379

extensive collection of fauna data from modern localities within
the same realm, and their applicability to other parts of the world
thus require significant effort in additional data collection; they are
not well suited to no-analog communities (i.e., those whose
composition is unlike any found today); they require a high and
homogeneous taxonomic resolution (ideally, all specimens should
be identified to the species level). There are many fossil localities
where such taxonomic determination is seldom achieved, such as
pleistocene hominin-bearing deposits from southern and Eastern
Africa (Avery, 2007). In these localities, faunal lists cannot achieve
species resolution. In such a context, the application of the
aforementioned paleoclimatic methods becomes challenging and
does not guarantee high, consistent accuracy.

Over the past two decades, focus has been placed on advancing
machine learning (ML) algorithms to effectively tackle predictions
on increasingly larger datasets characterized by complex patterns
and nonlinear interactions. ML techniques are now routinely used
in environmental and ecological sciences for a wide range of
complex tasks such as global weather forecasting (Dueben and
Bauer, 2018; Gibson et al., 2021), air pollution estimation (Bellinger
et al, 2017; Chen et al, 2019), wildfire management (Jain et al,
2020), or biodiversity assessment and monitoring (Knudby et al.,
2010; Kwok, 2019; Tuia et al., 2021). However, there are two main
challenges that often hamper the accuracy and applicability of ML
methods to biological data: (1) the low number of observations
available for constructing the dataset and (2) the difficulty of
integrating various levels of taxonomic identifications. These two
challenges are particularly prevalent with paleontological remains,
due to the fragmentary nature of fossils and the chronological gaps
between assemblages (Lyman, 2017).

In this study, we introduce a new ML approach for the
automated prediction of various environmental and climatic
variables based on the composition of the faunal community.
This approach enables the generation of precise predictions using
faunal lists with various taxonomic resolutions, irrespective of the
geographic region, and without the requirement of a large dataset of
modern faunal localities to ensure robust model performance. The
objectives of this paper are to describe the methodology and
evaluate its precision using modern fauna. We applied this
approach to African rodent communities, as they have already
been extensively used as proxy indicators for reconstructing
Quaternary past environments (Andrews, 1990; Fernandez-Jalvo
etal., 1998; Avery, 2001; Avery, 2007; Matthews et al., 2011; Stoetzel
et al, 2018; Matthews et al., 2020). We developed an integrative
approach for constructing neo-ecological large-scale datasets and
utilized a combination of seven linear and non-linear machine
learning (ML) algorithms to achieve highly accurate predictions of
climatic variables across various locations throughout Africa. We
devised a specific geographical cross-validation in order to mitigate
effects of spatial autocorrelation on the dependence of the data. We
evaluated the performance of the algorithms to determine the most
accurate ones for each variable, considering also their ease of
implementation in our selection process, and validated the
predictions using modern comparative reference data. This
methodology can be easily adapted to other systems to meet
specific requirements, for example, by including other biotic
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proxies (such as vegetation or other fauna) or by adjusting the
geographical resolution (focusing on a specific area or covering the
entire world). As this paper aims to present the new methodology,
its application to fossil faunal lists is reserved for future research,
which will provide an opportunity to further discuss issues
specifically related to the fossil context. Our study showcases the
versatility of ML techniques in reconstructing past and present
environments, underscoring their promising potential for

utilization in the fields of archaeology and paleontology.

2 Materials and methods
2.1 Data collection

We trained the algorithms to infer climatic variables based on
the presence of taxa at a given locality. To achieve this, we
constructed a large dataset comprising numerous localities (10x10
km grid covering the entire African continent) with associated
bioclimatic conditions (using the Worldclim set of 19 bioclimatic
variables), as well as the list of rodents present in each locality
(Figure 1). In the sections below, we detail the procedure by which
this dataset can be automatically built.

The efficacy of a ML method is dependent on the quality of the
computation architecture and the availability of a large and

[ 1/ Data collection & preparation ]

One dataset
w/ coordinates

Bioclimatic layers

10.3389/fevo.2023.1178379

appropriate amount of training data (Cui and Gong, 2018). The
acquisition of data is therefore a crucial issue, yet ecologists rarely
have access to an extended, quality annotated data set. This
limitation can be a significant constraint in environmental
studies, where the need for extrapolation is high (for instance,
predicting changes in aridity) but the training and test data within
the sought range of prediction are limited. Recent studies seeking to
reconstruct past environmental conditions from fauna using
statistical computing and ML methods (e.g. Zliobaite, 2019;
Spradley et al., 2019; Royer et al, 2020) have used limited
datasets with a quantity of input data restricted by several factors,
such as sampling effort or the availability of open and accessible
published faunal lists. Occurrence data of fauna species typically
come from sources such as the Global Biodiversity Information
Facility (GBIF), published field surveys and park or game reserve
lists (see, for instance, the Information Center for the Environment
(ICE) Biological Inventories of the World’s Protected Areas), and
primary literature. There are many factors that preclude the
collection of species occurrence observations and thus affect the
comprehensiveness and representativeness of these data (Rondinini
et al,, 2006), and the minimum sample size required for producing
meaningful predictions is usually difficult to estimate. One way to
address this problem while meeting data requirements is to
combine gridded weather and climate data with range maps of
modern African rodent species.

Add supra-specific ranks

Stacking X| Y | climl | clim2 | spl | sp2 | genl
12.2 45 1 0 1
Aggregate R 22 - 9.2 65 0 0 0
+ i T e 1 1 1
o 600x600 cells Response variable
D'Str'b"‘t.'on maps One model per variable
Rasterization
Explanatory variables

[ 2/ Model selection, training, validation ]

[ 3/ Test on new, unseen data ]
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£
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FIGURE 1

Data aggregation and machine learning (ML) workflow depicting the different analytical steps. The data used in this study were obtained by
combining species distribution maps with bioclimatic layers into a single dataset. Explanatory variables, which include species and supra-specific
occurrence information, are utilized to predict a single bioclimatic variable (response variable) through the application of various machine learning
algorithms with a geographically-based cross validation procedure. Random forest algorithm achieved the highest predictive performance.
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2.1.1 Bioclimatic data

Bioclimatic data was retrieved from Worldclim 2.1 (Fick and
Hijmans, 2017) at a resolution of 5 minutes (10x10km). The
Worldclim dataset consists of 19 spatial raster images
representing average, minimum and maximum temperatures and
precipitation (Table 1). Data were collected from various weather
stations worldwide and represent averages for the years 1970-2000.
An additional spatial map for evapotranspiration (ET, in mm/day)
was obtained from the Consortium for Spatial Information
(CGIAR-CSI) GeoPortal (https://cgiarcsi.community). In total, we
used approximately 350,000 10x10 km cells with associated climatic
measurements to ensure complete coverage throughout the African
continent. This resolution offers a dataset that is large enough to
obtain high accuracy and of sufficient resolution to capture the
influence of habitat heterogeneity on the structure of African
rodent communites.

In this study, we focused on modelling the 20 climatic variables
independently, based on the presence or absence of rodent taxa. We
chose to consider not only annual trends (e.g., mean annual
temperature or precipitation) but also extreme or limiting
environmental factors (e.g., temperature of the warmest month or
precipitation of the wettest quarter) as relevant for reconstructing
climate conditions. Integrating these “secondary” variables allows
us to represent not only global climate conditions, but also
seasonality components, which are essential to understand
ecological systems and species distribution and abundance
patterns (White and Hastings, 2020).

2.1.2 Species distribution data

For each grid cell with associate X, Y coordinates, we then
recorded presence or absence of each African rodent species based
on species distribution data. Current distributions of rodents across
Africa were gathered from expert range maps published by Wilson
et al. (2016, 2017), and from the IUCN (International Union for
Conservation of Nature) red list database. Range maps of all non-
domesticated mammal species from various expert sources were
also recently made available for bulk download on the Map of Life’s

TABLE 1 The 20 bioclimatic variables used for the study.

10.3389/fevo.2023.1178379

website at https://mol.org/datasets/?dt=range&sg=Mammals
(Marsh et al., 2022). We used 464 rodent species with partial or
exclusive African distribution (except for Madagascar and small
islands) out of the total of 468 species listed in Wilson et al. (2016,
2017). The four remaining species Apodemus sylvaticus, Mus
musculus, Rattus norvegicus and Rattus rattus were excluded from
the dataset due to their recent introduction to the African territory.
Our overall rodent dataset includes representatives from 92 genera
belonging to at least 15 families. Rodent distribution maps were
superimposed on the climatic raster layers, and the presence or
absence of a species in a cell was recorded as a binary variable with
values labeled 0 (absence) or 1 (presence). In addition to the 464
species variables, we added supplementary variables corresponding
to supraspecific taxonomic ranks (genus, tribe, subfamily, and
family) of all species included in the dataset, following Wilson
et al. (2016, 2017) for taxonomic classification. These variables take
the value of 0 or 1 when at least one species within the designated
taxonomic rank is present on a cell. For example, if two species of
Arvicanthis are found in the same place, the variables “Muridae”,
“Murinae”, “Arvicanthini” and “Arvicanthis” will also get a value of
1 in the data set. This addition raised to 600 the number of
predictive variables. The main advantage of this method is that
equal weight is given to different taxonomic ranks involved in the
prediction, and not only species. In this way, faunal lists or surveys
with different taxonomic levels can be used to predict climatic
conditions, including fossil data with few identifications at the
species level for instance.

There is a frequent debate among ecologists concerning the use
of range map instead of occurrence point locations to carry out
broad-scale ecological analyses (Hurlbert and White, 2005; Hurlbert
and Jetz, 2007), and both forms have their own shortcomings.
Range maps often overestimate species occurrences with false
presence rate, whereas occurrence points tend to underestimate it.
Nevertheless, the use of range maps in this study brought
considerable benefits: the most notable are that (1) it substantially
expanded the number of observations, (2) it prevented sampling
bias resulting from geographically variable expert knowledge and
(3) facilitated automatic implementation of species data without the

Code Bioclimatic variable min (mean) max min (mean) max
ET evapotranspiration 0 (3629) 29721 biol0 mean temp. of warmest quarter 5.8 (28.1) 38.5
biol annual mean temperature 3.5(23.9) 31 bioll mean temp. of coldest quarter -5.1 (19.2) 29.2
bio2 mean diurnal range 5.4 (13.4) 19.2 biol2 annual precipitation 0 (628.5) 4307
bio3 isothermality 5.4 (58.6) 93.7 biol3 precip. of wettest month 0 (126) 1115
bio4 temperature seasonality 9.7 (363.1) 929.1 biol4 precip. of driest month 0 (5.7) 138
bio5 max temp. of warmest month 11.4 (35.6) 48.3 biol5 precip. seasonality 0 (87.6) 222.3
bio6 min temp. of coldest month -9 (11.3) 234 biol6 precip. of wettest quarter 0(323) 2721
bio7 temp. annual range 8.5(24.3) 41.3 biol7 precip. of driest quarter 0 (25.3) 472
bio8 mean temp. of wettest quarter -1.5(24.3) 37.9 biol8 precip. of warmest quarter 0 (149.1) 980
bio9 mean temp. of driest quarter 0.4 (22.8) 36.1 biol9 precip. of coldest quarter 0 (112.2) 2721

Temp., temperature; precip., precipitation.
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need for control of quality and accuracy of georeferenced
specimens. The level of precision and uncertainty of model-based
animal distributions are difficult to quantify, and there will be
inevitably some inaccuracies in the demarcation of the species’
range. In general, endemic species with restricted ecological
tolerance and thus potentially good ecosystem asset proxy
indicators will have a higher level of spatial detail, whereas species
with wide distribution will result in range maps being less accurate.
Furthermore, the extant distribution of species may not coincide
with their past range and it may also not reflect habitat suitability
alone. These issues do not have completely satisfactory answers, and
we used a resolution of 100km? grid cells to recognize the spatial
grain limitations of the range maps. Furthermore, it is expected that
the multiple interaction paths connecting the 463 species in the
global community will balance the influence of one with dubious
distribution data on the predictions. If finer species ranges become
available in the future, one can easily replace a species distribution
variable to reflect habitat restriction with greater precision.

2.2 Machine learning for regression

Machine learning (ML) techniques now support the capture of
complex interactions and behaviours such as the influence of the
environment on species’ patterns of distribution (Botella et al., 2018;
Beery et al., 2021). In this work, we test and compare a variety of ML
algorithms for regression to predict climatic features based on
rodent faunas (Table 2). The algorithms were selected for their
suitability to binary high-dimensional taxon data and because they
were expected to provide good results for climate modeling.

Linear regression is a straightforward algorithm based on
supervised learning, where the predicted output is continuous and
has a constant slope. It is one of the fundamental ML models due to
its relative simplicity and clear properties. A multiple linear
regression (MLR) model extends linear regression to several
explanatory variables (Jobson, 1991). However, MLR loses
efficiency when the number of explanatory variables is large or
when the variables are highly correlated (collinear). Regularization

10.3389/fevo.2023.1178379

techniques offer a solution to this problem by incorporating
additional information or constraints into the model training
process. The goal is to control the complexity of the model and to
reduce the potential for overfitting. During training, a penalty term
is added to the loss function, encouraging smaller coefficient values
and mitigating the impact of correlated variables. There are two
main types of regularization techniques: ridge regression and lasso
regression. Ridge regression is effective for handling
multicollinearity as it adds an L2 penalty term, penalizing the
sum of squared coefficients. This encourages the model to
distribute the influence of the explanatory variables across all
features, reducing the dominance of any single variable. On the
other hand, lasso regression applies an L1 penalty, driving some
coefficients exactly to zero by penalizing the sum of their absolute
values. This sparsity-inducing property makes lasso regression
useful for feature selection and identifying the most important
variables in the model. By pushing the coefficient of correlated
variable towards zero, lasso regression results in fewer features
being included in the final model while still preserving relevant
regression information. Elastic net regression (ELASTIC) is a
regularized regression method that combines both the L1 and L2
penalties of the lasso and ridge methods. In addition to
regularization, dimensionality reduction techniques such as
partial least squares regression (PLS) can seek a lower-
dimensional representation of the features that retains essential
relationships in the data. PLS achieves this by projecting the
predicted and observable variables into a new space, extracting
factors that capture most of the variation in the response (Vinzi
et al,, 2010).

We also investigated several non-linear ML methods that could
probably better address climatic predictions. Regression trees (RT)
are the regression version of decision trees (Breiman et al., 1984),
which are ML algorithms that partition the data into subsets. RT are
constructed by splitting training dataset into smaller subsets based
on an attribute value test, which are then fitted along the tree
branches. The partitioning process starts with binary split and
proceeds until no further splits can be made, resulting to various
tree paths of variable length. RT can handle high dimensional data,

TABLE 2 Machine learning models used in the study and associate tuned hyperparameters.

Code Model Environment Parameters

MLR multiple linear R none
regression

ELASTIC elastic net regression R (glmnet) alpha, lambda

PLS partial least squares R (pls) ncomp
regression

RF random forest Python n_estimators, min_samples_leaf, min_samples_split

(randomForest)

EXTRA extremely randomized Python (sklearn) n_estimators, min_samples_leaf, min_samples_split, max_depth,
trees

XGBOOST | extreme gradient Python (XGBoost) | n_estimators, max_depth, learning_rate, subsample, colsample_bytree, colsample_bylevel,
boosting min_child_weight, gamma, reg_lambda,

NNET artificial neural network Python (PyTorch) n_hidden_layers, n_nodes_on_each_hidden_layer

Frontiers in Ecology and Evolution

05

frontiersin.org


https://doi.org/10.3389/fevo.2023.1178379
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Linchamps et al.

but they are prone to overfitting and can be unstable, as a slight
change in the input dataset can greatly affect the predictions. Tree-
based ensemble methods have emerged to improve the predictive
power of decision trees. Ensemble methods involve using multiple
trees and combining their results to produce a single optimal
prediction. Random forest (RF) models aggregate an ensemble of
successive fully-grown individual regression trees, which are
decision trees expanded until each leaf node contains only one
data point or all data points in the node share the same target value
(Breiman, 2001). This allows the trees to capture intricate
relationships and potential overfitting to the training data. The
random forest model is trained through bootstrap aggregating, also
known as bagging, which involves creating multiple subsets of the
original training data by randomly sampling with replacement.
Each subset, called a bootstrap sample, is of the same size as the
original dataset but may include duplicate instances and exclude
some instances. Extremely randomized trees (EXTRA) are similar
to RF, but they do not resample observations when building a tree
and use a small number of randomly chosen splits-points for each
of the selected predictors (Geurts et al., 2006). Extreme gradient
boosting (XGBOOST) is a gradient boosting algorithm, i.e., an
ensemble model that fits consecutive weak trees, also known as
shallow decision trees, on the residuals from the previous iterations.
These weak trees have limited depth or complexity and are
combined using a gradient descent algorithm to minimize the
fitting errors in each iteration of the boosting process.(T. Chen
and Guestrin, 2016). An Artificial Neural Network (NNET) is based
on interconnected units called artificial neurons that are typically
arranged in a series of layers (Haykin, 1999). Each neuron receives
input from the neurons on the previous layer, undergoes a weighted
transformation of this input, and sends an output signal to the
neurons of the next layer. The weights assigned to the connections
between neurons represent the strengths or importance of the
respective inputs. During the training process, these weights are
adjusted iteratively using optimization algorithms that minimize
the difference between the network’s predicted outputs and the
actual targets. This adjustment of weights enables the network to
learn complex patterns and relationships in the training data,
allowing it to make predictions on new, unseen inputs based on
the learned patterns. A Deep Learning Network refers to a NNET
architecture that uses multiple layers of neurons to extract higher-
level features from the raw input.

All analyses were performed using R 4.0.2 (R Core Team, 2020)
and Python 3.8.8 (van Rossum and Drake, 2009), using various
packages and libraries for model fitting and parameterisation
(Table 2). The R and Python scripts for our analyses are provided
in the supplementary material.

2.2.1 Model configuration

Each ML model has specific internal parameters, called
hyperparameters, which help to control the learning process for a
given problem. Different ML algorithms require different
hyperparameters, e.g., number of trees in random forests or the
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number of hidden layers and units in artificial neural networks,
which must be set before training. In this study, we used grid search
and randomized search with cross-validation for hyperparameter
optimization according to the trained model. The selected
hyperparameters that were tuned for each model are provided
in Table 2.

2.2.2 Model validation

This study utilized geographically-based partitioning to create
training/validation and test sets with a 0.75 partitioning ratio. The
aim was to address spatial autocorrelation and to prevent excessive
similarity between observations used during training and test phases,
ensuring their statistical independence (Dormann et al., 2007).
Certain geographical areas exhibit low internal climatic variability
as well as homogeneity in their faunal community composition. This
effect is likely to be more pronounced in regions characterized by low
species richness. In a random split, selecting neighboring locality
observations for training and validation will thus result in
dependencies. To tackle this issue, the entire data was partitioned
into geographically distributed blocks across Africa (Figure 2), with
continuous latitudinal and longitudinal bands serving as dividers (see
other strategies to account for spatial autocorrelation in Dormann
et al., 2007; Wenger and Olden, 2012; Le Rest et al., 2014; Roberts
etal, 2017; Mendoza and Araujo, 2022). The size of the blocks (2.1 x
2.1 degrees) was determined to achieve a balance between
accommodating species with limited geographic ranges and
providing sufficient coverage for evaluating the models’ adaptability
to climatic conditions without direct analogues. Approximately 75%
of the dataset was encompassed within the blocks, constituting the
training set, while the remaining 25% of observations within the
latitudinal and longitudinal bands formed the test set. These bands
introduce disruptions in the geographical continuity observed in the
blocks that will be employed for cross-validation. To assess model
performance and optimize the hyperparameters of models over grid
searches, the geographical blocks were then randomly assigned to five
folds for cross-validation, using one fold for testing and the remaining
four folds for model fitting. After the process is iterated until the five
folds have been used for testing once, we calculated the average
performance metrics (details below) across the five iterations in order
to estimate the model’s generalization performance (summarized in
Table S1). Finally, we selected the best-performing model based on
the average performance and used it to make predictions on unseen
test data.

Although this strategy limits sources of error and bias in the
predictions, it is worth mentioning that autocorrelation cannot be
fully addressed satisfactorily in our presence-absence design
problem, for occurrences are highly imbalanced between species:
for instance, the distribution of the Natal multimammate mouse
Mastomys natalensis covers almost all Africa south of the Sahelian
zone, while Issel’s groove-toothed swamp rat Pelomys isseli is
restricted to a few islands in Lake Victoria. This situation leads to
blocks lacking either presences or absences, which will affect the
model’s ability to generalize patterns effectively. To assess the

frontiersin.org


https://doi.org/10.3389/fevo.2023.1178379
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Linchamps et al.

10.3389/fevo.2023.1178379

Train test split Fold 2
L
L] L
»
M Test set
M Training set L
Fold 3 Fold 4 Fold 5
- - d 0
- - . - | | |
L} L A - L L] EE =
[ ] | B | [ | 4= | |
H _EEE o am
[ ] EEE N T EEm .
[ (] |
= mm n [ 1] | [T
. n | ] | | | I ]
| | N ERE . o . _Em EE_ B
(| [} [ | ]
L I | " n |
L] | | BN E
41 u [ 4 L L
QL]
Ll [ 1] []
1 u _uEE u
 na [ 1] [ ]
) L] m
[} [} B
] aEE =N
 _EEm r
- -
] ' [
] ' Em
]
nn »

FIGURE 2

The dataset was divided into a training set, consisting of non-adjacent blocks distributed uniformly (75% of the data, in blue), and a test set (25% of
the data, in pink). Blocks from the training set were assigned randomly to five folds, each marked with a distinct color that shows allocation of blocks

to folds, for 5-fold cross validation

predictive performance of the fitted models, we used root mean
square error (RMSE), mean absolute error (MAE), coefficient of
determination (R?) and adjusted coefficient of determination (aR?)
metrics. RMSE, MAE, R? and aR? are calculated as follows:

1 )
RMSE = /=3 0i=5 )2

1 N
MAE = — =
N2y

-y )2

2 _ _
et EE(}’:‘—? )2
(N-1)

RP=1-(1-R)— "
a ( )N_p_1

where N is the number of samples for validation, y;, y and y are
observed, predicted and mean values of y respectively, and p is the
number of input variables (predictors). RMSE is the square root of
MSE, which represents the average of the squared difference
between the original and predicted values; it measures the
standard deviation of the residuals. MAE represents the average
magnitude of the differences between the original and predicted
values, regardless of the direction of the errors. R* represents the
proportion of variance for a dependent variable that is explained by
an independent variable; it is a scale-free score, represented as a
value between 0 and 1. The adjusted R” is a modification of the R
that penalizes the inclusion of unnecessary predictors in a
regression model, providing a more conservative estimate of the
model’s performance while accounting for its complexity. It is a
measure that balances the goodness of fit with the number of
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predictors. RMSE, MAE,R? and aR> are four common of many
quantifiable ways to check how predicted values are closely related
to actual observed values (Chai and Draxler, 2014).

2.2.3 Model interpretation

Variable importance, also called feature importance, allows
ranking the relative contributions of input variables for predicting
the output variable (Friedman, 2001). It also provides an interesting
global insight into the model’s behavior. There are many methods
to compute variable importance scores in a fitted model, some
model-specific, others model-independent (e.g., Archer and Kimes,
2008; Williamson et al., 2021). In this contribution, Random Forests
(RF) demonstrated superior predictive performance compared to
other models, leading us to focus on this algorithm. To assess the
importance of variables, we used a built-in feature importance
evaluation from the RF algorithms, which is based on the mean
decrease in residual sum of squares (Breiman, 2001).

2.3 Testing the models on new
faunal datasets

As the dataset on which the models have been trained is derived
from range maps rather than point-occurrence records, predictions
are based on a scenario of full occurrence of the maximum possible
species on each cell. For example, the highest species richness is
found in the Central African rainforest with a total of 62 sympatric
species. In practice, however, faunal data from field inventories or
archeological excavations rarely represent exhaustive inventories.
There is much variety when it comes to survey (e.g. owl pellet
counts, pitfall and snap traps, acoustic techniques, camera surveys),
with a potential impact on sampling efficiency that can alter
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richness and abundance estimates (Andrews, 1990; Umetsu et al.,
2006). To ensure the reliability of climatic inferences and their
extrapolation to local rodent surveys where sample success is lower,
trained models were tested on eight faunal lists derived from
published rodent surveys from various African countries
(Table 3). These lists show discrepancies between the number
of identified species and the theoretical maximal specific
diversity according to the literature. Climatic conditions predicted
with the fitted models can then be compared with real local
conditions, allowing estimating the reliability of our method. Of
course, it is not expected that predictions from a small
number of species will exactly match climatic records at the eight
locations; however, the comparison of actual and predicted
bioclimatic values can be viewed as an easy “test case” and a first
demonstration of the exportability of our methods to no-analog
small mammal communities.

To visually identify the areas with the highest similarity in terms
of climatic conditions to the predictions derived from faunal lists,
maps have been generated by rasterizing the Euclidean distance
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values between the output vector containing the 20 predicted
variables and each cell of the dataset.

3 Results
3.1 Performance of ML models

Performances of the seven algorithms for predicting the 20
target climatic variables after cross-validation are shown in Table 4
(RMSE and aR?) and Supplementary Table 1 (MAE and R?). Each of
the non-linear ML models achieved substantially better prediction
performances than the linear models. The highest performing
model is RF, closely followed by XGBOOST and NNET, based on
the RMSE and aR® values on the test set. The lowest performing
model is PLS, regardless of the output variable. Relationship
between the observed and predicted outcomes using RF models
on test setare illustrated with scatter plots for each variable in
Figure 3. There are also differences in the models’ performances
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FIGURE 3

Actual (observed) and predicted values of the 20 bioclimatic variables for the test data set (n = 89420) with the random forest model
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TABLE 3 List of published rodent inventories from various African localities, with the number of identified taxa (various taxonomic ranks included)
used in the predictions and the theoretical maximum number of species at this location based on the literature.

area study n taxa identified max species richness
1 South East Tunisia Ettis et al., 2019 6 16
2 Alatish National Park, Ethiopia Habtamu and Bekele, 2008 13 10
3 Volta Region, Ghana Decher et al., 2021 18 37
4 Mount Oku, Cameroon Ebague et al.,, 2019 13 31
5 Réserve de Faune 4 Okapis, DR Congo Katuala et al., 2005 22 44
6 Bwindi Impenetrable National Park, Uganda Kasangaki et al., 2003 45 49
7 Tarangire National Park, Tanzania Stanley et al., 2007 15 35
8 Mountain Zebra National Park, South Africa Parker, 2021 20 19

with respect to the predicted output variable: evapotranspiration
(ET), annual precipitation (biol2) and temperature seasonality
(bio4) are consistently predicted very accurately (aR* = 0.98 for
the three variables with RF model); by contrast, the mean
temperature of the driest quarter (bio9) and the precipitation of
the coldest quarter (bio19) are the most difficult variables to predict
using the faunal input variables. Based on these scores, we adopted
the random forest (RF) as the most efficient ML regression model
for the rest of the analysis.

3.2 Climatic predictions on new dataset

RF-based prediction of the distinct bioclimatic conditions from
several published rodent lists (details in Table 3) provided results
that are in most cases matching closely with records from weather
stations around the areas. Figure 4 shows the predictions from the
RF models for nine temperature parameters compared to the
temperature records from the climate stations in the study areas.

There is a high correspondence between the observed
temperature records from the weather stations and the values of
temperature variables predicted by the RF algorithms based on the
rodent lists. This is all the more striking, since these inferences are
made with original faunal data beyond the data set used for
model fitting.

4 Discussion
4.1 Nonlinear vs. linear models

Unsuprisingly, all the nonlinear ML models consistently
provided better performances than the linear models. In
particular, RF, XGBOOST, and NNET appear to be the most
promising algorithms for predicting climatic variables based on
the presence or absence of rodents. Unlike linear models, they are
successful in capturing nonlinear patterns and interactions (Bishop,
2006). The actual spatial limits of distribution of rodent species are
controlled by complex interactions between several biotic (e.g.,
competition, predation, vegetation) and abiotic (e.g., soil
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nutrients, anthropogenic land-use change, water availability, fires,
etc.) factors. As a result, bioclimatic factors can drive differential
responses on the abundance and presence of some species that can
hardly be captured by linear statistical models. This is not
particularly surprising, as similar observations were also made for
other climate predictions with ML based on pollen samples
(Salonen et al,, 2019; Sobol et al., 2019). The corollary to this is
that RF identified important contributing taxa that were not or were
little considered by linear models, such as the genera Euxerus
or Hystrix for predicting annual mean temperature (see Figure 5).
This provides an example of how non-linear models captured
more detailed effects that allow to better characterize the climatic
components of an environment. However, an overly sophisticated,
complex statistical model may be prone to overfitting; this occurs
when a model fits exactly against its training data and learns detail
and noise to the extent that it negatively impacts its performances
on unseen data (Dietterich, 1995; Hawkins, 2004). It is nevertheless
possible to avoid overfitting bias in several ways such as using cross-
validation, backtesting, regularization or by carefully tuning the
hyperparameters pertaining to the model.

4.2 Performance of the RF algorithm

Using tree-based ensemble methods, we successfully predicted
bioclimatic components of multiple African environments based on
rodent communities. Although the actual distribution of most
rodent species is driven by many environmental and
anthropogenic factors that are hardly quantifiable (including type
and density of vegetation, soil physical characteristics, elevation,
predator status, farm management practices, for instance), rodents
are primary consumers with strict ecological requirements for most
of them; thus, we were expecting to predict bioclimatic variables
with a fair degree of accuracy. The striking performance achieved by
our RF models provides support for the contribution of ML
approaches to predictive environmental modelling from
species distribution.

The set of 19 bioclimatic variables from Worldclim is derived
from monthly temperature (minimum and maximum
temperatures) and rainfall values. Our models achieved the best
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TABLE 4 Performance evaluation of ML regression methods.

Linear models

10.3389/fevo.2023.1178379

Non-linear models

ELASTIC EXTRA XGBOOST

RMSE aR? RMSE aR? RMSE aR? RMSE aR? RMSE aR? RMSE aR? RMSE aR?
ET 931.27 0.95 928.37 0.95 1195.3 0.92 564.32 0.98 562.81 0.98 552.13 0.98 660.14 0.98
biol 1.38 0.85 1.38 0.85 1.64 0.78 0.93 0.93 1.01 0.92 1.02 0.92 1.13 0.90
bio2 0.88 0.86 0.87 0.86 1.12 0.76 0.61 0.93 0.60 0.93 0.63 0.93 0.66 0.92
bio3 2.87 0.95 2.87 0.95 3.78 091 1.84 0.98 1.85 0.98 1.85 0.98 191 0.98
bio4 52.21 0.95 52.32 0.95 68.83 0.92 30.71 0.98 30.72 0.98 30.77 0.98 32.37 0.98
bio5 1.83 0.86 1.83 0.86 2.20 0.80 1.25 0.94 1.25 0.93 1.27 0.93 1.41 0.92
bio6 1.65 0.91 1.65 0.91 2.16 0.85 1.06 0.96 1.07 0.96 1.10 0.96 1.26 0.95
bio7 1.99 0.93 1.99 0.93 2.66 0.88 1.25 0.97 1.25 0.97 1.26 0.97 1.33 0.97
bio8 2.64 0.78 2.64 0.78 3.05 0.71 1.98 0.88 1.98 0.88 2.00 0.87 2.08 0.86
bio9 245 0.76 245 0.76 2.80 0.68 1.98 0.84 1.98 0.84 2.00 0.84 2.16 0.81
biol0 1.61 0.86 1.61 0.86 1.93 0.80 1.10 0.93 1.10 0.93 1.13 0.93 1.24 0.92
bioll 1.48 0.91 1.48 0.91 1.85 0.86 1.02 0.96 1.02 0.96 1.05 0.96 1.17 0.95
biol2 133.50 0.95 132.92 0.95 171.48 0.92 64.46 0.99 74.71 0.98 72.23 0.98 160.12 0.93
biol3 29.63 0.93 29.55 0.93 38.40 0.87 16.59 0.98 22.35 0.96 17.1 0.98 21.16 0.96
biol4 6.60 0.81 6.60 0.81 8.28 0.70 4.69 0.90 4.70 0.90 441 0.92 5.33 0.88
biol5 14.63 0.85 14.63 0.85 18.56 0.75 10.36 0.92 10.37 0.92 10.39 0.92 10.88 0.91
biol6 73.55 0.93 73.32 0.93 98.47 0.88 40.70 0.98 40.62 0.98 39.33 0.98 49.71 0.97
biol7 20.98 0.87 21.00 0.87 27.98 0.77 14.70 0.94 14.82 0.93 13.14 0.95 17.93 0.90
biol8 46.34 0.91 46.25 0.91 57.04 0.87 34.20 0.95 34.20 0.95 33.53 0.95 40.44 0.93
biol9 12041 0.73 120.14 0.73 144.22 0.61 80.22 0.88 80.11 0.88 77.31 0.88 93.70 0.84

The best performing models for each variable are in bold. RMSE root mean square error, aR” adjusted coefficient of determination.

performances for primary variables that derive directly from these
values, such as annual precipitation, temperature seasonality,
precipitation of the wettest quarter, etc. By contrast, predicted
variables for which we obtained more mixed performances are
secondary variables, i.e., combinations of the temperature and
precipitation values, such as mean temperature of wettest quarter,
precipitation of coldest quarter, and mean temperature of driest
quarter. This can have a significant impact on depicting climate or
environment when one chooses to select for any reason only a few
response variables.

One of the advantages of the RF regression algorithm is the
possibility of easily including many covariates with minimal tuning
(see Table 2) and supervision in comparison with other nonlinear
methods such as XGBOOST or NNET. However, there are several
obstacles that may hamper the accuracy and performance of our
models. The most obvious one relates to the reliability of species
distribution data. As a rule, the geographic range for widespread
species is less precise than for species with restricted distributions.
This may result in a further overrepresentation of widespread taxa
in the dataset (with an impact on the relative important variables for
each model) and mask the distribution of species along climatic
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gradients. By using range maps instead of observed points of
occurrence, however, it will be easy to quickly refine predictor
variables as more detailed data on rodent species occurrence will
be available in the future. In addition, although no less than 463
species of African rodents were used as predictors, this large
number of variables may still be insufficient for highly accurate
climate modelling at the scale of the entire African continent.
In the wild, the same association of rodent species can occur
in different places with different climatic characteristics. Among
the 350k localities recorded in our dataset, around 40% only
display a unique combination of occurring species, while the
remaining 60% of the localities have one or more replicates.
This is especially the case for environments with low specific
diversity, such as the central Sahara or the Namib Desert,
for example.

4.3 Paleoclimate reconstruction

Our method using RF algorithm has strong potential to be used
as new quantitative paleoclimate and paleoenvironmental
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FIGURE 4

On the left, map of Africa showing rodent species richness and the location of eight nature reserves associated with rodent surveys (see Table 3 for
the references of the locations); on the right, scatter plots of observed and predicted values for nine temperature variables using RF algorithm based
on each rodent survey. The black diagonal line represents the line of perfect prediction. The numbers under the countries correspond to the

number of species identified in the publication and therefore used for the predictions/theoretical maximum number of species at the same location.

reconstruction tool from fossil data. The discovery of new
paleontological and archeological deposits is continuing apace,
which often yield abundant and well-preserved faunal fossil
remains that constitute the prime material for describing past
environmental conditions. Our method may provide additional
details on paleoenvironmental conditions within which such fossil
assemblages were accumulated and deposited by retrodicting primary
and secondary variables independently with a great performance.

The aggregation of spatial data in the initial dataset allows to
produce visually impactful similarity maps to compare predicted
environments with the current environmental conditions (see
Figure 6). In the context of reconstructing fossil hominid
environments, for instance, these maps could illustrate potential
dispersal routes or paleodistribution maps.

The capacity of our models for coping with heterogeneous
taxonomic distinction may also help to refine ecological
inferences based on published faunal lists. In archeological and
paleontological context, fossils are not always identifiable at the
species level using traditional morphological characters. For
instance, the smallest species of rodents such as Mus, Dendromus
or Graphiurus species can be hard to identify due to higher
fragmentation rate in sediments and the lack of patent specific
dental or cranial characters (Linchamps et al., 2021). The task is
even more complicated for remote periods for which few
comparative specimens are available. With fossil assemblages
where such problems occur, only methods that consider variable
taxonomic resolution are useful for faithful paleoclimate
reconstruction. Calculating the most important variables that
contribute to the overall prediction showed that not only the
species level, but also the broader taxonomic levels, such as the
subfamily or the family (see Figure 5), can be particularly indicative
for modeling the climatic components of an environment.

It is assumed that confidence in the validity and performance of
a paleoenvironmental reconstruction usually decreases as the faunal
assemblage examined is older (Avery, 2007; Reed, 2007; Lyman,
2017). This is primarily due to the potential evolutionary changes in
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species’ tolerances over time, which may introduce uncertainty into
the reconstructions. Holocene and Upper Pleistocene faunal
collections therefore usually provide the most accurate and
reliable interpretations, while the Quaternary faunas,
characterized by the emergence and establishment of modern
lineages, may still offer a reliable requisite degree of temporal
distance. To check how well do our RF models perform with
fossil data, predicted values could be compared with those from
other quantitative methods independent of the taxonomy such as
isotopic analyses (e.g. Cerling et al, 1997; Garrett et al, 2015),
ecomorphology (e.g. Kovarovic and Andrews, 2007; Plummer et al.,
2015) or teeth meso- and micro-use wear (e.g. Hopley et al., 2006).
Combining medium and large fauna would also give a more
comprehensive signal. Due to different modes of accumulation,
micromammals and larger mammals are seldom fossilized together,
although they coexisted (Andrews, 1990; Fernandez-Jalvo and
Andrews, 2016). It can therefore be difficult to link different
taxonomic groups as taphonomic biases may have favored the
over-representation of one group. This issue comes up frequently
among researchers, and the most successful attempts at a holistic
approach often involve laborious and time-demanding crossing of
the disciplines in paleosciences (Lotter, 2005). At the same time,
future knowledge of the distribution and habitats of extinct species
for which little information is available may result in better
integration of fossil taxa.

Although this method can deal with uncertainties in taxonomic
identification, it would still require data from clear stratigraphic
context with a proper sampling effort to ensure the
representativeness of the mammal community. In this perspective,
some taphonomic calibration tools would benefit from being
combined with our method for finer paleoenvironmental
interpretations. In the case of vertebrate accumulations, various
taphonomic processes may alter the faunal composition from living
to dead to fossil assemblage, such as predation, breakage, or
dispersion of bones (Brain, 1981; Behrensmeyer, 1984; Andrews,
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1990). A way to adapt the method to these particular conditions is to
define various exclusion thresholds for taxa not likely to occur in a
specific context, based on expert knowledge.

5 Conclusions

In this study, we develop a new well-performing method for
bioclimatic predictions using faunal communities as proxy data
with a ML regression approach. Among the different algorithms, the
random forest regression algorithm provided the highest
performance in predicting bioclimatic variables. Our standardized
protocol for compiling and processing mammal distribution data as
input source for environmental predictions allowed us to overcome
traditional obstacles in faunal-based climate reconstructions related
to the incompleteness and heterogeneity of the sample. This
approach has the potential to be a useful tool for landscape and
climate reconstructions of paleontological and archeological sites
where faunal remains are available. It may further be generalized to
embed other important types of environmental archives for even
finer climatic reconstructions.

Data availability statement

Publicly available datasets were analyzed in this study. This
data can be found here: R and Python codes related to this
paper were archived with Figshare at https://figshare.com/s/
740b9a6cdf1f5a2a7e3a. Species distribution maps can be found at
https://www.incnredlist.org/ (accessed on 1st of February 2023) and
at https://mol.org/ (accessed on 1st of February 2023) for the
different African rodent species. Bioclimatic variables can be
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