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Drought is one of the main factors limiting forest productivity, and thus greatly

affects the carbon sink capacity of forests. Here we first chose two drought

indices including standardized precipitation evapotranspiration index (SPEI) and

self-calibrating Palmer drought severity index (scPDSI) to reflect and analyze the

spatiotemporal patterns of drought in the subtropical China. Then, the validated

CASA (Carnegie-Amer-Stanford Approach) model was applied to estimate forest

net primary productivity (NPP) and further quantify the contributions of drought

events and their characteristics on forest NPP. The results showed that drought

events during 2000–2015 have resulted in a mean decline of forest NPP of 7.2%.

Moderate or severe drought events reduced NPP more significantly than

extremely severe drought events. In addition, there was 1–2 years of lagging in

the NPP responses to drought, and the lagging time varied with forest types. Our

study suggests that forest managers and local governments should pay more

attention to the places with moderate and severe drought events, and take

measures to avoid NPP decline within the 2 years after drought. Our study also

provides data support for further identifying the contribution of drought to

ecosystem carbon fluxes in the subtropical China.

KEYWORDS

net primary productivity (NPP), drought, SPEI, scPDSI, CASA model, the
subtropical China
1 Introduction

In the context of climate change, drought has become a serious and extraordinary

natural disaster around the globe. Drought can reduce the growth rate of vegetation by

inhibiting photosynthesis and hence reduce the productivity of forest ecosystems (Waring

and Law, 2001; Ciais et al., 2005). Drought increases the leaf temperature differences among

trees and accelerates plant transpiration, which could aggravate the effect of drought stress
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on plant growth. Severe drought could cause a lagging of vegetation

growth, and the tree growth would slow down by 1–4 years

(Anderegg et al., 2015a). The lagging response of forest vegetation

productivity to drought is affected by the duration of drought and

varies among various land types in different climate zones (Yu and

Liu, 2019). The vegetation productivity of forests is less affected by

drought in temperate regions than in tropical regions (Nemani

et al., 2003; Xu et al., 2012). Besides inhibiting photosynthesis,

drought also increases the frequency of forest mortality, wildfires,

pests, and diseases, resulting in reduced productivity of forest

ecosystems (Nepstad et al., 1999; Nepstad et al., 2004; Piao et al.,

2019). Previous studies reported that severe drought in tropical

forests increases flammability and tree death (Nepstad et al., 2004).

Drought leads to a reduction in the productivity of forests, and more

carbon will be emitted from forests to the atmosphere, which

further accelerates global warming (Cox et al., 2000). Therefore,

drought has been considered as the main meteorological disaster

affecting the carbon balance of forest ecosystems, and severe and

frequent drought events are the main cause of accelerated forest

degradation and death (Lewis et al., 2011). Changes in vegetation

net primary productivity (NPP) have a significant impact on the

global climate and carbon cycling processes (Hazarika et al., 2005).

NPP also provides the physical resources that are needed for human

existence and development, such as food, fuel, and wood, and any

slight modification to NPP could affect human output and

livelihoods (Pritchard et al., 2018). Nearly half of worldwide

large-scale ecosystem anomalies are caused by extreme climate

events. In Europe, the severe drought and high temperatures in

2003 turned most terrestrial ecosystems into net carbon sources,

which released the equivalent amount of carbon fixed in the

previous four years back into the atmosphere (Ciais et al., 2005).

In Southwest China, the drought occurred in 2009 and 2010 caused

a significant decline in vegetation productivity, which would take

more than a decade to recover (Xiong, 2013). China’s terrestrial

ecosystem plays an important role in the global carbon cycle (Sun

et al., 2021), particularly the subtropical southern China (Zhang

et al., 2020). The regional carbon storage in the subtropical China’s

forest area accounts for about 65% of the national total carbon stock

(Li et al., 2003). The impact of regional ecosystem on environment

and the response of regional ecosystem to climate change have been

hot topics (Li et al., 2015; Yuan et al., 2017; Guo et al., 2020; Ji et al.,

2022). However, few studies have specifically addressed the impacts

of drought on vegetation productivity in the subtropical China, even

though drought occurred frequently and have greatly affected the

vegetation productivity (Zhang et al., 2017). It is important to study

the drought impact on vegetation NPP in the subtropical China in

order to provide a reference for estimating the carbon sink potential

of China’s forests, which is important for the national carbon

neutrality goal by 2060.

In recent years, with the rapid development of remote sensing

technology, the vegetation index that is calculated based on the

spectral characteristics of vegetation has been used to monitor

vegetation changes, which makes it possible to analyze the

vegetation growth response to drought on large spatial scales

(Gitelson et al., 2002; Kerr and Ostrovsky, 2003). The number of

studies on the effects of drought on vegetation productivity has been
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gradually increasing (Anderegg et al., 2015b; Anderegg et al., 2016;

Camarero et al., 2021; Bauman et al., 2022); and the topics,

methods, and depths of these studies have constantly been

updated. In this study, our goal is to investigate the effects of

drought on the NPP in the subtropical evergreen broad-leaved

forests area in the southern China.

In this study, we hypothesized that vegetation NPP in the

subtropical China could decline with increasing drought

frequency, intensity, and duration. Our specific objectives were to:

(1) characterize the spatiotemporal drought patterns using SPEI

and scPDSI drought indices; (2) compare the impacts of different

drought intensity and durations on vegetation NPP; (3) analyze the

overall impacts of drought events on vegetation NPP in the

subtropical China during 2000–2015. Our study could help guide

the forest managers and local governments to rationally manage

forests after droughts, and also provide data support for further

identifying contribution of drought to ecosystem carbon fluxes in

the subtropical China.
2 Materials and methods

2.1 Study region

The subtropical China accounts for about a quarter of the

national total land area. Geographically, the subtropical China is

located from the south of the Qinling-Huaihe Line, to the north of

the Tropic of Cancer, to the east of the boundary between the

eastern slope of the Tibet Plateau and Yunnan province, and to the

west of the Southeast Coast (Figure 1). This region has complex

topography and landforms, including the middle and lower reaches

of the Yangtze River plain, the Jiangnan (South of the Yangtze

River) hills, Huaiyang Mountains, Qinling (Qin Mountains),

Sichuan Basin, Yunnan-Guizhou Plateau, Nanling Mountains,

and Taiwan Mountains. The elevation shows a declining trend

from the west to the east, ranging from 1,000–2,000 m in the

Hengduan Mountains and Yunnan-Guizhou Plateau to 200–500 m

in the eastern hills.

According to Köppen-Geiger climate classification, the study

region belongs to the humid subtropical climate zone (Beck et al.,

2018). In the east, spring and summer are hot and rainy, winter is

cool and slightly dry; while in the west, summer and autumn are

rainy while winter and spring are dry. Heat resources declined from

the south to the north. The annual mean ≥ 10 °C accumulated

temperature ranges between 4,400–7,500 °C·day, and the annual

mean temperature ranges between 15–21 °C. Annual precipitation

shows a decline from east to the west, and from the south to the

north. The annual precipitation ranges between 750–2,000 mm,

with less than 1,000 mm in the north. Mean annual Frost-Free

Period can reach 330 days in the south. Due to the differences in

climatic resources, the vegetation varies substantially among

different regions. Wet evergreen broad-leaved forests are

dominant the east and subhumid evergreen broad-leaved forests

are dominant in the west. The main tree genera in the study region

include: Cinnamomum, Phoebe, Machilus, Schima, Cylobalanopsis,

Castanopsis, and Lithocarpus.
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2.2 Data and preprocessing

2.2.1 Meteorological data
The daily meteorological data for the 201 study stations

(Figure 1) were gathered from China Meteorological

Administration Data Center (http://data.cma.cn/) from 2000 to

2015, including maximum, minimum, and average temperatures,

sunshine hours, and precipitation, etc. We used the standard

sequence interpolation method (Woodruff et al., 1987) to

interpolate the missing meteorological data with the standardized

anomalies of the same climate element from neighbor stations. The

missing value of climate element at time i for the station is

calculated using

Xi = ZavgSi + Xi

Zavg =
1
no

n

j=1
zj and

Zj =
Xj − �Xj

Sj

where Z represents the normalized sequence; j represents the

neighboring station(s); Zavg represents the average of normalized

sequence for the neighboring stations; Xjand Sjare the multi-year

mean and standard deviation of the climate element at stationsss j,

respectively; n is the number of neighboring stations; Xirepresents

the value of the climate element to be interpolated at time i; and Xi

and Siare the multi-year mean and deviation of the climate element

at time i for the station that needs interpolation, respectively.
2.2.2 Monthly NDVI data
NDVI images are required for NPP calculation in the CASA

model. In this study, the NDVI data were downloaded from the

MODIS China synthetic products of the Chinese Academy of

Sciences Computer Network Information Center Geospatial Data
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Cloud Platform (http://www.gscloud.cn). We chose the monthly

composite product of NDVI (with a resolution of 500 m) that is

calculated based on MODND1 by taking the maximum daily value

in each month in order to remove the effects of cloudy weather. A

total of 192 NDVI images in Tagged Image File Format (TIFF)

(with a pixel size of 0.0059 degrees) were collected from January

2000 to December 2015 for the analyses. We simply processed the

downloaded data in ArcGIS software to remove or modify the

abnormal NDVI images. The normal value range of NDVI is

between 0 and 1, and the case of NDVI<1 was processed because

it indicates ground cover of cloud, water, and snow. The case of

NDVI=0 indicates ground cover of rocks or bare soil; it well

represents the vegetation coverage and can be directly used in the

calculation of NPP.

2.2.3 Land cover data
Land cover data are important input in the CASA model

because they are used to compute the light energy conversion rate

ϵ, the fraction of photosynthetically active radiation (FPAR), and

other important factors. The raster data of land type maps, with a

1 km spatial resolution, used in this study were extracted from the

spatial distribution data of land types in China provided by the

Chinese Academy of Sciences Resources and Environmental

Sciences Data Center (http://www.resdc.cn, accessed 6 March

2019). We categorized the land type into 22 groups (Figure 1),

configured the adjustable parameters for the land types (Table 1),

and then generated static-parameter files (Zhu et al., 2007).
2.3 CASA model

The CASA model is based on remote sensing image data, and

fully considers the internal physiological and ecological processes of

vegetation. Its parameters are more easily obtained, so it can be

generalized more easily than other large-scale NPP mechanistic

models (Piao et al., 2001; Sun and Wang, 2012; Bao et al., 2016; Cao
FIGURE 1

The distributions of weather stations (the dotted points) and land cover types in the subtropical China. (A) is tropical forest, (B) is subtropical
evergreen forest, (C) is alpine and subalpine meadow, (D) is warm temperate forest, (E) is temperate grassland, (F) is desert, (G) is temperate mixed
forest, and (H) is cold temperate conifer forest.
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et al., 2016; Hadian et al., 2019; Su et al., 2022). In this study, we

computed NPP (g C·m−2) in the CASA model as the product of the

amount of photosynthetically active radiation that is absorbed by

green vegetation (APAR) and the light energy use efficiency (ϵ) of

the radiation that is converted to plant biomass increment

(Monteith, 1972; Xiao et al., 2004) as:

NPP   =  APAR  �   ϵ (eq: 1)

Here APAR can be computed by the total solar radiation with

the fraction of photosynthetically active radiation (SR, MJ·m−2·a−1)

that can be absorbed by green vegetation (FPAR, %) as:

APAR = FPAR� SR (eq: 2)

and ϵ (g C·MJ−1) can be computed by the maximum of solar

energy utilization efficiency (ϵmax) with the stress coefficient of high

or low temperature (f(T)) and the stress coefficient of water (f(W)):

ϵ   =   ϵmax � f (T)� f (W) (eq: 3)

The calculation methods of SR, ϵmax, f(T), and f(W) are referred

to (Zhu et al., 2007).
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According to the regression equation the simulated NPP in the

CASA model showed a good fit with the estimated NPP of previous

studies in the subtropical evergreen broad-leaved forest area of

China (Table S1), with a R2 of 0.6286 (p< 0.01) and a close to 1:1

trend line (Figure S3).
2.4 Drought indices

Drought has been one of the most serious disasters affecting

human society. Studies on drought mainly focus on the spatial and

temporal characteristics of drought indices during a certain period

of time in a particular area. According to the statistics of the World

Meteorological Organization, international scholars have brought

up about 55 drought indices (Wmo and Gwp, 2016). However, no

individual drought index can fully depict the drought characteristics

among different areas. Therefore, it is essential to choose suitable

drought indices in drought assessment and monitoring (Zhang

et al., 2011; Li and Li, 2017). The early developed Standardized

Precipitation Index (SPI) is solely based on the probability of
frontiersin.or
TABLE 1 Configuration of adjustable parameters for the 22 study land types, including the maximum and minimum values of NDVI, the 95th and 5th

percentiles of NDVI (SR_max and SR_min), and the maximum value of light energy utilization efficiency (ϵ) (Zhu et al., 2007).

Number Vegetation type NDVI_max NDVI_min SR_max SR_min ϵ_max

1 Deciduous coniferous forest 0.738 0.023 6.63 1.05 0.485

2 Evergreen coniferous forest 0.647 0.023 4.67 1.05 0.389

3 Evergreen broad-leaved forest 0.676 0.023 5.17 1.05 0.985

4 Deciduous broad-leaved forest 0.747 0.023 6.91 1.05 0.692

5 Shrubs 0.636 0.023 4.49 1.05 0.429

6 Sparse forest 0.636 0.023 4.49 1.05 0.542

7 Seaside wetland 0.634 0.023 4.46 1.05 0.542

8 Alpine and subalpine meadow 0.634 0.023 4.46 1.05 0.542

9 Sloping plain 0.634 0.023 4.46 1.05 0.542

10 Plain grassland 0.634 0.023 4.46 1.05 0.542

11 Desert grassland 0.634 0.023 4.46 1.05 0.542

12 Meadow 0.634 0.023 4.46 1.05 0.542

13 Cities 0.634 0.023 4.46 1.05 0.542

14 Rivers 0.634 0.023 4.46 1.05 0.542

15 Lakes 0.634 0.023 4.46 1.05 0.542

16 Swamps 0.634 0.023 4.46 1.05 0.542

17 Glaciers 0.634 0.023 4.46 1.05 0.542

18 Bare rocks 0.634 0.023 4.46 1.05 0.542

19 Gravel 0.634 0.023 4.46 1.05 0.542

20 Desert 0.634 0.023 4.46 1.05 0.542

21 Cultivated land 0.634 0.023 4.46 1.05 0.542

22 Alpine and subalpine grassland 0.634 0.023 4.46 1.05 0.542
g
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monthly precipitation. Due to its relative simplicity in calculation

and flexibility in temporal and spatial scales, SPI has been widely

used in agricultural and ecological drought studies. It was proven

that SPI could be used to effectively monitor drought in China

(Xu et al., 2012; Pei et al., 2013; Zhang et al., 2020). On the basis of

SPI, Vicente-Serrano et al. (2010a; 2010b) brought up the

Standardized Precipitation Evapotranspiration Index (SPEI). SPEI

retains the advantage of SPI for being suitable for multiple scales

and also considers the temperature-sensitive characteristics of

evapotranspiration. Due to its advanced features, SPEI has been

commonly used in various aspects of drought studies (Ming et al.,

2015; Alam et al., 2017).

The Palmer Drought Severity Index (PDSI) defines drought as a

persistent abnormal water deficit (Newman, 1987). Though being

widely used in international studies for half a century, PDSI has

internal limitations: the definition of drought may cause a lag in

identifying drought conditions; the parameter settings are

determined based on the observation data in the Midwest of the

United States, which many not be suitable in other climatic

regions. Previous Chinese scholars tried to modify the calculation

method of PDSI based on the observation data from Chinese

meteorological stations but failed (Liu et al., 2004). Wells et al.

(2004) proposed scPDSI to improve the empirical parameter

problem in PDSI. Based on the observation data from a given

station, scPDSI calculates the corresponding weight coefficient and

persistence factor, which makes it superior in comparison among

different areas.

In China, other drought indices like the percentage of

precipitation anomalies, the Z index of precipitation, the relative

humidity index, and the comprehensive drought index etc. were

only used in a limited amount of studies due to the oversimplified

calculation method or lack of data. Yang et al. (2017) compared the

adaptability of seven drought indices in China and concluded that

SPEI and scPDSI performed better than others did. Hence, we chose

the two drought indices of SPEI and scPDSI in this study, and used

the four classifications of D0 (abnormally dry), D1 (moderate dry),

D2 (severe dry), and D3 (extreme dry) (Table 2) (Wang et al., 2016;

Yao et al., 2021). We analyzed and compared the correlations and

the similarities and differences in the drought class classification of

two indicators in the subtropical China (Figure S3, S4). SPEI reflects

the drought in a certain area by calculating the difference between

precipitation and potential evapotranspiration (Zhai et al., 1999;

Vicente-Serrano et al., 2010a).
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The monthly PET was calculated by:

PET = 16:0� (
10Ti

H
)A (eq: 4)

where Ti is the monthly average air temperature in month i (°C);H

is the heat index, which is calculated as the sum of 12 monthly index

values Hi

H =o12
i=1Hi =o12

i=1ð
Ti

5
Þ1:514 (eq: 5)

And the monthly index values is derived from monthly average

air temperature as the formula

Hi = (
Ti

5
)1:514 (eq: 6)

A is the constant, which is calculated as a function of H:

A = 6:75� 10−7H3 − 7:71� 10−5H2 + 1:792� 10−2H

+ 0:49 (eq: 7)

When monthly average air temperature is less than or equal to

zero, H is zero, and PET is zero.

So the monthly water surplus or deficit is measured by the

difference between the precipitation and potential evapotranspiration as:

Dj = Pj − PETj (eq: 8)

where Dj is the monthly water deficit in month j (mm); Pj is the

monthly precipitation in month j (mm); and PETj is the monthly

PET in monthly j (mm). Then the accumulated difference for one

month in particular year I with a 12-month time scale is obtained by

Xk
i,j =o12

l=13−k+jDi−1,l +oj
l=1Di,l ; j < k (eq: 9)

Xk
i,j =oj

l=j−k+1Di,l ; j ≥ k (eq: 10)

Where Xk
i,j is the cumulative difference in year i month j under

timescale k; and Di,j is the monthly water deficit in year i and month

j. Then, according to the log-logistic distribution, the probability

distribution function of the D series is given by

F(x) = (1 + (
a

x − g
)b )−1 (eq: 11)

p = 1 − F(x) (eq: 12)

Here a, b, and g are scale, shape, and location parameters,

which are obtained through linear moments fitting. Finally, SPEI is

obtained by

SPEI = W −
C0 + C1W + C2W

2

1 + D1W + D2W2 + D3W3 (eq: 13)

where W =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ln p

p
; for p ≤ 0:5, When p > 0.5, p is replaced

by (1−p) and SPEI is negative.  C0 = 2.515517, C1 = 0.802853, C2 =

0.010328, D1 = 1.432788, D2 = 0.189269, and D3 = 0.001308. SPEI

has different timescales (e.g., 1 month, 3 months, 6 months, and 12

months) and the 12-month timescale is analyzed in this study.

scPDSI considers precipitation, air temperature, and soil moisture;
TABLE 2 The four categories of drought intensity based on SPEI and
scPDSI indices.

Classification SPEI scPDSI

D0 (Abnormal drought) [–1.0, –0.5) [–2.0, –1.0)

D1 (Moderate Drought) [–1.5, –1.0) [–3.0, –2.0)

D2 (Severe Drought) [–2.0, –1.5) [–4.0, –3.0)

D3 (Extreme Drought) (–∞, –2.0) (–∞, –4.0)
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it has been proved to perform well in evaluating the wet and dry

conditions in the study region (Yang et al., 2017). The scPDSI data

were acquired from the global monthly-scale scPDSI dataset

product of the University of East Anglia (UEA) Climatic Research

Unit (http://www.cru.uea.ac.uk, accessed 20 December 2019), with

a 0.5 × 0.5 degrees spatial resolution. We then used ArcGIS software

to resample, crop, and rasterize the acquired the 0.0059 × 0.0059

degrees spatial resolution scPDSI data for the analyses.
2.5 Analysis methods

2.5.1 Trend analysis
Based on the unary linear regression analysis, the

spatiotemporal change rate of NPP and two drought indices were

calculated:

slope =
non

i=1(i� xi) − (on
i=1i)(on

i=1xi)

n(on
i=1i

2) − (on
i=1i)

2 (eq: 13)

Where slope is the change rate of the variable x(NPP, SPEI, and

scPDSI), i is the number of years. And we use F-test to determine

the significance of the change rate. If slope< 0 and p< 0.05, it

indicates that NPP, or SPEI, scPDSI is showing a significant

decreasing tendency. If slope > 0 and p< 0.05, meaning that it

shows a significant increasing tendency, and vice versa. The detailed

of the slope and F-test algorithms refer to the work of Gang et

al. (2016).

2.5.2 Correlation analysis
In ArcGIS, we used the raster calculation tool to compute the

Person correlation coefficient between NPP and the two drought

indices of SPEI and scPDSI from 2000–2015 (Luo et al., 2020) and

then exported the spatial distribution map. The correlation

coefficient between NPP and the SPEI and scPDSI are calculated by

Rij =
o XijYij − o Xijo Yij

Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(o X2

ij −
(o Xij)

2

N )(o Y2
ij −

(o Yij)
2

N )
q (eq:14)

Where Rijis the correlation coefficient between NPP and the

drought index; Xijand Yijare the raster-level drought index and NPP

values, respectively; N is the number of total study years.

2.5.3 Analysis of the effect of drought intensities
on the NPP change rate

NPP decrease rate varied under different drought intensities

(Huang et al., 2016; Li et al., 2020). To analyze the effects of drought

intensities and remove the compounding effects from NPP trends,

we applied the change rates (CR) of NPP to represent the drought

effects. The CR was calculated using below equation:

CR =
NPPi − NPPi−1

NPPi−1
� 100% (eq: 15)

Where NPPi and NPPi-1 are the NPP of ith year and the previous

year, respectively.
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2.5.4 Analysis of the lag effect of drought on NPP
There have time-Lag effect of drought on Vegetation

Productivity (Xu et al., 2020; Mairura et al., 2021; Gu et al.,

2022). The annual maximum coefficient of correlation between

NPP and SPEI or scPDSI can be used to measure how strongly

vegetation is responding to drought. According to the work of Zhan

et al. (2022), we analyzed the correlations between NPP and

drought indices from 2000 to 2015 and defined the lagging in the

NPP response to drought as when the maximum correlation (Rmax)

occurred.

Rmax = max (Rij,n)   1 ≤ n ≤ 16 (eq: 16)

Rmax is the correlation coefficient at a scale where the maximum

correlation coefficient between SPEI or scPDSI with NPP is found

over the study period from 2000 to 2015. In addition, the lag time of

drought-affected vegetation is influenced by water availability,

which is 1–3 months, 5–7 months, and 10–12 months in arid,

semi-arid, and sub-humid regions, respectively (Zhan et al., 2022).

Meanwhile, according to Köppen-Geiger climate classification, the

study region belongs to the humid subtropical climate zone (Beck

et al., 2018). Based on the above-mentioned two considerations, the

annual scales SPEI and scPDSI were used in the lagged effect

analysis. If the correlation coefficient between SPEI or scPDSI of a

certain year and NPP of the same year is the largest, then the delay is

0 years. If the correlation coefficient is the largest with the NPP in

the following year, the delay is 1 year. If the correlation coefficient is

the largest with the NPP in the following 2 years, it indicates a delay

of 2 years, and so on.

According to previous work (Yu and Liu, 2019; Yu et al., 2019),

drought events are divided into independent and continued

drought events based on the drought duration. In order to

exclude the interactive effects of independent drought events that

occurred in a short period of time, we defined independent drought

events in this study as when the year (SPEI<−0.5, or scPDSI<−1.0)

before and the five consecutive years after are all normal years.

Continuous drought events are defined as annual SPEI<−0.1 or

annual scPDSI<−1.0 for more than two consecutive years.
3 Results

3.1 Drought conditions

In the subtropical China, the average SPEI ranged from −0.5 to

0.5 during the study period of 2000–2015, which reflected a normal

water balance in the study region (Figure 2A). The change trend of

SPEI ranged from −1.3 to 0.8 per decade. The eastern, southern, and

northeastern parts showed a positive SPEI change trend, indicating

a wetting tendency, while the remaining regions, especially the

southwest, showed a negative SPEI trend, indicating a drying

tendency (Figure 2C). Due to the unfavorable terrain and climate

in the southwest, the drought frequency and intensity have been

increasing during 2000–2015. The SD of SPEI ranged from 0.3 to

0.7, indicating that SPEI had a low variability at pixel levels. The SD
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of SPEI was the largest in the southwest, indicating a greater

fluctuation of SPEI than other regions (Figure 2E).

The average scPDSI ranged from −2.5 to 1.3, and the region was

in an overall drought condition. The central and northern regions

had a positive scPDSI, indicating a wet condition; while the

remaining regions had a negative scPDSI, indicating a dry

condition) (Figure 2B). The trends of scPDSI ranged from −4.8 to

2.6 per decade. The eastern, southern, and northwestern parts had a

positive trend of scPDSI, indicating a wetting tendency, while the

remaining parts, especially had a negative trend of scPDSI,

indicating a drying tendency (Figure 2D). The SD of scPDSI

ranged from 0.5 to 2.7, with relatively high values in the
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southwest, partial east, and partial south, indicating greater

interannual variations in scPDSI in these regions (Figure 2F). The

F-test results for both SPEI and scPDSI showed a significant

increasing trend (significant wetting trend) in the northwestern

parts, and a significant decreasing trend (significant drying trend) in

the southwestern parts (Figures 2G, H).
3.2 Vegetation NPP

The average annual NPP was 2,214 g C·m−2 in the subtropical

China during 2000–2015. The spatial distribution of the mean NPP
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FIGURE 2

Spatial distribution patterns for the mean (A), slope (C), SD (standard deviation) (E), and change rate significance level (G) of SPEI and the mean (B),
slope (D), SD (F), and change rate significance level (H) of scPDSI during 2000–2015.
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showed an obvious subregional pattern, with relatively high values

in the Hengduan Mountains, Daba Mountains, Wuyi Mountains,

and Nanling Mountains (Figure 3A). The change trend of NPP

ranged from −24 to 760 g C·m−2 per decade. The northern part and

the border between Yunnan and Guizhou showed a higher

increasing trend. The southern part of the eastern humid region

and the northern part of the western subhumid region generally

showed a negative change trend, though the magnitude was small

(Figure 3B). The SD of NPP was overall small, ranging from 33 to

179 g C·m−2.yr−1. High SD of NPP coincided with high average of

NPP, indicating that NPP was relatively unstable in these areas

(Figure 3C). The F-test results showed a significant increasing trend

in southwestern parts (Guizhou) and the Middle and Lower reaches

of the Yangtze River, and a significant decreasing trend in southern

parts (especially in Guangxi) (Figure 3D).
3.3 Impacts of drought intensity and
duration on NPP

Based on scPDSI, the four categories of drought intensity (D0,

D1, D2, and D3) have caused a declined NPP by 3.2%, 4.8%, 11.0%,

and 9.9%, respectively. The D2 drought intensity caused the greatest

decrease in NPP, followed by D3, D1, and D0. Based on SPEI, the

four categories of drought intensity (D0, D1, D2, and D3) have

caused a declined NPP by 0.35%, 12.7%, 8.77%, and 0.0%,

respectively. The greatest decrease in NPP was caused by D2, and

D0 showed the smallest decrease. Combining the two drought

indices, the mean decreasing rate in NPP was 7.2% for all four

drought intensities (Table 3).
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Based on SPEI, NPP did not significantly decrease in the

independent drought year, a slight increase in the 1st year after

drought, a larger decrease in the 2nd year after drought, and a small

increase in the 3–5 years after drought. Based on scPDSI, NPP

started to decrease in the 2nd year after independent drought events,

and such decrease continued in the 3rd year after drought. NPP

showed an increase in the 4th and 5th years after drought (Table 4).

Overall, the NPP response to SPEI- and scPDSI-based drought

durations showed a 2-year lagging time from the drought year.

However, the numbers of independent drought events were few

during 2000–2015, which might affect our drawn conclusions.

We further analyzed both 2-year and multi-year continuous

drought events. NPP showed a decrease in the first normal year

after the SPEI-based and scPDSI-based 2-year continuous drought

events, with a declining rate of 64 and 65 g C·m−2.yr−1, respectively.

NPP did not continue to decrease in the second normal year after

the 2-year continuous drought, but increased instead (Table 5).

NPP started to decrease two years after the beginning of the 2-year

continuous drought, which was similar to the 2-year lagging for the

independent drought. However, the 2-year continuous drought

decreased NPP by more than the independent drought. The

SPEI-based multi-year continuous drought rarely occurred during

the study period. Based on scPDSI, multi-year continuous drought

events caused 3–4 years of continuous decrease in NPP starting

from the second year after drought, although the amplitude of

decrease was declining over time. The decrease in NPP tended to

level off in the fifth-to-sixth year after the multi-year continuous

drought (Table 6). NPP is also affected by other non-drought factors

that might offset the negative effects of drought, resulting in a long-

term ecological balance in the study region.
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FIGURE 3

Spatial distribution patterns of the mean (A), slope (B), SD (C), and change rate significance level (D) of NPP during 2000–2015.
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3.4 Correlations between NPP and
drought indices

The correlation coefficient between SPEI and NPP ranged from

−0.173 to 0.999. The negative correlations mainly occurred in

Guizhou (Figure 4A). The coefficient of variation (CV) of NPP is

usually high in Guizhou, indicating a minimal response of NPP to

drought. The correlation coefficient between scPDSI and NPP

ranged from −0.276 to 0.999 (Figure 4C). At pixel level, the

correlation coefficients between SPEI and NPP showed a similar

spatial distribution pattern with the correlation coefficients between

scPDSI and NPP, with 1–3 years of lagging in the southeast and a 3–

4 years of lagging in the southwest. The areas with the strongest

correlations between SPEI and NPP in the drought years only

accounted for 7% of the total area of the study region. In 27%, 20%,

and 16% of the study region, the strongest correlations between

SPEI and NPP showed a lagging of 1 year, 2 years, and 3 years,

respectively (Figure 4B). The areas with the strongest correlation

between scPDSI and NPP in the drought year only accounted for

8% of the total area of the study region. 29% of the study region

showed the strongest correlations between scPDSI and NPP in a 2-

year lagging, followed by a 1-year lagging (23%), and then the 3-

year lagging (11%) (Figure 4D). Overall, the strongest correlations

between the drought indices and NPP in the drought year only

occurred in about 7–8% of the study region. By contrast, about 64%

of the study region showed the strongest correlations between

drought indices and NPP in the first-to-third years after drought

(Figure 5D). This indicated that the response of NPP to SPEI and
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scPDSI had a 1–3-years of lagging in the study region. Based on

both drought indices, the greatest positive (negative) correlation

coefficient between NPP and drought indices was 0.999 (0.112). The

negative correlations between NPP and drought indices were

mostly located in the Guizhou. NPP showed a higher correlation

coefficient with SPEI (scPDSI) in 49% (51%) of the study region.

The strongest correlation between drought indices and NPP in the

drought year occurred in 7% of the study region. 25%, 24%, and

14% of the study region showed a 1-year, 2-years, and 3-years of

lagging in the strongest correlation between drought indices and

NPP, respectively (Figures 4E, F).

In addition, we compared the maximum correlation coefficient

between NPP and drought indices among the 22 land types in the

study region. In the evergreen coniferous forests (evergreen broad-

leaved forests), the strongest correlation between NPP and drought

indices showed a 1-year and 2-years of lagging in 32% and 28%

(36% and 24%) of the study vegetation area, respectively (Figures

5A, B). In the deciduous broad-leaved forests, 55% of the vegetation

area showed a 2-years of lagging for the maximum correlation

coefficient between NPP and drought indices, followed by the 1-

year of lagging in 30% of the vegetation area (Figure 5C). In the

shrubs, the area with 1-year and 2-years of lagging in the maximum

correlation coefficient between NPP and drought indices accounted

for 27% and 23% of the vegetation area, respectively (Figure 5D). In

the sparse forests, NPP was more sensitive to drought indices than

any other land type was, with 23% of the vegetation area showing

the maximum correlation coefficient between NPP and drought

indices in the drought year. 35% of the sparse forests showed a 1-

year of lagging for the maximum correlation coefficient between

NPP and drought indices (Figure 5E). In a variety of grassland, 39%

of the subtotal vegetation area showed a 2-years of lagging for the

maximum correlation coefficient between NPP and drought indices,

followed by the 1-year of lagging in 22% of the subtotal vegetation

area (Figure 5F).
4 Discussion

Many people have analyzed the impact of drought on NPP,

NDVI or GPP, but most of them only use SPEI (Liu et al., 2021), or

PDSI (Zhang et al., 2019), and do not use the two together to study
TABLE 4 Effects of SPEI- and scPDSI-based individual drought events on NPP (unit: g C·m−2.yr−1).

Drought condition NPP_SPEI-based drought NPP_scPDSI-based drought

Normal year 647 467

Drought year +44 +42

The first normal year after drought +33 +63

The second normal year after drought −44 −13

The third normal year after drought +13 −24

The fourth normal year after drought +1 +46

The fifth normal year after drought +8 −30
TABLE 3 Decreasing rates in NPP under the four SPEI and scPDSI
drought intensity categories.

Drought intensity NPP decreasing rates

SPEI-based scPDSI-based

D0 (Abnormal drought) 0.35% 3.2%

D1 (Moderate drought) 12.7% 4.8%

D2 (Severe drought) 8.77% 11.0%

D3 (Extreme drought) 0 9.9%

Mean 7.3% 7.2%
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the impact of drought on NPP. scPDSI is the modified PDSI, which

considers the issues of precipitation, air temperature, and soil water

content, and describes the problem of soil drought. SPEI considers

rainfall and potential evapotranspiration and focuses more on the

problem of describing atmospheric drought (Xu et al., 2021). Some

studies have pointed out that vegetation growth is not only affected

by rainfall and air temperature, but also increasingly dependent on

soil moisture (Girardin et al., 2016). To this end, this study used

these two indicators to analyze and compare the impact of drought

on NPP in southern China. Our results showed that the subtropical

China were overall in a dry condition (Figures S1, S2). The SPEI-

and scPDSI-based drought condition was consistent with the

historical drought condition in 2004. Starting from July 2003, the

southern China was in a severe drought condition that continued

throughout the rest of the year; most areas had severe water loss,

some areas had extreme water shortages, and the water deficit kept

worsening. The drought-affected area included many provinces/

autonomous regions (e.g., Zhejiang, Fujian, Jiangxi, Hubei, Hu’nan,

Guangdong, Guangxi, Guizhou, and Yunnan etc.), both the drought

coverage and drought intensity were historically the worst since

1963. This find is consistent with the study of Bai et al. (2010). In

addition, we found that scPDSI showed similar spatial distribution

patterns to SPEI. However, scPDSI-based drought could be more

severe (with extreme drought) than SPEI-based drought (Figures

S1, S2, S4). This result is consistent with (Zhao et al., 2017).
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However, whether it is the drought reported by SPEI or scPDSI,

like others work (Li et al., 2015; Zhou et al., 2018; Zhang et al., 2019;

Lei et al., 2020; Zhang et al., 2022), drought has resulted in a decline

in NPP. But small NPP did not necessarily mean there was a

drought event, and large NPP did not necessarily mean that the area

was wet. It was not reasonable to fit NPP with the station-level

drought indices alone. NPP was concentrated in 400–700 g C·m−2,

with the corresponding SPEI showing moderate wetness to

moderate drought. On the other hand, SPEI was concentrated in

−0.5–0.5, with the corresponding NPP ranging from low to high

(Figures 2, 3). These results indicated that the spatial distribution of

NPP was not directly corresponding to the drought indices (Lei

et al., 2020; Li et al., 2020). Therefore, it is necessary to explore the

relationship between temporal changes in NPP and temporal

changes in drought indices (Huang et al., 2016). It is also

important to factor in the lagging response of NPP to drought

types (independent or continued) among various land types. In

general, NPP showed a lagging response to drought; the NPP of

vegetation in the study region started to decrease about 1–2 years

after drought occurrence. This result is similar to the work of Yu

and Liu (2019).

As for the drought intensity, NPP was reduced the most by

moderate drought. Temperature is a critical factor affecting

vegetation growth and development, and drought only shows the

greatest impact on vegetation growth when the temperature is

within a certain range (Shi, 2019). Drought duration also affected

the changes in NPP; the longer the drought lasted, the longer it

affected NPP. The changes in NPP tended to ease up around the

5th–6th year after drought occurrence. This could be explained by: 1)

the actual continued drought events might differ from the drought

indices-based drought events; 2) NPP is also affected by other non-

drought factors, the negative effects of drought on NPP might be

gradually offset by the positive effects of other ecological factors on

NPP, resulting in a non-significant change trend in NPP in the

study region. NPP was negatively correlated with the two study

drought indices in Guizhou. Guizhou has severe surface weathering

due to the effect of Karst, coupled with man-made damage and

disturbance, the ecological risk in Guizhou is fairly high, resulting

in, unstable NPP (with a high coefficient of variation), and poor

response of NPP to drought.
TABLE 6 Effects of scPDSI-based multi-year continued drought events
on NPP (unit: gC·m−2).

Drought condition NPP_scPDSI-based drought

Normal year 717

The first drought year +68

The second drought year −64

The third drought year −86

The fourth drought year −51

The fifth drought year +8

The sixth drought year −4
TABLE 5 Effects of SPEI- and scPDSI-based two-year-continued drought events on NPP (unit: g C·m−2).

Drought condition NPP_SPEI-based drought NPP_scPDSI-based drought

Normal year 566 620

The first drought year +18 +36

The second drought year +21 +91

The first normal year after drought −64 −65

The second normal year after drought +19 +68

The third normal year after drought +20 +4

The fourth normal year after drought +27 −87
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In this study, the 16-year study period was too short to reveal

any significant trends in NPP and the drought indices (which

usually recalls at least 30-years of data). Besides drought events,

there are many other factors that could affect NPP, including

temperature- and precipitation-related meteorological disasters

(Fu et al., 2018; Zhang et al., 2021; Fu and Sun, 2022; Han et al.,

2023), plant phenology (Fu and Shen, 2022), human activities,

topography, terrain, slope, and aspect etc. Therefore, we suggest

future studies to extend the study period and consider more

factors to comprehensively analyze the response of NPP

to drought.
5 Conclusions

Based on the meteorological data from 2000–2015, the CASA

model was applied to compute vegetation NPP in the subtropical
Frontiers in Ecology and Evolution 11
China. According to the correlation analyses between SPEI/scPDSI

and NPP, we evaluated the NPP response to drought intensity and

drought frequency. On average, the SPEI-based D0, D1, and D2

reduced the regional NPP by 0.35%, 12.72%, and 8.77%,

respectively; the scPDSI-based D0, D1, D2, and D3 reduced the

regional NPP by 3.18%, 4.78%, 11.04%, and 9.87%, respectively. The

SPEI- and scPDSI-based drought reduced NPP by a composite

amplitude of 7.20%. The greatest reduction in NPP was caused by

the moderate or severe drought instead of extreme drought.

Abnormally dry condition showed the least negative effect on

NPP in the study region.

The duration of drought events, whether independent or

continued, also affected the change in NPP. Both SPEI- and

scPDSI-based independent drought started to affect NPP two

years after the occurrence, indicating a 2-years of lagging NPP

response to independent drought. There was a 1-year of lagging in

the NPP response to SPEI- and scPDSI-based two-year continued
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FIGURE 4

The maximum correlation coefficients between NPP and SPEI (A), the lagging time of the strongest correlations between NPP and SPEI (B), the
maximum correlation coefficients between NPP and scPDSI (C), the lagging time of the strongest correlations between NPP and scPDSI (D), the
relatively greater maximum correlation coefficient between NPP vs. SPEI and NPP vs. scPDSI (E), and the lagging time of the relatively stronger
correlation between NPP vs. SPDI and NPP vs. scPDSI (F) during the period of 2000–2015 in the study region. Note: 0, 1, 2, 3, 4 and 5 denote the
lagging years after a detected drought event.
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drought, with an amplitude of 64 and 65 g C·m−2, respectively. The

2-year continued drought reduced NPP by more than the

independent drought did. The multi-year continued drought

showed an even greater effect on NPP: NPP started to decrease in

the second year after drought occurrence; the decrease of NPP

lasted for about 3–4 years; and the decreasing amplitude of NPP was

relatively large at the beginning but then gradually declined.
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FIGURE 5

Percentages of area with lagging time (unit: year) for the maximum correlation coefficient between NPP and drought indices to the area of the total
study region for selected vegetation types. (A) Evergreen coniferous forests. (B) Evergreen broad-leaved forests. (C) Deciduous broad-leaved forests.
(D) Shrubs. (E) Sparse forests. (F) Grassland (including alpine and subalpine meadows, sloping grassland, plain grassland, desert grassland, meadows,
and alpine and subal-pine grassland).
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