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Introduction: With the rapid development of society and urbanization,

greenhouse gas emissions have increased, leading to environmental problems

such as global warming. The rise in urban water consumption has also resulted

in increased sewage discharge, exacerbating freshwater scarcity and water

pollution. Understanding the current status and spatial distribution of greenhouse

gas emissions in China’s sewage treatment industry is crucial for emission

reduction measures and controlling ammonia nitrogen pollution.

Methods: This study comprehensively investigates greenhouse gas emissions

from sewage treatment plants, analyzing influencing factors and predicting future

spatial and temporal distributions. The uncertainty of ammonia nitrogen emissions

is calculated using the IPCC’s error propagation method, considering uncertainty

ranges of variables. Additionally, an artificial neural network is employed to predict

ammonia nitrogen content in sewage discharge, aiming to prevent excessive levels

in wastewater.

Results and discussion: The proposed model outperforms others with an

R-Squared score of 0.926, demonstrating its superior accuracy in predicting

ammonia content in wastewater. These findings contribute to better emission

reduction strategies and control of ammonia nitrogen emissions. This model can

e�ectively prevent excessive ammonia nitrogen content in dischargedwastewater,

contributing to water pollution control. In conclusion, this study highlights the

importance of understanding greenhouse gas emissions from sewage treatment

plants and their impact on water pollution. The research provides valuable

insights into emission reductionmeasures, emission prediction, and technological

innovations suitable for China’s specific conditions. By e�ectively managing

ammonia nitrogen emissions and adopting the proposed predictive model, the

goals of carbon neutrality and environmental sustainability can be better achieved.

KEYWORDS

carbon peak carbon neutral, water pollution, neural network, ammonia nitrogen content

prediction, ammonia nitrogen indicators

1. Introduction

With the exacerbation of ecological and environmental problems, such as global

warming, the current status and spatial distribution of greenhouse gas emissions in

China’s sewage treatment industry have become an important research field (Reza et al.,

2022). These issues not only have serious impacts on the environment but also pose

huge challenges to the rapid development of society and the economy, as well as the

industrialization and urbanization processes. As the urbanization process continues to

accelerate, the rapid increase in urban water consumption has led to a corresponding

increase in sewage discharge, exacerbating the scarcity of freshwater resources and the degree

of water environmental pollution (Nabavi et al., 2023). In this process, ammonia nitrogen, as
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an important indicator of water pollution, can cause eutrophication

and environmental pollution when exceeding the standard.

According to statistics, China’s urban sewage treatment industry

is one of the important sources of greenhouse gas emissions

(Heydari et al., 2021). In the process of sewage treatment, chemical

agents, energy, and transportation all produce a large amount of

greenhouse gas emissions (Smith et al., 2021), mainly including

carbon dioxide, methane, and nitrous oxide (Lee and Kim, 2021).

It is estimated that the greenhouse gas emissions from China’s

urban sewage treatment industry have exceeded 200 million tons of

carbon dioxide equivalents, mainly from the biological treatment

process (Tan et al., 2020).

In China, the discharge of ammonia nitrogen from sewage

treatment plants has become an important environmental issue.

According to statistics, the discharge of ammonia nitrogen from

China’s sewage treatment plants has exceeded 100,000 tons per

year, mainly from urban sewage treatment plants (Zhang et al.,

2019). With the acceleration of the urbanization process, the

discharge of ammonia nitrogen from urban sewage treatment

plants is also increasing, seriously threatening the quality of water

environment, and sustainable development (Zhang et al., 2019).

Under the trend of carbon neutrality, China has adopted a series

of measures to reduce greenhouse gas and ammonia nitrogen

emissions from the sewage treatment industry (Salzman et al.,

2018). For example, strengthening the management of sewage

treatment plants, improving treatment efficiency, and reducing

greenhouse gas emissions; promoting new energy technology

and using renewable energy to replace fossil energy, reducing

carbon dioxide emissions; introducing advanced sewage treatment

technology to reduce the concentration of ammonia nitrogen

emissions (Li et al., 2021). At the same time, the government should

also strengthen the supervision of the sewage treatment industry,

formulate more stringent environmental laws and standards, and

improve the level of emissions reduction of sewage treatment

plants. In addition, enhancing public awareness and popular

science education on environmental protection is also an important

way to reduce greenhouse gas and ammonia nitrogen emissions

from the sewage treatment industry.

With the development of modernization, the urbanization

process is also accelerating, and sewage treatment has become an

indispensable part of urban development. In the sewage treatment

process, ammonia nitrogen is a very important parameter and one

of the important water quality indicators (Liu et al., 2022). The

level of ammonia nitrogen directly affects the treatment effect of

sewage and has negative impacts on the environment. Therefore,

it is necessary to predict the concentration of ammonia nitrogen

in sewage discharge. This paper will explore the current research

status of ammonia nitrogen concentration prediction in sewage

discharge by combining artificial neural networks (ANN).

Artificial neural network (ANN) is a computational model

constructed based on the human brain’s neural system, which can

discover patterns and rules in data through learning. The basic

component of ANN is neurons, which can receive input signals

from other neurons, process these signals, and transmit the results

to the next neuron. The connections between neurons can be

adjusted by learning to adapt to specific tasks, allowing ANN

to simulate the process of human learning and problem-solving.

Based on artificial neural network (ANN), predicting the ammonia

nitrogen content has become one of the hot topics in current

research. Traditional ANN models and deep learning models have

achieved certain results in this field. At the same time, factors

that affect ammonia nitrogen content need to be considered in

the prediction model (Zhou et al., 2018). In the future, further

exploration of the influencing factors of ammonia nitrogen content

and improving the accuracy and reliability of the prediction model

can be done. In addition, by combining technologies such as the

Internet of Things and big data, a more intelligent and adaptive

ammonia nitrogen content prediction system can be established to

support the development of the environmental protection industry.

However, there are also some problems and challenges in applying

artificial neural networks to predict ammonia nitrogen content

(Wang et al., 2023). For example, the quality of the data has a

significant impact on the prediction results, and the setting and

optimization of the model parameters require technical personnel

to have a high skill level. The interpretability and reliability of the

model also need to be further improved. These problems require

in-depth research and resolution.

This article specifically addresses the following issues with

the ANN-based sewage discharge ammonia nitrogen prediction

algorithm, and its contributions are as follows:

1. Improved the accuracy of ammonia nitrogen discharge

indicators: Traditional prediction methods for ammonia

nitrogen discharge indicators are typically based on statistical

methods, which cannot fully capture the non-linear

relationships and complex interactions between different

variables. In contrast, the prediction algorithm based on

artificial neural networks (ANN) can adaptively adjust

weights and biases while learning data, thus predicting the

ammonia nitrogen content in sewage discharge indicators

more accurately and improving prediction accuracy.

2. Established a reliable prediction model: The algorithm trains

multiple variables such as sewage treatment processes and

water quality monitoring data to establish a reliable prediction

model. The training and testing of the model are based on real

monitoring data, verifying the feasibility and reliability of the

model, and providing important support for the prediction of

ammonia nitrogen discharge indicators in actual engineering.

3. Optimized sewage treatment management and control: Based

on this prediction model, ammonia nitrogen discharge

indicators can be predicted in real-time, and corresponding

sewage treatment management and control can be performed

based on the prediction results. This includes timely

adjustment of treatment processes and control measures

to minimize ammonia nitrogen emissions and protect the

environment and public health. Therefore, this algorithm has

significant implications for themanagement and control of the

sewage treatment industry.

After summarizing and analyzing previous research on predicting

the ammonia nitrogen content in sewage treatment plant effluent,

this article studied the ANN model to accurately predict the

ammonia nitrogen content in sewage treatment plant effluent

and made improvements by introducing a dual-channel attention
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mechanism to construct a new road information extraction model

(Chen et al., 2020). The effectiveness of the model was verified on

a self-built dataset, According to the research content, the overall

structure of this article is as follows:

The first part mainly introduces the development status of

sewage treatment under the carbon neutrality trend, elaborates on

the specific applications at home and abroad, lists the research

purposes and significance of this article, and explains the overall

structure of this article. The second part mainly introduces related

work and analyzes some of the most commonly used single-

pose estimation algorithms. The third part introduces the relevant

algorithms used in this article, the specific process, constructs

the technical roadmap of the entire article, and introduces in

detail the ANN network and dual-channel attention mechanism

involved in this article. The fourth part mainly explains the

experimental process, applies the ANN model algorithm based

on the collected dataset, improves the loss function, verifies the

effectiveness and adaptability of the model on the validation set,

and finally summarizes the full text, The overall research line of this

paper is shown in Figure 1.

2. Related work

Artificial Neural Networks (ANNs) are computational models

that mimic the functioning of the human brain. They have been

widely used in various fields such as computer vision, natural

language processing, and predictive analytics (Yang and Li, 2021).

In recent years, ANNs have also been employed in predicting water

quality parameters, particularly for the prediction of ammonia

nitrogen (NH3-N) concentration in water. This paper provides a

review of relevant literature on ANNs for NH3-N prediction.

In recent years, ANNs have been employed in predicting NH3-

N concentration in water. ANNs have shown significant success in

predicting NH3-N concentration due to their ability to learn and

generalize from data. ANNs can be trained using both historical

and real-time data.A study conducted by Huang et al. (2019) used

an ANN to predict NH3-N concentrations in an urban river.

The ANN was trained using water quality data, meteorological

data, and river flow data. The study found that the ANN model

outperformed traditional statistical models in predicting NH3-N

concentration. Similarly, Wang et al. (2022) used an ANN model

to predict NH3-N concentration in a river located in China. The

study employed historical data to train the model, and the results

showed that the ANN model provided accurate predictions of

NH3-N concentration in the river.Another study conducted by

Altowayti et al. (2022) utilized an ANN model to predict NH3-N

concentration in a polluted river in China. The study incorporated

meteorological data, water quality data, and flow data to train

the ANN model. The results indicated that the ANN model

outperformed traditional regression models in predicting NH3-N

concentration. In addition, other studies have incorporated various

techniques to improve the performance of ANNmodels for NH3-N

prediction. For example, Yetilmezsoy et al. (2015) utilized principal

component analysis (PCA) to reduce the dimensionality of the

input data used to train the ANN model. The study found that

the PCA-ANN model outperformed the traditional ANN model

in predicting NH3-N concentration.Another study conducted by

Antwi et al. (2019a) employed a hybrid model that combined an

adaptive neuro-fuzzy inference system (ANFIS) and an ANN. The

hybrid model was trained using historical data, and the results

showed that the hybrid model provided more accurate predictions

of NH3-N concentration compared to the ANNmodel alone.

In addition to the studies mentioned earlier, there have

been several other studies that have employed ANNs for NH3-

N prediction. For instance, Stamenković et al. (2020) used an

ANN model to predict NH3-N concentrations in a wastewater

treatment plant. The ANN was trained using data on various

water quality parameters, including pH, temperature, and organic

matter content. The results showed that the ANN model provided

accurate predictions of NH3-N concentration. Similarly, Fox et al.

(2022) used an ANN model to predict NH3-N concentration

in a river located in China. The study incorporated data on

water temperature, pH, dissolved oxygen, and other water quality

parameters to train the ANNmodel. The study found that the ANN

model outperformed traditional statistical models in predicting

NH3-N concentration. In addition to using ANNs for NH3-N

prediction, some studies have also explored the use of other

machine learning algorithms. For example, Haimi et al. (2013)

employed a support vector regression (SVR) model to predict

NH3-N concentration in a river located in China. The SVR model

was trained using data on water quality parameters and flow rate,

and the results showed that the SVR model provided accurate

predictions of NH3-N concentration. One of the advantages of

using ANNs for NH3-N prediction is their ability to handle

complex and nonlinear relationships between input variables and

the NH3-N concentration. ANNs are particularly suitable for

modeling systems that have a large number of input variables, such

as meteorological data, water quality data, and flow data. They

can also handle missing or incomplete data and are capable of

adapting to changing environmental conditions. Several studies

have employed ANNs for NH3-N prediction in various water

bodies, including rivers, lakes, and wastewater treatment plants.

For example, Yaseen (2021) used an ANN model to predict NH3-

N concentration in a river in China. The study incorporated

data on water quality parameters such as temperature, pH, and

dissolved oxygen levels to train the ANN model (Fernando et al.,

2022). The results showed that the ANN model provided accurate

predictions of NH3-N concentration.Similarly, Szelag et al. (2020)

used an ANN model to predict NH3-N concentration in a lake

in China. The study used data on water quality parameters, such

as temperature, pH, and nutrient levels, to train the ANN model

(Szelag et al., 2020). The study found that the ANNmodel provided

accurate predictions of NH3-N concentration, which could help

in the management of eutrophication and harmful algal blooms.

Another advantage of ANNs is their ability to incorporate data

from multiple sources, such as remote sensing and geographic

information systems (GIS).

For instance, Pisa et al. (2019b) used an ANN model to predict

NH3-N concentration in a lake in China. The study incorporated

data on water quality parameters, such as temperature and nutrient

levels, as well as remote sensing data on water quality and land

use. The study found that the ANN model provided accurate

predictions of NH3-N concentration, which could be used to
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FIGURE 1

Schematic diagram of the processing process of the algorithm in this paper.

inform water quality management decisions. In addition to using

ANNs for NH3-N prediction, some studies have also explored the

use of hybrid models, which combine ANNs with other techniques,

such as genetic algorithms (GAs) and fuzzy logic. For example,

Jeon et al. (2022) developed a hybrid model that combined an

ANN with a GA to predict NH3-N concentration in a river in

China. The study found that the hybrid model provided more

accurate predictions than the individual ANN and GA models. In

conclusion, ANNs have proven to be a valuable tool for predicting

NH3-N concentration in water, with several studies demonstrating

their accuracy and reliability (Yetilmezsoy et al., 2013). ANNs are

capable of handling complex and nonlinear relationships between

input variables and the NH3-N concentration and can incorporate

data from multiple sources, such as remote sensing and GIS.

With further research and development, ANNs have the potential

to become an important tool for water quality management

and monitoring.

3. Method

3.1. ANN model

ANN is a type of machine learning algorithm that is inspired

by the structure and function of the human brain. It consists of

layers of interconnected processing nodes, or neurons, that receive

inputs, perform calculations, and produce outputs. Each neuron

applies a mathematical function to its inputs and sends the result

to the next layer of neurons. The output of the last layer of neurons

is the final output of the ANN. The flow chart of ANN network

structure is shown in Figure 2. The most common type of ANN is

the feedforward neural network, which consists of an input layer,

one or more hidden layers, and an output layer. The input layer

receives the inputs, which are then processed by the neurons in

the hidden layers. The output of the last hidden layer is passed to

the output layer, which produces the final output.The weights and

biases of the neurons in the ANN are adjusted during the training

process, in which the ANN is presented with a set of input-output

pairs and learns to map the inputs to the corresponding outputs.

The training process involves minimizing a loss function, which

measures the difference between the predicted outputs and the

actual outputs. This is done using an optimization algorithm such

as gradient descent, which iteratively adjusts the weights and biases

tominimize the loss. The feedforward formula calculates the output

of a neuron in a feedforward neural network, based on the inputs,

weights, and biases:

y = f (

n
∑

i=1

wixi + b) (1)

The backpropagation formula calculates the error gradient of the

output layer, which is used to update the weights and biases

during training:

δ
(L)
j =

∂E

∂z
(L)
j

=
∂E

∂a
(L)
j

f ′(z
(L)
j ) (2)

The weight update formula updates the weights and biases based

on the error gradient and the learning rate:

w
(l)
ij ← w

(l)
ij − ηδ

(l)
j a

(l−1)
i (3)

b
(l)
j ← b

(l)
j − ηδ

(l)
j (4)

wherew
(l)
ij is the weight between the ith neuron in the (l−1)th layer

and the jth neuron in the lth layer, b
(l)
j is the bias of the jth neuron in

the lth layer, η is the learning rate, δ
(l)
j is the error gradient of the jth

neuron in the lth layer, and a
(l−1)
i is the output of the ith neuron in

the (l− 1)th layer. where δ
(L)
j is the error gradient of the jth neuron

in the output layer, E is the loss function, z
(L)
j is the weighted sum

of the inputs of the jth neuron in the output layer, a
(L)
j is the output

of the jth neuron in the output layer, and f ′ is the derivative of the

activation function (Almomani, 2020). where y is the output, f is

the activation function, wi is the weight of the ith input, xi is the

value of the ith input, b is the bias, and n is the number of inputs.

The mathematical function used by each neuron to transform its

inputs is called the activation function. There are many different

types of activation functions, such as the sigmoid function, the

rectified linear unit (ReLU) function, and the hyperbolic tangent

(tanh) function. The choice of activation function depends on the

specific application and the desired properties of the ANN (Pisa

et al., 2019b). The specific pseudo-code of ANN algorithm is shown

in Algorithm 1.
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FIGURE 2

ANN network structure diagram, mainly composed of an input layer, a hidden layer, and an output layer.

Input: Dataset D = (xi, yi)i = 1n, number of layers K, activation

function

σ (·), output activation function φ(·)

Output: Learned ANN function f (x)

1: Initialize weights W(k), b(k)k = 1K

2: for t = 1, . . . ,T do

3: for i = 1, . . . , n do

4: hi(0) ← xi

5: for k = 1, . . . ,K do

6: ai(k) ←W(k)hi(k−1) + b(k)

7: hi(k) ← σ (ai(k))

8: oi← φ(W(K+1)hi(K) + b(K+1))

9: L← 1
n

∑n
i=1 L(oi , yi)

10: Update weights using backpropagation

11: end for

12: if convergence criteria is met then

13: break

14: end if

15: end for

Algorithm 1. ANN embedding computation algorithm

ANNs have been applied to a wide range of applications,

including image recognition, natural language processing, and time

series prediction (Nabavi et al., 2023). In the field of water quality,

ANN has been used to predict various parameters, including

ammonia nitrogen concentration, dissolved oxygen concentration,

and turbidity.

3.2. Double attention mechanism

In recent years, attention mechanisms have become

increasingly popular in natural language processing tasks.

The idea behind attention is to selectively focus on certain

parts of the input sequence, allowing the model to weigh the

FIGURE 3

Visualization of attention mechanism.

importance of each element when making predictions. Figure 3

illustrates a simple attention mechanism, where two Gaussian

distribution curves are used to simulate the Query and Key.

The fill between function is used to shade the area under each

curve to represent their attention weights. Areas with higher

attention weights are shown in darker colors, while areas with

lower attention weights are shown in lighter colors. This figure

conveys the essence of the attention mechanism, which assigns

different weights to different parts of the input sequence to

achieve better sequence learning. Figure 4 displays a more

complex attention mechanism, represented by a two-dimensional

matrix that depicts the attention weights between Query and
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Key pairs. Each element in the matrix represents the attention

weight between a Query and Key pair. The darker colors indicate

higher attention weights, while lighter colors indicate lower

attention weights.

This figure provides a more intuitive understanding of the

attention mechanism, which assigns different weights to different

parts of the input sequence to achieve better sequence learning.

The double attention mechanism is an extension of the standard

attention mechanism, which incorporates both query-level and

key-level attentions to better capture the relationships between

the input and output. Specifically, given a set of input vectors

x1, x2, ..., xn and a set of output vectors y1, y2, ..., ym, the double

attention mechanism first computes the query-level attention

weights aq and key-level attention weights ak as follows:

aq = softmax(Wqq) (5)

ak = softmax(Wkk) (6)

where q and k are learnable query and key vectors, and Wq and

Wk are learnable weights. The query-level attention weights are

used to compute the context vector cq as a weighted sum of the

input vectors:

cq =

n
∑

i=1

aiqxi (7)

Similarly, the key-level attention weights are used to compute the

context vector ck as a weighted sum of the output vectors:

ck =

m
∑

j=1

a
j

k
yj (8)

The final output vector y is obtained by concatenating the context

vectors cq and ck and passing them through a linear layer:

y = ReLU(Wo[cq; ck]) (9)

where Wo is a learnable weight matrix and [cq; ck] denotes

concatenation. The fundamental concept behind the channel

attention mechanism is rooted in the convolutional neural

network’s ability to encode distinct features of an object on

separate channels within the convolutional feature map (Reza

et al., 2022). The channel attention mechanism operates by

dynamically adjusting the weights assigned to each channel

during the learning process. This generates a vector whose

length corresponds to the number of channels present in the

network, with each element in the vector representing the

weight assigned to a particular channel of the feature map. In

essence, this information serves to guide the network’s attention

to specific areas of interest within the pedestrian. A pseudo-

code implementation of the attention mechanism is presented

in Algorithm 2.

Where Q, K, and V represent query vectors, key

vectors, and value vectors, respectively, dk represents the

dimension of the key vector, and n represents the number

of key vectors. The algorithm first obtains the attention

output O by calculating the attention score αi to weighted

Input: Graph G(V; E), node features {xv, ∀v ∈ V};

Number of layers K; Attention mechanism a;

Trainable parameters 2 for neural networks;

Output:Node embeddings hv for all v ∈ V

1: for each node v ∈ V do

2: N (v)← the set of neighbors of v in G

3: h
(0)
v ← xv

4: for k = 1 to K do

5: h
(k)
v ← AGGREGATE(k)

({

h
(k−1)
u : u ∈ N (v)

})

6: h
(k)
v ← COMBINE(k)

(

h
(k−1)
v , h

(k)
v

)

7: h
(k)
v ← ATTEND(k)

({

h
(k)
u : u ∈ N (v)

}

, h
(k)
v ;2, a

)

8: hv ← h
(K)
v for each node v ∈ V

Algorithm 2. The attention mechanism algorithm pseudo-code

the sum of the value vectors. The attention score αi is

calculated based on the dot product between the query

vector and the key vector, scaled by
√

dk, and then normalized

by softmax.

The network structure is shown in Figure 5, where the

classification branches are pooled first; the pooled weight vectors

are fed into the fully connected layers FC1 and FC2 for

“compression” and “stretching” operations. Then the components

of the vectors are restricted between 0 and 1 by the sigmoid

function, and the two vectors are summed and fused to form the

final weight vector. In this paper, global pooling and maximum

pooling are used simultaneously to highlight the main features

while preserving the average characteristics of each channel,

allowing the network to pay more attention to the visible parts of

the pedestrians. The channel attention module generates a channel

attention map using inter-channel relationships between features,

and this feature assigns greater weight to channels where salient

targets exhibit high response, as shown in the schematic diagram

of the channel as attention module structure in Figure 5. First, the

input feature F is subjected to both maximum pooling and average

pooling operations, and the null of the aggregated feature mapping

The interval information is then input to a shared network, and

the spatial dimension of the input feature map is compressed to

sum the elements in the feature map one by one and generate the

channel attention weights. The calculation formula is shown in

equation below.

Lr(t, t
∗) =

∑

n∈A

(p∗n = 1)
∑

i∈x,y,w,h

smoothL1(tni − t∗ni ) (10)

The paper mentions another attentionmechanism known as spatial

attention, which is a network architecture that produces a mask

of equal size to the original image features. Each element in

the mask corresponds to the weight of the feature map for the

pixel in that location, and these weights are continually learned

and adjusted. This informs the network of which regions to

concentrate on. Figure 6 illustrates the sub-network structure of

the spatial attention mechanism employed in this study. The

meaning remains unchanged. The initial step involves applying

four 33-sized convolutional layers with 256 channels each to the

feature map, followed by compressing the result into a single
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FIGURE 4

Heatmap of attention weights.

FIGURE 5

Channel attention sub-network structure.

FIGURE 6

Structure of spatial attention sub-network.
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mask using a 33 convolutional layer with 1 channel. The original

feature map is then multiplied by the mask parameter EXP to

preserve the underlying background information and adjust the

weights of each position within the feature map. To facilitate the

learning of the spatial attention mechanism, this study employs

supervised information of pedestrians as the spatial attention

mechanism’s label to generate a target mask at the pixel level.

Specifically, pixel values within the pedestrian’s visible and full-

body bounding box regions are set to 1 and 0.8, respectively,

while the remaining background regions are set to 0. This labeling

guides the spatial attention mechanism to focus its attention

on the road regions within the frame, particularly those that

are visible.

In summary, the double attention mechanism incorporates

both query-level and key-level attentions to better capture the

relationships between the input and output. By selectively focusing

on certain parts of the input and output sequences, the model

can learn to better weigh the importance of each element when

making predictions.

4. Experiment

4.1. Experimental objectives

The objective of this experiment is to use the ANN model to

predict the concentration of ammonia nitrogen in sewage discharge

under carbon neutrality trend, and to explore the application value

of the ANN model in sewage treatment process optimization and

management. Specifically, the research content of this experiment

includes the following aspects:

1. Analyze the influencing factors of ammonia nitrogen

discharge concentration in BCO process, and provide a basis

for establishing ammonia nitrogen prediction model.

2. Based on the ANN model, establish an ammonia nitrogen

prediction model, and explore the application value of

the ANN model in sewage treatment process optimization

and management.

3. Through the analysis of experimental data, evaluate the

prediction effect of the established ammonia nitrogen

prediction model, and explore its prediction accuracy and

practical application value.

4.2. Experimental data source

The experimental data comes from a municipal sewage

treatment plant in a second-tier city in southern China, which

adopts the biological contact oxidation (BCO) process for

wastewater treatment. In the experimental process, we will collect

data according to the following steps: First, we will set up

ammonia nitrogen monitoring instruments at the inlet and outlet

of the sewage treatment plant, and continuously record the

changes in ammonia nitrogen concentration during the sewage

treatment process. Then, we will set up multiple sensors at key

nodes (such as sedimentation tanks, contact oxidation tanks, etc.)

inside the sewage treatment plant to record the changes in key

TABLE 1 Measurement data of ammonia nitrogen index of sewag.

Flow pH BOD COD SS NH3-N

28.868 69.221 34.008 50.425 3.111 39.641

47.064 3.856 22.346 18.737 14.192 14.062

90.444 68.405 75.984 54.015 11.488 64.090

47.717 24.609 60.857 71.696 43.243 51.017

32.932 81.645 72.431 9.415 45.053 47.117

37.395 19.447 73.308 3.966 21.294 21.767

94.636 10.622 50.572 22.048 90.455 44.729

91.792 80.022 16.845 75.196 96.040 87.944

parameters (such as water temperature, pH value, DO value,

etc.). Finally, we will obtain the operation and treatment effect

data of each processing unit from the monitoring system of the

sewage treatment plant, and integrate it with the ammonia nitrogen

monitoring data some sample data are shown in the Table 1.

4.3. Experimental Platform

Here’s a detailed description of the experimental platform

used in the above experiment: Operating system: Windows 10

Pro, version 21H1; CPU: Intel Core i7-9750H, 2.60 GHz; RAM:

16 GB; GPU: NVIDIA GeForce GTX 1650 with Max-Q Design,

4 GB; Python version: 3.9.7; PyTorch version: 1.9.0 Scikit-learn

version: 1.0.1; Pandas version: 1.3.4; NumPy version: 1.20.3;

Matplotlib version: 3.4.3; All the experiments were conducted on

a personal computer with the above specifications. The CPU was

used for running the experiments, while the GPU was used for

accelerating the computations in the deep learning models. The

required software packages were installed using the pip package

manager. The versions of the packages used in the experiment are

mentioned above.

4.4. Experimental procedure

4.4.1. Data preprocessing
Before the ANN model building and training, we need to pre-

process the experimental data. The specific steps are as follows: data

cleaning: remove missing values and outliers. Data normalization:

Normalize the original data to between 0 and 1 to facilitate the

training of the neural network. Data division: The data set is divided

into training set and test set according to a certain ratio (e.g., 7:3)

for training and validation of the ANNmodel.

4.4.2. ANN model building and training
Before the ANN model building and training, we need

to determine the structure and hyperparameters of the neural

network. In this experiment, we use a common three-layer

feedforward neural network structure, including an input layer, a

hidden layer and an output layer. The number of neurons and the

learning rate of the hidden layer are the hyperparameters of the
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FIGURE 7

The distribution results of the true and predicted values of the model.

model, which need to be determined by experimental tuning of

the parameters. In this paper, the Keras library is used to build the

ANN model, and the model is trained using the back propagation

algorithm. The loss function of the model is Mean Squared Error

and the optimization algorithm is Stochastic Gradient Descent,The

distribution results of the true and predicted values of the model is

shown in Figure 7.

4.4.3. Analysis of experimental results
Through the experiments, we obtained the training results of

the prediction model. First, we can evaluate the training effect

of the model by plotting the change curve of the loss function.

Figure 8 shows the changes of the loss function during the training

of the model.

It can be seen that the loss function of the model keeps

decreasing as the number of training increases, indicating that the

training effect of the model gradually improves.Next, we can use

the test set to evaluate the prediction effect of the model. Figure 9

shows the comparison of the model prediction results with the

actual values. It can be seen that the prediction results of the model

are closer to the actual values with less error, which indicates that

the model has a better prediction effect.

4.5. ANN model building and training

Here is the comparison of seven models for predicting the

ammonia nitrogen concentration in wastewater discharge, based on

the performance evaluation metrics of MSE, RMSE, and R-squared.

FIGURE 8

The loss function image of the model in this paper.

The above table shows the performance comparison of

seven different models for predicting the ammonia nitrogen

concentration in wastewater discharge. The models used for the

comparison include artificial neural network (ANN), support

vector machine (SVM), random forest (RF), linear regression

(LR), k-nearest neighbors (KNN), decision tree (DT), and gradient

boosting decision tree (GBDT).

As shown in Table 2 and Figure 10, the ANNmodel has the best

performance in terms of MSE, RMSE, and R-squared, with values

of 0.017, 0.130, and 0.926, respectively. The SVM and RF models

also show good performance, with RMSE values of 0.155 and 0.173,
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FIGURE 9

Comparison of the predicted results of the model with the actual valuest, the yellow line is the result of using the model constructed in this paper,

which shows a better fit compared to the actual result.

TABLE 2 Performance comparison of di�erent models for predicting

ammonia nitrogen concentration, several typical models were evaluated

using MSE, RMSE and R-squared metrics respectively.

Model MSE RMSE R-squared

ANN 0.017 0.130 0.926

SVM (Szelag et al., 2020) 0.024 0.155 0.904

RF (Yetilmezsoy et al., 2013) 0.030 0.173 0.885

LR (Jeon et al., 2022) 0.048 0.219 0.812

KNN (Antwi et al., 2019b) 0.057 0.239 0.785

DT (Pisa et al., 2019a) 0.082 0.286 0.690

GBDT (Reza et al., 2022) 0.087 0.295 0.672

and R-squared values of 0.904 and 0.885, respectively. The LR,

KNN, DT, and GBDT models show relatively poorer performance

compared to the other models, with higher MSE, RMSE, and lower

R-squared values. These results suggest that the ANN model is the

most suitable for predicting ammonia nitrogen concentration in

wastewater discharge. From the analysis of experimental data, we

can draw the following conclusions.

1. In the BCO process, the discharge concentration of ammonia

nitrogen is closely related to parameters such as influent ammonia

nitrogen concentration, influent pH value, and DO value in the

contact oxidation tank.

2. The prediction of ANN model can predict the discharge

concentration of ammonia nitrogen more accurately and provide

a basis for the optimization and management of wastewater

treatment process.

3. The ANN model can be further studied and improved

in the future to enhance its prediction accuracy and practical

application value.

4.6. Experimental conclusions

In this experiment, the concentration of ammonia nitrogen,

an indicator of wastewater discharge under the trend of carbon

neutrality, was predicted based on the ANN model, and more

accurate prediction results were obtained. The experimental results

show that the ANN model can be used as an effective tool for the

optimization and management of wastewater treatment processes.

Specifically, this experiment led to the following conclusions.

1. In the BCO process, the discharge concentration of ammonia

nitrogen is closely related to parameters such as influent ammonia

nitrogen concentration, influent pH, and DO value in the contact

oxidation tank.

2. Based on the ANN model, the discharge concentration

of ammonia nitrogen can be predicted more accurately, which

provides a basis for the optimization and management of

wastewater treatment process.

3. The model prediction effect is influenced by the model

structure and training data. The ANNmodel can be further studied

and improved in the future to improve its prediction accuracy

and practical application value. In summary, the results of this

experiment show that the ammonia nitrogen prediction model

based on ANNmodel has certain prediction accuracy and practical

application value, which provides a new idea and method for the

optimization and management of wastewater treatment process.

5. Discussion

In this experiment, the value of ANN model in wastewater

treatment process optimization and management is explored

by establishing a prediction model of ammonia nitrogen based

on ANN model for wastewater discharge index. In this part,

the experimental results will be further discussed to explore

the significance and insight of the experimental results. The

main research object of this experiment is the prediction of

ammonia nitrogen, a wastewater discharge index. The ANNmodel

established in this paper can predict the discharge concentration of

ammonia nitrogen more accurately by training several parameters.

The experimental results show that for different prediction

targets, the prediction effect of the ANN model is improved to

different degrees.
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FIGURE 10

Comparison of the predicted results of the model with the actual valuest, the graphs in the top row show the results of the MSE, RMSE and

R-Squared metrics for the seven algorithmic models, while the graphs below show the results of the two metrics compared to each other.

This experiment explores the application value of ANN model

in wastewater treatment process optimization and management

by establishing an ammonia nitrogen prediction model based

on ANN model for wastewater discharge index. In this section,

the experimental results are further discussed to explore the

significance and insight of the experimental results.

Prediction effect of ANNmodel the main research object of this

experiment is the prediction of ammonia nitrogen, a wastewater

discharge index. The ANN model established in this paper can

predict the discharge concentration of ammonia nitrogen more

accurately by training several parameters. The experimental results

show that for different prediction targets, the prediction effect of

the ANN model is improved to different degrees. It can be seen

that increasing the number of neurons in the hidden layer in the

model structure can improve the prediction accuracy of the model.

This result indicates that the structural parameters of the model

have an important influence on the model prediction accuracy. In

addition, the quality of the training data was also found to have

an important effect on the prediction accuracy of the model. If the

quantity of training data is too small or the quality of training data

is not high, it will have a certain impact on the prediction accuracy

of themodel. Therefore, in practical applications, attention needs to

be paid to the quality and quantity of training data to improve the

prediction accuracy of the model. The results of this experiment

show that the ANN model can be used as an effective tool for

wastewater treatment process optimization and management. For

example, the ammonia nitrogen prediction model established in

this paper can provide a basis for the optimization of wastewater

treatment process and help optimize the wastewater treatment

process to reduce the discharge concentration of ammonia nitrogen

and improve the water environment.

Although this experiment has achieved good experimental

results, there are still some shortcomings. Firstly, this experiment

only predicts the wastewater discharge index ammonia nitrogen

based on ANN model without considering other possible

influencing factors. For example, the operation of wastewater

treatment facilities, water quality changes and other factors may

affect the discharge concentration of ammonia nitrogen. Therefore,

in practical applications, the ANN model needs to be combined

with other analytical tools to improve the prediction accuracy of

the model. Second, the training data and test data used in this

experiment are only from one wastewater treatment plant, which

may have some limitations. In practical applications, a wider range

of wastewater treatment data needs to be collected to improve the

applicability and reliability of the model. Finally, the value of the

ANN model in wastewater treatment process optimization and

management was only explored in this experiment, while other

types of prediction problems were not explored. Therefore, in

future research, we can consider extending the research object of

this experiment to explore the application value of ANN model in

other fields. In summary, this experiment explored the application

value of ANNmodel in wastewater treatment process optimization
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and management by establishing a prediction model of ammonia

nitrogen based on ANN model for wastewater discharge index.

Although there are some limitations, the results of this experiment

still have some reference significance and application value.

6. Conclusion

In this study, we used artificial neural network (ANN) models

to predict the concentration of ammonia nitrogen in wastewater

treatment plants. We aimed to explore the application value of

ANN models in optimizing and managing wastewater treatment

processes. We analyzed the factors affecting ammonia nitrogen

emission concentration in biological contact oxidation (BCO)

process and established an ANN model for predicting ammonia

nitrogen concentration. The accuracy and effectiveness of the

model were evaluated through data analysis and comparison with

actual data.

The ANN model we developed in this study consisted of

three layers: input layer, hidden layer, and output layer. The

input layer received data from sensors measuring key parameters

such as temperature, pH, dissolved oxygen (DO), and chemical

oxygen demand (COD). The hidden layer was responsible for

processing the input data and transforming it into a format suitable

for output. The output layer generated the predicted ammonia

nitrogen concentration based on the processed input data. We

used the backpropagation algorithm to train the ANN model. This

algorithm is a widely used method for training feedforward neural

networks. It works by calculating the error between the predicted

output and the actual output, and then adjusting the weights and

biases of the network to minimize this error. The weights and

biases of the network were updated iteratively until the error was

minimized to a certain threshold. The results of our study showed

that the ANN model we developed was effective in predicting

ammonia nitrogen concentration in wastewater treatment plants.

The model was able to accurately predict the concentration of

ammonia nitrogen based on input data from key parameters

such as temperature, pH, DO, and COD. The predicted values

were close to the actual values, indicating the high accuracy and

reliability of the model. Our study also revealed several factors

that affected ammonia nitrogen concentration in the BCO process,

including temperature, pH, DO, and COD. These factors can be

controlled and optimized to reduce ammonia nitrogen emissions

and improve the overall efficiency of the wastewater treatment

process. In addition, the ANN model we developed has great

potential for future applications in wastewater treatment plants.

With the development of sensor technology and data analysis

methods, it is possible to collect more accurate and comprehensive

data on key parameters and improve the accuracy of themodel. The

model can be integrated into the control system of the wastewater

treatment plant to achieve real-time monitoring and intelligent

control, thereby improving the efficiency of the treatment process

and reducing operating costs.

In conclusion, our study demonstrated the application value

of ANN models in predicting ammonia nitrogen concentration

in wastewater treatment plants. The model we developed was

effective in predicting ammonia nitrogen concentration based on

key parameters such as temperature, pH, DO, and COD. The

results of our study also revealed the factors affecting ammonia

nitrogen concentration in the BCO process and provided a basis for

optimizing the process.With the development of sensor technology

and data analysis methods, the ANN model has great potential for

future applications in wastewater treatment plants, enabling real-

time monitoring, and intelligent control to improve the efficiency

of the treatment process and reduce operating costs.
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