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Terrestrial ecosystem respiration (Reco) in drylands (arid and semi-arid areas)

contributes to the largest uncertainty of the global carbon cycle. Here, using the

Reco data from 24 sites (98 site-years) in drylands from Fluxnet and

corresponding MODIS remote sensing products, we develop a novel semi-

empirical, yet physiologically-based remote sensing model: the ILEP_Reco

model (a Reco model derived from ILEP, the acronym for “integrated LE and

EVI proxy”). This model can simulate Reco observations across most biomes in

drylands with a small margin of error (R2 = 0.56, RMSE = 1.12 gCm−2d−1, EF =

0.46, MBE = −0.06 gCm−2d−1) and performs significantly better than the previous

model: Ensemble_all. The seasonal variation of Reco in drylands can be well

simulated by the ILEP_Reco model. When we relate ILEP to the Q10 model, the

corresponding ILEP_Q10 values in all 98 site-years distribute quite convergently,

which greatly facilitates fixing the ILEP_Q10 value as a constant in different site-

years. The spatial variation of Reco in drylands is then defined as reference

respiration at the annual mean ILEP, which can be easily and powerfully

simulated by the ILEP_Reco model. These results help us understand the

spatial-temporal variations of Reco in drylands and thus will shed light on the

carbon budget on a regional scale, or even a global one.

KEYWORDS
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1 Introduction

As an important component of carbon flux, terrestrial ecosystem respiration (Reco)

plays a critical role in regulating the carbon budget across various spatial and temporal

scales that contribute to climate change (Heimann and Reichstein, 2008; Quere et al., 2009).

However, due to its physical, chemical, and biological complexity, it is still a great challenge
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to simulate Reco over large areas (Jägermeyr et al., 2014; Poulter

et al., 2014; Ai et al., 2018). The greatest uncertainty in global Reco

estimation comes from arid and semi-arid ecosystems (drylands)

(Poulter et al., 2014). Due to the hysteresis between temperature

and water conditions (Davidson et al., 2006), the limitation of

organics and organisms (Tucker and Reed, 2016), the porous

permeability of soil–plant–air continuum (SPAC) (Michael et al.,

2011; Tucker and Reed, 2016), the adoption of the organism to the

ambient environment (Dacal et al., 2019), and various other

reasons, the spatial-temporal pattern of Reco in drylands and the

mechanism behind it is still far from clear (Michael et al., 2011; Ai

et al., 2018; Ai et al., 2020; Liu et al., 2022).

To estimate Reco in drylands over large areas, the following

problems need to be solved: 1) data selection; 2) model selection

(Q10 model); 3) Reco’s seasonal change simulation; 4) Q10 value’s

fixation; 5) Reco’s spatial change simulation.

As for data selection, it is important to use remote sensing data

and Fluxnet data for empirically up-scaling site observations to the

globe (Baldocchi, 2003). The Fluxnet program has provided a global

network of standardized quasi-continuous eddy covariance carbon

flux measurements for over two decades (Baldocchi, 2003; Papale

and Valentini, 2010). Tower distribution is too sparse to adequately

represent global ecological heterogeneity, but the database enables

us to depict powerful empirical relations to simulate Reco across

biomes. As satellite remote sensing technology can stably and

continuously obtain large-scale dynamic change information of

terrestrial ecosystems (Zhao et al., 2022), a variety of satellite

remote sensing data are widely used in multi-scale ecosystem

carbon cycle research (Zeng et al., 2022). Current remote sensing

products provide key ecosystem variables at various spatial-

temporal resolutions, and Moderate Resolution Imaging

Spectroradiometer (MODIS) data products are widely used in

ecosystem carbon cycle research. Therefore, when combining site-

scale flux data with gridded satellite data (such as MODIS data), we

can up-scale locally trained parameters to a large scale and harvest

clear spatial-temporal dynamics of Reco (Ai et al., 2018; Tang

et al., 2022).

As for model selection and Q10 value fixation, many models

emerge in the process of ecosystem respiration simulation, such as

the Q10 model (Q10), Arrhenius model (Ktterer et al., 1998),

Universal Temperature Dependence model (Gillooly et al., 2001),

Lloyd and Taylor model (Lloyd and Taylor, 1994), Extended

Arrhenius model (Kruse and Adams, 2008), and Global

Polynomial Model (GPM) (Heskel et al., 2016), among which the

Q10 model is now the most commonly used. Biologists prefer to use

Q10 to describe the temperature dependence of biological process

rates. The Q10 model assumes an exponential relationship with

temperature, in which Q10 is the ratio of the respiration rate at

reference temperature to that at a temperature 10°C lower. During

Reco simulation, the Q10 value in the formula (1) is often replaced

by a constant of 2. Here, based on the Q10 model, the Q10 value can

be calculated by formula (2).

Reco = Rref(Tref)*Q10
(T−Tref10 ) (1)
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Q10 =
Reco

Rref(Tref)

� �( 10
T−Tref )

(2)

However, the Q10 model somewhat fails to simulate Reco under

certain conditions, especially when there is hysteresis between

temperature and water conditions. In drylands, efforts to

determine large-scale Reco dynamics have been hindered by the

quantification of two factors: 1) the complex temperature

dependence (T_Q10 value) of respiratory processes and 2) the

basal respiration rate (Rref). Generally, Rref refers to the

respiration rate at a given baseline temperature, and previous

work suggests that Rref is highly variable and is affected by many

factors, making it rather hard to predict, particularly in drylands (Ai

et al., 2018; Grünzweig et al., 2022). In drylands, the T_Q10 values

in the respiration unlimited period are over 3 times higher than

those in the respiration limited period, and the standard deviation

(STD) of the T_Q10 values in different biomes is as high as 0.90,

which indicates a failure in respiration simulation using Q10 model

with a universal T_Q10 value in drylands (Ai et al., 2020).

As for simulating seasonal change in Reco, in an ideal state,

respiration, as a biochemical reaction, does increase exponentially

with the increase in temperature. However, there are accidents,

especially in drylands. This is because, in drylands, soil moisture

affects ecosystem respiration processes in various ways, including

the growth and development of aboveground vegetation and roots,

the growth and activity of microbial populations, and gas transport

throughout soils (Phillips et al., 2010; Phillips et al., 2017). The

impact of soil moisture is significant. Previous studies suggest that

the majority of biomes experience Reco reductions during drought

(Reichstein et al., 2007; Baldocchi, 2008), because autotrophic

respiration (foliage, stems, roots) accounts for ∼60% of Reco, and

short-term variations in Reco are largely determined by the supply

of labile organic carbon compounds produced by photosynthesis

(Irvine et al., 2005; McDowell, 2011; Sippel et al., 2018). The

seasonal variation in respiration rate has proved to be closely

correlated with the vegetation state. This enables us to use

MODIS EVI to directly estimate seasonal variations of Reco

(Rahman et al., 2005; Sims et al., 2008). Based on this, previous

studies have developed several EVI-derived empirical models to

simulate the seasonal patterns of Reco on a large scale (Jägermeyr

et al., 2014; Ai et al., 2018; Liu et al., 2022). Besides, recent progress

reveals that in drylands, the seasonal variation in respiration rate is

closely correlated with latent heat flux (LE) rather than temperature,

largely due to the hysteresis between temperature and water in the

respiration-limited period (Lee and Park, 2007; Pérez-Priego et al.,

2013; Ikawa et al., 2015; Jia et al., 2020; Wang et al., 2021). When we

relate LE data to the Q10 model, the seasonal patterns of Reco are

well represented with very conserved LE_Q10 values (Ai

et al., 2020).

As for simulating spatial change in Reco, the basal respiration

rate (Rref) is very difficult to represent for a long time. Respiration

rates over large areas are often simulated using a constant Rref

(Raich et al., 2002), which will lead to reduced spatial accuracy

(Janssens and Pilegaard, 2010; Wang et al., 2010). A high
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correlation between the annual mean soil respiration rate and the

soil respiration rate at the mean annual temperature was suggested

(Bahn et al., 2010). Based on this, a simple empirical Rref model on

a global scale was developed (Yuan et al., 2011); however, the used

data was meteorological data with a coarse resolution. Another

work classified the flux sites into 9 types according to the climate

types and ecosystems and then set the reference temperatures as

their corresponding springtime mean temperatures. Therefore, the

Rref values were the ecosystem respiration rates at different fixed

temperatures (Jägermeyr et al., 2014). The method of setting

reference temperature separately in different climate types and

ecosystems is indeed more physiologically based than the method

of setting Rref as a constant. However, the study had two

drawbacks. Firstly, the models and parameters were very

complex: linear or hyperbolic empirical models and many

parameters were set for different biomes. Secondly, the model had

poor performance in drylands. Further studies have found that

MODIS EVI and MODIS LST are highly correlated with Rref at the

annual mean land surface temperature (Rref, Tref = LSTmean), and

a remote sensing Rref model was thus developed (Ai et al., 2018; Ai

et al., 2020). In fact, this method gives site-specific Rref by

dynamically setting the reference temperature as the site’s annual

mean temperature at each site, that is, the reference respiration at

each different site is the ecosystem respiration rate corresponding to

the annual average temperature of the site. However, due to a lack of

specialized research on ecosystem respiration simulation in

drylands, this model is still not powerful enough to simulate the

spatial dynamics of Reco there (Ai et al., 2020).

In a nutshell, spatial-temporal simulation of Reco in drylands is

still quite inadequate. Based on the useful progress above, we aimed to

find ways to better represent the spatial-temporal patterns of Reco in

drylands using MODIS data and the Q10 model. The objectives of

this study are: 1) to explore the seasonal dynamic patterns of Reco in

drylands, and to explore ways to efficiently simulate Reco’s seasonal

change; 2) to study the spatial dynamic patterns of Reco in drylands,

and to develop an efficient MODIS Remote sensing Rref model; 3) to

construct a MODIS remote sensing Reco model so as to efficiently

simulate the spatio-temporal patterns of Reco in drylands. This work

will provide specialized research in the simulation of Reco in

drylands, and will be very helpful for us to understand the

variations of Reco there, and thus will cast light on the carbon

budget on a regional scale, or even on a global scale.
2 Materials and methods

2.1 Data

The eddy covariance method is widely used to measure carbon

fluxes between ecosystems and the atmosphere due to its ability to

measure fluxes directly, in situ, without invasive artifacts, at a spatial

scale of hundreds of meters, and on various time scales (Baldocchi,

2003). A total of 98 site-years of flux data with a resolution of 8 days

from 24 research sites located in drylands (semi-arid with summer

dry period based on Koeppen-Geiger climate classification; ORNL

DAAC, 2010) were downloaded from http://www.fluxdata.org/ (see
Frontiers in Ecology and Evolution 03
Table 1 and Figure 1). The data consist of gap-filled and quality-

assessed 8-day average respiration rate (Level 4, well-mixed

conditions) (Ma et al., 2007), and we further filtered with the data

quality flag (qc > 0.8). Given that there are multiple respiration

products in the Fluxnet database, we preferentially used the

respiration rate product that was marginal distribution sampling

(MDS) gap-filled; when the MDS gap-filled product was not

available, we used the artificial neural networks gap-filled (Ma

et al., 2007) product instead.

MODIS data products, including LE, EVI, and LST, were

downloaded from https://modis.ornl.gov/cgi-bin/MODIS/global/

subset.pl. We employed the 1km MOD11A2 and MYD11A2 V6.1

LST products, and 500m MOD16A2 and MYD16A2 V6.1 LE

products, which are 8-day average values of cloud-free

observations featuring day- and night-time estimates, respectively.

We omitted observations if the qc flag indicated “bad raw data

quality” or if “average LST error > 1 K” (Wan et al., 2021). We

conducted quality controls to select valid LE data according to the

user guide of MOD16A2.

We used the atmospherically corrected MOD09A1 V6.1 8-day

surface reflectance (best observation in 8 days) at 500m resolution

to calculate EVI as follows:

EVI =
G*(rNIR − rred)

(rNIR + C1*rred − C2*rblue + L)
(3)

where G is a gain factor, r is surface reflectance at the Near

Infrared (NIR), red and blue band, L is the canopy background

adjustment, and C1 and C2 are coefficients of the aerosol resistance

term. We adopted coefficient values from the MODIS EVI

algorithm, L = 1, C1 = 6, C2 = 7.5, and G = 2.5. EVI over snow is

ill-defined; therefore, we masked EVI if the Normalized Difference

Snow Index (NDSI) exceeded 0.1 (Salomonson and Appel, 2004).

NDSI is calculated as follows:

SI =
(rgreen − rSWIR)

(rgreen + rSWIR)
(4)

where r is the reflectance in the green and in the Short Wave

Infrared band.

Land cover was assessed using the yearly IGBP MCD12Q1 V6.1

500m product. Data were filtered with the quality assessment flag

(confidence > 50%) and were averaged across years to one

static map.

All 8-day MODIS products were averaged over pixels indicating

the same aggregated land cover class within a 3*3km subset.

Primarily, we used Terra products, but we also used Aqua data

for gap-filling, which we linearly adjusted to account for an offset

due to different overpass times. We also compared model

simulations with site observations using the MODIS data

consistent with the period of the Chinaflux sites DX, HB_S,

HB_W, NMG, and YC.
2.2 Method

To account for spatial and seasonal variation separately, we

partitioned Reco observations into the site-specific reference
frontiersin.org
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respiration rate (Rref) and the remaining standardized respiration

rate (Reco_std). Reco_std, or the seasonal variation, was detrended

for site-year characteristics, and the seasonal changes were thus

smoothed across site-years. Rref is the respiration rate under a

reference condition, which describes the basal differences in

magnitude among the site-years.

Reco = Rref � Reco _ std (5)

Reco_std is the ratio of Reco and Rref. Here, firstly, we set the

Rref to annual mean Reco (Reco_mean) (formula (6)), and then the

Reco_std was calculated by formula (5):

Rref = Reco _mean (6)

After that we focused on the correlation between Reco_std and

the standardized EVI (EVI_std, EVI_std = EVI/EVI_mean), and the

correlation between Reco_std and the standardized LE (LE_std,

LE_std = LE/LE_mean). In this way, we can remove the site-year
Frontiers in Ecology and Evolution 04
differences and understand more accurately the correlation between

the seasonal trends of EVI and Reco, as well as the correlation

between the seasonal trends of LE and Reco. Through this, we

obtained a key indicator (Integrated LE and EVI proxy, hereinafter

called ILEP) (formula (7)) to simulate seasonal changes in

respiration:

ILEP =
P1� EVI
EVI _mean

+
P2� LE
LE _mean

(7)

Here P1 and P2 are parameters fixed after cross-validating the

model’s robustness and stability.

By relating ILEP to the Q10 model, we obtained the ILEP_Q10

model (formula (8)), and the Rref was then fitted using the

ILEP_Q10 model. In the ILEP_Q10 model, the reference variable

is set as ILEP, and the reference ILEP point is set to the annual mean

value of ILEP (ILEPref = ILEP_mean), thus, Rref is the respiration

rate corresponding to the annual mean ILEP.
TABLE 1 Overview of the Fluxnet sites used in this study.

Land cover types Site-ID Latitude Longitude Duration References

Croplands and
Closed Shrublands

FR-Avi 43.9164 4.8792 2004–2007
(Eugster et al., 2010; Garrigues et al.,
2015)

US-SO2 33.3739 116.623 2006 (Luo et al., 2007)

US-SO3 33.3772 116.623 2006 (Luo et al., 2007)

US-SO4
YC

33.3844
36.8333

116.64
116.5703

2004–2006
2003-2010

(Luo et al., 2007)
(Yu et al., 2014)

Deciduous Broadleaf Forests and Evergreen Broadleaf
Forests

IT-Ro2 42.3903 11.9209
2002–2008
2010–2012

(Tedeschi et al., 2006)

IT-CA1 42.3804 12.0266 2012 (Sabbatini et al., 2016)

IT-CA3 42.38 12.0222 2012 (Sabbatini et al., 2016)

Grasslands and Open Shrublands

US-Aud 31.5907 110.51 2002–2005 (Sabbatini et al., 2016)

US-Fwf 35.4454 111.772 2005–2007 (Krishnana et al., 2012)

US-Var 38.4133 120.951 2001–2007 (Dore et al., 2012)

PT-Mi2
CN-Dan

38.4765
30.4978

-8.0246
91.0664

2004–2008
2004-2010

(Jongen et al., 2011)
(Yu et al., 2014)

CN-Ha2
ES-Agu

37.6089
36.9406

101.3269
2.0329

2003-2010
2006–2007
2009–2011

(Yu et al., 2014)
(Serrano-Ortiz et al., 2015)

ES-Amo 36.8336 2.2523
2007
2009–2011

(Serrano-Ortiz et al., 2015)

ES-LgS 37.0979 2.9658 2007–2008 (López-Ballesteros et al., 2017)

ES-LJu 36.9266 2.7521 2004–2011 (Reverter et al., 2010)

ES-Ln2
HB-S
NMG

36.9695
37.6666
43.3225

3.4758
101.3333
116.4040

2009
2003-2010
2004-2010

(Serrano-Ortiz et al., 2009)
(Yu et al., 2014)
(Yu et al., 2014)

Savannas and Woody Savannas

SD-Dem 13.2829 30.4783 2007–2009 (Ardö et al., 2008)

ZA-Kru 25.0197 31.4969
2001
2003

(Archibald et al., 2008)

US-SRM 31.8214 110.866 2004–2006 (Scott et al., 2009)

US-Ton 38.4316 120.966 2001–2007 (Dore et al., 2012)
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Reco = Rref(ILEPref = ILEP _mean)*Q10
(ILEP−ILEP _mean

ILEP ) (8)

In the ILEP_Q10 model, the Q10 value is fixed using the mean

value replacement method as done by Ai et al. (2018). Next, we

found the correlation between EVI_mean values and the fitted Rref

values, as well as the correlation between LE_mean values and the

fitted Rref values, and we found that the fitted Rref values were

positively, linearly correlated with EVI_mean values and LE_mean

values. Based on this, another key indicator – ILEP_RrefP was

developed:

ILEP _RrefP = (P3*LE _mean + P4*EVI _mean) (9)

Here P3 is fixed using the fitted Rref values and the

corresponding LE_mean values after cross-validation. Likewise,

P4 is fixed using the fitted Rref values and the corresponding

EVI_mean values after cross-validation.

Rref = P5*In(ILEP _RrefP) + P6 (10)

After we fixed P3 and P4, the relationship between the

calculated ILEP_Rref values and the fitted Rref values was probed,

and a logarithmic function (formula (10), hereinafter called

ILEP_Rref model) was found to be robust in Rref simulation. P5

and P6 were then fixed after cross-validation.

After all 6 parameters (P1, P2 in formula (7); P3, P4 in formula

(9); P5, P6 in formula (10)) are fixed, the final remote sensing Reco

model: ILEP_Reco model (formula (11)) was then developed by

integrating the ILEP, Q10 model and the ILEP_Rref model:

Reco = (P5� In(P3� LE _mean + P4� EVI _mean)

+ P6)� (Q10)(
ILEP−ILEP _mean

ILEP ) (11)
Frontiers in Ecology and Evolution 05
2.3 Evaluation of the RS Reco model

All the parameters in these formulas were estimated by non-linearly

minimizing the sum of squared residuals, weighted by its uncertainty.

The performance of ILEP, ILEP_Rref model, and ILEP_Reco model

were explored by cross-validation. The model statistics included the

coefficient of determination (R2), root-mean-square error (RMSE),

modeling efficiency (EF), and mean bias error (MBE):

R2 = on
i=1((xi − x−)� (yi − y−))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i−1((xi − x−)2 � (yi − y−)2)

q
0
B@

1
CA

2

(12)

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(on

i=1(xi − yi)
2)=n

q
(13)

EF = 1 − o
n
i=1(xi − yi)

2

on
i=1(xi − x−)2

(14)

MBE =on
i=1(

xi − yi
n

) (15)

xi is the observed data, yi is the simulated data, and x- and y- are

the averages of the observed and simulated data respectively. R stands

for the correlation between two variables. R2 is the determinant

coefficient between two variables. RMSE values were used to measure

the biases that caused the simulated data to differ from the

observations. EF represents the consistency of the observed values

with the simulated ones and is sensitive to the systematic deviation. All

fit procedures were done by the least squares method.
FIGURE 1

The spatial distribution of flux towers in this study.
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A fivefold cross-validation procedure was employed to estimate

and validate the parameter set. For each cycle, 80% of the available

site-years were used for model calibration and 20% were detained

for validation. Each site-year was used for validation exactly once,

and the parameters were never evaluated against calibration site-

years. Regional-scale ILEP_Reco application was based on

parameters retrieved from the entire site data to ensure the most

robust parameters.
3 Results

3.1 Exploring and grasping the seasonal
changes in Reco

We first explored the relationship between seasonal changes in

Reco and EVI and the relationship between seasonal changes in Reco

and LE. The results showed that both EVI_std and LE_std were highly

correlated with Reco_std (Figure 2). As we can see in Figure 2, the

correlation between EVI_std and Reco_std was 0.53, and that between

LE_std and Reco_std was 0.55, which indicate that both variables can

be used for the simulation of the seasonal variation of Reco.

Based on this, the site observations were fitted using the formula (7).

It was found that the formula (7) can simulate the seasonal variation of

respiration quite well (Table 2). Using 80% of all the site-year data, we

fixed P1 and P2 (P1 = 0.55, P2 = 0.45), and thus we obtained ILEP (ILEP

= 0.55*EVI/EVI_mean + 0.45*LE/LE_mean). Furthermore, we found

that the correlation between ILEP and Reco_std was significantly higher

than the correlation between LE_std and Reco_std, or the correlation

between EVI_std and Reco_std (Figure 2).
3.2 Fixation of ILEP_Q10 value

Through the conduction above, we obtained a key proxy, ILEP,

which was highly correlated with the seasonal variation of Reco.

Next, we related ILEP to the Q10 model and obtained the

ILEP_Q10 model. We then used the ILEP_Q10 model to fit the

observations in each site-year to obtain each site-year’s ILEP_Q10

value. A total of 98 ILEP_Q10 values were finally harvested. The

results show that all these 98 ILEP_Q10 values were very conserved.

As is shown in Table 3, the fitted ILEP_Q10 values of each site-year

were concentrated near the mean value of 1.24. Therefore, using the

mean value replacement method, we fixed the final ILEP_Q10 value in

the ILEP_Q10model to 1.24. Cross-validation revealed the feasibility of

using the mean value of the 98 ILEP_Q10 values (1.24) to fix the

ILEP_Q10 parameter in the ILEP_Q10 model (Tables 3, 4).
3.3 Construction of ILEP_Rref model

We then obtained the ILEP_Q10 model with a fixed ILEP_Q10

value (i.e., 1.24), and we named it the Q10_fixed_ILEP_Q10 model.

By using the Q10_fixed_ILEP_Q10 model, the observations of each

site-year were fitted to obtain the Rref (ILEPref = ILEP_mean) value

in each site-year. After exploring the relationship between the 98 Rref
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(ILEPref = ILEP_mean) values and the 98 LE_mean values, as well as

the relationship between the 98 Rref (ILEPref = ILEP_mean) and the

EVI_mean values, we found that the Rref (ILEPref = ILEP_mean)

values were positively and linearly correlated with the LE_mean

values and EVI_mean values in the 98 site-years (Figure 3).

To find suitable ways to simulate the Rref (ILEPref =

ILEP_mean) values, we performed the following operations.
1. We used a polynomial surface equation (a*LE_mean +

b*EVI_mean + c, a, b, c are the parameters) to fit these Rref

(ILEPref = ILEP_mean) values, but against our

expectations, the fitted parameter a was below zero,

which meant that the LE_mean values were negatively

correlated with the Rref (ILEPref = ILEP_mean) values,

and that was not consistent with our findings in Figure 3.

2. We then combined the linear equation with fixed parameters

to form another key proxy: ILEP_RrefP, i.e., 0.42*LE_mean

+ 8.28*EVI_mean. The 0.42*LE_mean was derived from the

relationship between the Rref (ILEPref = ILEP_mean) values

and LE_mean, and the 8.28*EVI_mean was derived from the

linear equation between the Rref (ILEPref = ILEP_mean)

values and EVI_mean values. Cross-validation showed the

feasibility and stability of the ILEP_RrefP (Table 5; Figure 3).

3. After that, we explored the correlation between ILEP_RrefP

and the Rref (ILEPref = ILEP_mean) values, and we found

a logarithmic model (ILEP_Rref model) between

ILEP_RrefP and Rref (ILEPref = ILEP_mean) values.

Though it is rather empirical to obtain such an

ILEP_Rref model, the relatively narrow changing range in

parameters and in correlations of cross-validation showed

the feasibility and stability of the ILEP_Rref model (Table 6;

Figures 3, 4).
3.4 Construction of ILEP_Reco model

By using all the site-year observations, the ILEP_Rref model y =

P5 * In (ILEP_RrefP) + P6 was fitted to obtain the final parameters P5

and P6 (the cross-validation results are shown in Table 6), and an

integration of the ILEP_Rref model, the Q10 model and ILEP finally

led to the ILEP_Reco model. Cross-validation showed the feasibility

and stability of the ILEP_Reco model, as shown in Table 7.

The final ILEP_Reco model and corresponding parameters are

described as follows:

Reco = (P5� In(P3� LE _mean + P4� EVI _mean) + P6)

� (Q10)(
ILEP−ILEP _mean

ILEP )

ILEP =
P1� EVI
EVI _mean

+
P2� LE
LE _mean

P1 =
0.45

P2 =
0.55

P3 =
0.42

P4 =
8.28

P5 =
1.87

P6 =
0.87

Q10 =
1.24
fron
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TABLE 2 The parameters and performance in the cross-validation of formula (7).

Name P1 P2 R RMSE EF

95% CI_up 0.56 0.47 0.65 0.52 0.41

95% CI_lw 0.54 0.43 0.62 0.49 0.39

mean 0.55 0.45 0.63 0.50 0.40

STD 0.01 0.01 0.01 0.01 0.01

P value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
F
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FIGURE 2

Correlation between Reco_std and EVI_std, between Reco_std and LE_std, and between Reco_std and ILEP (P< 0.01 in all the subplot).
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After comparing the performance of the ILEP_Reco model with

that of the Ensemble_all model proposed by Ai et al. (2018), we

found that the performance of the ILEP_Reco model (R2 = 0.56,

RMSE = 1.11 gCm−2d−1, EF = 0.46, MBE = −0.06 gCm−2d−1) was

significantly better than that of the Ensemble_all model (R2 = 0.23,

RMSE = 1.58 gCm−2d−1, EF = −0.08, MBE = −0.11 gCm−2d−1)

(Figure 5), and the ILEP_Reco model was efficient at grasping the

mean state of the seasonal respiration dynamics on a large scale in

drylands (R2 = 0.91, RMSE = 0.11 gCm−2d−1, EF = 0.86, MBE =

−0.09 gCm−2d−1).
4 Discussion

4.1 The seasonal dynamics of Reco and
environmental variables

Figure 2 shows that compared with EVI_ std or LE_ std, ILEP

(Integrated LE and EVI proxy) can reflect Reco_ std

more effectively.

In order to understand this phenomenon more directly, we

calculated the Reco_ std, LE_ std, ILEP, and LST_std of all site-years

from DOY1 to DOY361 (temporal resolution was 8 days)

(Figure 6), and then we calculated the corresponding standard

deviation (STD) (error bar in Figure 6).
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A very distinct characteristic in Figure 6 is that EVI_ std,

LE_std, and ILEP show a highly similar curve with Reco_std, and

they all reach their summits between DOY105 and DOY161, with

the maximum values appearing at DOY137. However, the curve of

LST_std turns out to be rather different. We found that the curve of

LST_std rises more uniformly and reaches its maximum value at

DOY 201, and then drops uniformly after DOY 201. In short, in

drylands, the curves of Reco_std, LE_std, EVI_std, and ILEP_std all

reach their summits in late May, while the curve of LST_std reaches

its summit in late July. These indicate that LE_std, EVI_std, and

ILEP can well describe the overall seasonal trend of Reco, while

LST_std fails to describe it.

The maximum STD values of Reco_std, LE_std, EVI_std, and

ILEP in all the site-years all appear around DOY137, and the

distribution range of the STD values of ILEP was most similar to

that of Reco_std. In contrast, the STD of LST_std was quite different

from that of Reco_std. The maximum STD values of LST_std

occurred on DOY1, DOY361, and in other low-temperature

periods. The above shows that ILEP can better reflect the

variation of Reco in each site-year, whereas LST_std can hardly

reflect the variation of Reco.

Previous studies have shown that hysteresis between soil CO2

and soil temperature is controlled by soil water content. In drylands

where water supply is not enough, and especially when the

temperature is high, strong evapotranspiration may cause a severe
TABLE 3 The fitted LST_Q10 values and ILEP_Q10 values in 15 scenarios: 3 different time periods (the whole year, the rising period and the falling
period) in 5 different site-year types (site-year in 4 ecosystems and all the 98 site-years).

Name Duration CRO+CSH DBF+EBF GRA+OSH SAV+WSA All site-years STD
STD
(Total)

LST_Q10
values

Whole year
DOY1-DOY361

1.48 1.20 0.79 1.01 1.12 0.26

0.93
Rising period
DOY1-DOY137

2.87 2.96 2.76 2.22 2.83 0.32

Falling period
DOY145-DOY361

1.33 0.55 0.64 0.87 0.80 0.30

ILEP_Q10
values

Whole year
DOY1-DOY361

1.23 1.24 1.26 1.21 1.24 0.02

0.04
Rising period
DOY1-DOY137

1.25 1.28 1.31 1.26 1.28 0.05

Falling period
DOY145-DOY361

1.19 1.16 1.21 1.20 1.19 0.02
fron
ILEP_Q10 values show high stability in these 15 scenarios, while LST_Q10 values show high variability.
TABLE 4 The cross-validation results of fixing ILEP_Q10 values using mean value replacement method.

Name ILEP_Q10 value R RMSE EF

95% CI_up 1.28 0.67 0.54 0.43

95% CI_lw 1.19 0.61 0.47 0.37

mean 1.24 0.64 0.51 0.40

STD 0.12 0.02 0.03 0.02

P value < 0.01 < 0.01 < 0.01 < 0.01
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water deficit (desiccation), which may lead to the weakening of

plant and soil microbial metabolisms and eventually a lower

respiration rate (Vargas et al., 2010; Buttlar et al., 2018). Based on

this, ILEP shows a high correlation with Reco_std for two reasons.

First, the seasonal trend of EVI actually represents the seasonal

change of vegetation canopy (Huete et al., 2002; Costa et al., 2022),

so EVI can not only directly characterize the seasonal changes of

auto-trophic respiration but also partially characterize the change in

hetero-trophic respiration (Goulden et al., 2011; Liu et al., 2022).

Hetero-trophic respiration is also highly correlated with vegetation

status because vegetation provides a respiratory substrate and a

congenial environment for soil microbe metabolism (Kuzyakov,

2002; Grogan and Jonasson, 2005; Thomson et al., 2010; Hopkins

et al., 2013; Huo et al., 2017; Azevedo et al., 2021). Previous work

has proposed the possibility of using EVI to characterize the

seasonal changes of Reco (Rahman et al., 2005), and based on

this, models using EVI to characterize seasonal changes of Reco

have been developed (Jägermeyr et al., 2014). Therefore, the

standardized EVI can well reflect the seasonal trend of respiration.

Second, LE can also reflect Reco’s seasonal changes (Kuppel

et al., 2012; de Oliveira et al., 2020). LE refers to the general term for
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the heat exchange energy between the underlying surface and the

atmospheric moisture during the evaporation of soil moisture, the

evaporation of water or vegetation, and the transpiration of water in

plants (Santanello and Friedl, 2003; Perez-Priego et al., 2017; Chen

et al., 2020). In arid regions, especially during the respiration limited

period, water is the main limiting factor, and LE can reflect soil

moisture and vegetation moisture (Qiu et al., 2016; Williams and

Torn, 2016). In addition, LE can also reflect the conductance of the

soil–vegetation–atmosphere continuum (SPAC) (Manzoni et al.,

2011; Farhadi et al., 2014; Gong et al., 2019). It is indicated that

many factors affecting the respiratory process also affect the

conductance of SPAC, including land cover types (Costa and

Foley, 1997; Jarvis et al., 2013), vegetation richness (Mencuccini

et al., 2019), soil porosity (Manzoni et al., 2013) and so forth. Here,

we found that the seasonal change in respiration rate was very

similar to that in LE (Figure 6), and this result is consistent with the

results of previous studies: Reco in arid regions was more strongly

correlated with LE than with other temperature-related variables

(Ai et al., 2020).

ILEP is the combination of standardized EVI and standardized

LE. EVI is a comprehensive reflection of the impact of changes in
FIGURE 3

The relationship between the Rref (ILEPref = ILEP_mean) values and EVI_mean values, between the Rref (ILEPref = ILEP_mean) values and LE_mean
values, and between the Rref (ILEPref = ILEP_mean) values and ILEP_RrefP (ILEP_RrefP = 0.42*LE_mean + 8.28*EVI_mean) values.
TABLE 5 The cross-validation results of the ILEP_RrefP (ILEP_RrefP = P3*LE_mean + P4* EVI_mean).

Name P3 P4 R

95% CI_up 0.44 8.31 0.92

95% CI_lw 0.40 8.26 0.84

mean 0.42 8.28 0.88

std 0.01 0.03 0.03

P value < 0.01 < 0.01 < 0.01
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TABLE 6 The cross-validation results of the ILEP_Rref model (Rref = P5*In(ILEP_RrefP) +P6).

Name P5 P6 R RMSE EF

95% CI_up 1.98 0.57 0.92 0.50 0.78

95% CI_lw 1.78 0.53 0.85 0.45 0.72

mean 1.87 0.55 0.88 0.47 0.75

std 0.07 0.04 0.03 0.02 0.03

P value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
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FIGURE 4

The relationship between the binned LE_mean and the averaged Rref (A), between the binned EVI_mean and the averaged Rref (B), between the
averaged ILEP_RrefP and the averaged Rref (C), between the averaged ILEP_Rref model simulation and the averaged Rref (D) (P value < 0.01 in all the
subplot). The great complementarity between the EVI_mean and the LE_mean makes ILEP_RrefP show a higher correlation with the averaged Rref.
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environmental (temperature, water, light) and biological

(phenology, biomass, biological adaptation to the environment)

factors on plants. Relatively speaking, EVI can better reflect long-

term and stable Reco changes than LE does (Figures 3, 6). LE is a

comprehensive reflection of moisture, heat, conductivity of SPAC

and so forth. LE can better reflect short-term and flexible Reco

changes than EVI does (Figures 2, 6). Together, ILEP can reflect not

only long-term and stable Reco changes but also short-term and

flexible Reco changes. Therefore, ILEP can well simulate the

seasonal changes of Reco (Figures 2, 3, 6).
4.2 Redefinition of Q10 model and
Q10 values

We associated ILEP with the Q10 model to obtain the

ILEP_Q10 model. In the ILEP_Q10 model, Rref refers to the

ecosystem respiration rate corresponding to a reference ILEP

value, and the Q10 value is the times of the ecosystem respiration

rate change for every 10 units of ILEP change.
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By setting the reference ILEP in ILEP_Q10 model as the annual

mean ILEP values, we fitted the corresponding ILEP_Q10 values

using the observations from 98 site-years. We found that the 98

fitted ILEP_Q10 values showed high stability with a mean value of

1.24 and STD of 0.12, which is consistent with the results of

previous works: the fitted LE_Q10 values in 26 cropland sites (a

total of 102 site-years) were convergent at 1.20, with a marginal

STD of 0.13 (Ai et al., 2020).

To investigate the reasons behind this, we perform the following

operations. First, according to the curve of Reco_std in Figure 6, the

whole year (DOY1–DOY361) was divided into a Reco_std rising

period and a falling period, that is, DOY1–DOY137 was the rising

period and DOY145–DOY361 was the falling period. We then used

the ILEP_Q10 model to explore the ILEP_Q10 values in 15

scenarios: three different time periods (the whole year, the rising

period, and the falling period) in five different site-year types (site-

year in four ecosystems and all the 98 site-years).

To further compare the stability of LST_Q10 values and that of

ILEP_Q10 values, we associated the LST with the Q10 model to

obtain the LST_Q10 model. In the LST_Q10 model, Rref refers to
TABLE 7 The cross-validation results of the ILEP_Reco model.

Name R RMSE EF MBE

95% CI_up 0.76 1.19 0.50 −0.03

95% CI_lw 0.66 1.03 0.42 −0.08

mean 0.72 1.10 0.47 −0.05

std 0.04 0.06 0.03 0.02

P value < 0.01 < 0.01 < 0.01 < 0.01
FIGURE 5

Comparison of the performance of the final ILEP_Reco model with that of the Ensemble_all model in all the 98 site-years’ observations (the upper
two subplots show that ILEP_Reco model performs significantly better than the Ensemble_all model, and the lower subplot suggests that ILEP_Reco
model is efficient at grasping the mean state of the seasonal respiration dynamics in all the 98 site-years).
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the ecosystem respiration rate corresponding to a reference LST

value, and the Q10 value is the times of the ecosystem respiration

rate change for every 10 units of LST change. LST_ Ref was selected

as the annual mean LST. We used the LST_ Q10 model to explore

LST_Q10 values in the same 15 scenarios.

Table 3 shows that the ILEP_Q10 values in 15 scenarios were

very stable, with a maximum value of 1.31 and a minimum value of

1.16. The value of all site-years in the whole year was 1.24, and the

STD of ILEP_Q10 values from the 15 scenarios was 0.04. In

different ecosystems and different time periods, the difference

in ILEP_Q10 values was very small, so the mean value of the

fitted ILEP_Q10 value of each site-year could be used to replace the

ILEP_Q10 value in each site-year. Table 4 also indicates

this feasibility.

The LST_Q10 values from the 15 scenarios were very unstable,

with a maximum value of 2.96 and a minimum value of 0.55. The

value of all site-years in the whole year was 2.83, and the STD of

LST_Q10 values from the 15 scenarios was 0.93. LST_Q10 values in

the rising period were far greater than those in the falling period.

The LST_Q10 values varied greatly in different ecosystems or

different time stages. Thus, it is difficult to use the mean value of

the fitted LST_Q10 value of each site-year to replace the LST_Q10

value in each site-year.

The redefinition of the Q10 model and the corresponding Q10

value is a novel approach for Reco estimation and facilitates the
Frontiers in Ecology and Evolution 12
simulation of Reco on both temporal and spatial scales. The Q10

model is a classic model for biologists to describe the temperature

dependence of respiratory rate, and the T_Q10 value is often fixed

as a constant 2 when we estimate Reco on a large scale. However, it

is suggested that the T_Q10 values vary greatly on both temporal

and spatial scales (Davidson and Janssens, 2006; Mahecha et al.,

2010; Perkins et al., 2012; Suseela et al., 2012; Meyer et al., 2018; Niu

et al., 2021; Kurganova et al., 2022). Spatially, the T_Q10 values

tended to be high in the high-latitudinal biomes. The mean T_Q10

values for different biomes ranged from 1.43 to 2.03, with the

highest value in tundra and the lowest value in deserts (Zhou et al.,

2009), which is consistent with the results of this study. Temporally,

the T_Q10 values tended to be higher in the Reco_std rising period

and lower in the Reco_std falling period, which coincides with

many previous studies (Davidson and Janssens, 2006; Davidson

et al., 2006; Suseela et al., 2012; Li et al., 2020; Niu et al., 2021).

The mechanism for this is that the stability of Q10 values is an

embodiment of the synchronization of the reference variables with

Reco. Reco is actually influenced by many factors, including

environmental factors and biological factors (Costa and Foley,

1997; Riveros-Iregui et al., 2007; Jarvis et al., 2013; Manzoni et al.,

2013; Mencuccini et al., 2019). Temperature is only one of these

environmental factors (Flanagan and Johnson, 2005; Fu et al., 2009;

Keenan et al., 2019; Huang et al., 2020), while ILEP is a complex

indicator: it changes with the heat, the water, the vegetation, the
FIGURE 6

Comparison of seasonal dynamics of Reco_std, LE_std, EVI_std and ILEP. Error bar means standard deviation. Considering the curves and error bars
of each variable, ILEP can best reflect the seasonal dynamics of Reco_std, while LST_std shows the largest discrepancy with Reco_std.
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microbes, the conductance of SPAC, and even the soil properties,

which are also the determinants for ecosystem respiratory process

(Enquist et al., 2003; Kuzyakov and Larionova, 2005; Davidson

et al., 2012; Mamkin et al., 2019; Jia et al., 2020; Li et al., 2020; Hasi

et al., 2021; Hu et al., 2021; Jackson et al., 2021; Liu et al., 2021). In

other words, ILEP synchronizes with Reco. That is why the

ILEP_Q10 exhibited a high degree of stability both on a seasonal

scale and a spatial scale. Indeed, the highly conserved ILEP_Q10

values in 98 site-years provided us with a good opportunity for the

simulation and estimation of Reco (Ai et al., 2018; Ai et al., 2020).

To sum up, when using the classic Q10 model to simulate Reco,

the corresponding T_Q10 values are the apparent temperature

sensitivity (the combined effect of a series of factors, such as

organism biomass, substrate supply, temperature, and desiccation

stress) (Dell et al., 2011; Song et al., 2014), so it is certainly difficult

to obtain seasonal and spatial stable Q10 values. Here, we redefined

the Q10 model and Q10 values and proposed the ILEP_Q10 model

and corresponding ILEP_Q10 values based on the core variable –

ILEP, which effectively reduced the spatial and temporal

heterogeneity of the Q10 values.
4.3 Reco’s spatial change and simulation

The spatial variation of Reco reflects differences in site

conditions, including organisms and the environment. Both long-

term (hundreds to thousands of years) climate regime and short-

term (a few days to months) climate extremes have impacts on

Reco’s spatial variation (Monson et al., 2006; Hoover et al., 2016). In

the process of Reco simulation, Rref is often used to characterize the

spatial variability of Reco (Reichstein et al., 2003; Chen et al., 2010;

Ai et al., 2018; Ai et al., 2020).

To calculate the Rref, the first problem is to determine the reference

variable. The reference variable must have an important relationship

with the seasonal variation of Reco. The reference variables in the

previous Reco models are temperature or LST. When Rref is set to the

Reco that corresponds to the annual average temperature, Rref (Tref =

T_mean) is found to be highly correlated with simple vegetation index

and temperature (Ai et al., 2018), as temperature is the most

fundamental climatic factor influencing the kinetics of biochemical

reactions. Thus, when the reference temperature is fixed at the mean

annual value, Rref will reflect an average state of physiological processes

both in plants and in microbes (Bond-Lamberty and Thomson, 2010;

Mahecha et al., 2010; Buckley and Huey, 2016; Jian et al., 2020;

Johnston et al., 2021; Stell et al., 2021).

However, the findings and explanations above do not work in

drylands. Ai et al. (2020) argue that temperature is not necessarily

the only reference variable: there can be other variables that are

more correlated with Reco in drylands. Furthermore, in this study,

if the reference variable was set as the ILEP, and the reference point

was set to the annual mean ILEP, then the ILEP_Rref was actually

the Reco that corresponded to the annual mean ILEP.

Based on this, Rref (ILEPref=ILEP_mean) was found to be

highly correlated with the annual mean LE and the annual mean

EVI (Figure 3). The EVI_mean reflects the average annual
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vegetation condition, which affects not only vegetation respiration

but also microbial respiration (Huete et al., 2002; Goulden et al.,

2011; Costa et al., 2022; Liu et al., 2022). The LE_mean reflects not

only the average heat and water condition (the main limiting factor

of respiration in the arid area), but also the average conductance

state of SPAC (Santanello and Friedl, 2003; Manzoni et al., 2011;

Farhadi et al., 2014; Perez-Priego et al., 2017; Chen et al., 2020).

Therefore, both the EVI_mean and LE_mean are highly correlated

with Rref (ILEPref=ILEP_mean).

In order to further explore 1) the relationship between the

Rref (ILEPref=ILEP_mean) values and annual mean LE values,

2) the relationship between the Rref (ILEPref=ILEP_mean) values

and annual mean EVI values, 3) the relationship between

the Rref (ILEPref=ILEP_mean) values and ILEP_RrefP

(ILEP_RrefP=0.42*LE_mean+8.38*EVI_mean) values, and 4) the

relationship between the Rref (ILEPref=ILEP_mean) values and the

simulations of ILEP_Rref model, we

1) calculated the annual mean LE values (LE_mean), the annual

mean EVI values (EVI_mean), the annual ILEP_ RrefP values, and

the simulations of ILEP_Rref model (see below) in all the 98 site-

years:

Rref = 1:87� In(0:42� LE _mean + 8:28� EVI _mean) + 0:87

2) fitted the Rref (ILEPref=ILEP_mean) values of each site-year

using the following equations, and a total of 98 Rref

(ILEPref=ILEP_mean) values were obtained:

Reco = Rref � (Q10)(
ILEP−ILEP _mean

ILEP )

ILEP =
0:45� EVI
EVI _mean

+
0:55� LE
LE _mean

and 3) explored the correlation between annual mean LE

(LE_mean) and the averaged Rref (ILEPref=ILEP_mean) values

using the bin-average method. The LE_mean values in all the 98

site-years were binned at 0.5 intervals, and the corresponding Rref

(ILEPref=ILEP_mean) values at each 0.03 interval were averaged.

After that, we obtained 14 pairs of binned LE_mean values and the

corresponding averaged Rref (ILEPref=ILEP_mean) values, and

found the correlation between them. Likewise, we found the

correlation between EVI_mean values and the averaged Rref

(ILEPref=ILEP_mean) values, the correlation between

ILEP_RrefP (0.42*LE_mean + 8.28*EVI_mean) values and the

averaged Rref (ILEPref=ILEP_mean) values, and the correlation

between the simulations of the ILEP_Rref model and the averaged

Rref (ILEPref=ILEP_mean) values.

Figure 4 shows that 1) the correlation between EVI_mean and

bin-averaged Rref was higher than that between LE_mean and bin-

averaged Rref; 2) the correlation between ILEP_RrefP and bin-averaged

Rref was higher than that between EVI_mean and bin-averaged Rref;

and 3) the correlation between ILEP_RrefP and bin-averaged Rref was

higher than that between the LE_mean and bin-averaged Rref.

In order to further explore the reasons behind the findings

above, we selected three outliers in subplot (a) and two outliers in

subplot (b) that deviated sharply from the fitting lines, and explored

the situation of these five outliers in subplot (c) and subplot (d).
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The results showed that, except for outlier 3 in subplot (c) and

subplot (d), which still deviated from the fitting line severely, the

other four outliers in subplot (c) and subplot (d) no longer deviated

from the fitting line sharply; instead, these four outliers were even

quite close to the fitting line (such as outlier 1). This indicates that

the deviation degree of these outliers was reduced. Specifically, the

deviation of outlier 1 and outlier 2 was weakened by EVI_ mean in

subplot (c) and subplot (d), and the deviation of outlier 4 and

outlier 5 was weakened by LE_mean in subplot (c) and subplot (d).

In other words, it was the great complementarity between

EVI_mean and LE_mean that makes ILEP_RrefP show a higher

correlation with the Rref (ILEPref=ILEP_mean) values.

We mapped our model to the scale of northern China drylands.

We further compared the ILEP_Reco simulations with the in situ Reco

observations in Chinaflux sites DX, HB_S, HB_W, NMG and YC. The

results showed that the ILEP_Reco model can robustly picture the

spatial-temporal distribution of Reco there (Figures 7, 8), where R2 =

0.62, and RMSE = 1.20 gCm−2d−1. There were differences in the spatial

distribution of Reco there, ranging from 0.003 to 4.230 gCm−2d−1,

roughly showing an increasing trend from northwest to southeast. The

minimum value appeared in the Junggar Basin of Xinjiang, and the

maximum value appeared in the middle of the semi-arid region (the

border area between Qinghai and Gansu) (Figure 7). The main reason

was that the vegetation in the southeast is relatively lush, while the

vegetation coverage in the northwest is low. The spatial distribution of

the monthly average ILEP_ Reco from 2003 to 2010 and annual

average ILEP_Reco were similar, but there were seasonal differences. In

central Inner Mongolia, the edge of the Junggar Basin, central Tibet,

and Loess Plateau, seasonal differences are small. These areas are

mainly grasslands and sparsely vegetated areas. The low vegetation

coverage there leads to small seasonal differences in Reco. However, in

the eastern part of the Altai Mountains, Mount Tianshan, Himalayas,

and semi-arid areas, the seasonal differences are large, since these areas

are mainly mixed zones of forests and agricultural grasslands. The

respiration of forests is strong, and environmental factors such as

temperature and precipitation can affect vegetation respiration. Besides,

farmland, influenced by human management, also exhibits significant

seasonal differences. The maximum Reco values on a monthly scale

mainly occur between July and August. Specifically, 82.75% of the

research area reaches the highest values between July and August

(Figure 8). During this period, vegetation growth is vigorous, and water
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and heat conditions are relatively good, resulting in higher Reco.

Furthermore, 71.85% of the area has the smallest values between

January and April (Figure 8). During this period, vegetation is in a

slow growth period and is also affected by low precipitation or

temperature, resulting in lower Reco.
4.4 Uncertainty

Although a purely remote Reco model – ILEP_Reco – is

proposed in this study, we still argue there is uncertainty in

respiration simulation in drylands. There are several reasons for

this. 1) The number of flux observations in drylands is relatively

small. In the global flux system, most flux sites are concentrated in

the middle and high latitude non-arid areas, but the arid regions

exceed 40% of the land, which further reduces the flux density in dry

areas. 2) There is also uncertainty in MODIS products themselves.

Especially for the large-scale inversion of LE data, there is still

relatively large uncertainty at present. 3) The flux respiration data

are still not true observations, but a kind of interpolation or

extrapolation from an exponential relationship between nighttime

flux data and temperature. Because the correlation between

nighttime flux data and temperature in arid regions is very weak,

errors will occur in respiration interpolation or extrapolation.
5 Conclusions

This study demonstrates that: 1) In drylands, standardized EVI

and LE show a high correlation with the seasonal dynamic pattern of

ecosystem respiration, and a key indicator ILEP can well simulate the

seasonal change of the Reco there. 2) When we relate ILEP with the

classic Q10 model, the ILEP_Q10 values are highly concentrated,

which greatly facilitates us to replace the ILEP_Q10 parameter of

each site-year with a fixed ILEP_Q10 value. 3) After we replace the

ILEP_Q10 value of each site-year with a fixed value, the Rref values

fitted by each site-year’s in situ observations, i.e., the Reco

corresponding to the annual mean ILEP, are highly correlated with

the annual mean EVI and annual mean LE. Based on another key

indicator ILEP_RrefP, a simple remote sensing Rref model

(ILEP_Rref model) was developed, which can efficiently simulate
FIGURE 7

The annual spatial distribution of Reco simulated by the ILEP_Reco model (gCm−2d−1).
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the site-year specific Rref values. 4) Based on the above, a MODIS

remote sensing model (ILEP_Reco model) with only 6 parameters

was developed, which can simulate the spatio-temporal dynamics of

Reco in drylands powerfully, with R2 = 0.56, RMSE = 1.12 gCm−2d−1,

EF = 0.46, MBE = −0.06 gCm−2d−1, and performs much better than

the previous models, such as Ensemble_all. 5) This ILEP_Reco model

vividly depicts the spatial-temporal distribution of Reco in northern

China drylands with an 8-day 1km resolution. Therefore, this study

goes a step further in the field of the remote sensing estimation of

ecosystem respiration in arid areas.
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