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Plantations are formed entirely by artificial planting which are different from natural 
forests. The rapid expansion of plantation forestry has brought about a series of 
ecological and environmental problems. Timely and accurate information on the 
distribution of plantation resources and continuous monitoring of the dynamic 
changes in plantations are of great significance. However, plantations have similar 
spectral and texture characteristics with natural forests. In addition, cloud and 
rain greatly affected the image quality of large area mapping. Here, we  tested 
the possibility of applying Continuous Change Detection and Classification to 
distinguish plantations from natural forests and described the spatiotemporal 
dynamic changes of plantations. We adopted the Continuous Change Detection 
and Classification algorithm and used all available Landsat images from 
2000 to 2020 to map annual plantation forest distribution in Guangxi Zhuang 
Autonomous Region, China and analyzed their spatial and temporal dynamic 
changes. The overall accuracy of the plantation extraction is 88.77%. Plantations 
in Guangxi increased significantly in the past 20 years, from 2.37 × 106 ha to 
5.11 × 106 ha. Guangxi is expanding new plantation land every year, with the largest 
expansion area in 2009 of about 2.58 × 105 ha. Over the past 20 years, plantations 
in Guangxi have clearly shown a tendency to expand from the southeast to the 
northwest, transformed from natural forests and farmland. 30% of plantations 
have experienced at least one logging-and-replanting rotation event. Logging 
rotation events more intensively occur in areas with dense plantation forests. Our 
study proves that using fitting coefficients from Continuous Change Detection 
and Classification algorithm is effective to extract plantations and mitigating 
the adverse effects of clouds and rain on optical images in a large scale, which 
provides a fast and effective method for long-time and large-area plantation 
identification and spatiotemporal distribution information extraction, and strong 
data support and decision reference for plantation investigation, monitoring and 
management.
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1. Introduction

Disturbance of terrestrial ecosystems can significantly affect and 
alter ecosystem function and structure and thus have a major impact 
on the spatial and temporal patterns of the terrestrial carbon cycle 
(Lin et al., 2022). As a major part of terrestrial ecosystems, forest 
ecosystems play an important role in the global carbon cycle, energy 
balance, and material exchange (Paul et al., 2002; Bonan, 2008; Pan 
et al., 2011). The main factors causing forest disturbance are climate 
change, natural disasters, and human activities, of which human 
activities are the most significant (Foley et al., 2005; Song et al., 2018; 
Trisasongko and Paull, 2020).

China is a country with large forest resources and a large 
population, and the number of forest resources owned per capita is at 
a low level in the world. During vigorous industrial development, the 
destruction of forests due to the long-term over-harvesting of natural 
forests has led to increasing ecological degradation (Zhang et al., 2000; 
Deng et  al., 2014). Deforestation for timber, farming or urban 
expansion has exacerbated environmental problems such as land 
desertification, soil erosion, and a sharp decline in biodiversity (Foley 
et al., 2005). In addition, forest resources, especially those available for 
logging, were in severe shortage. To restore the ecological 
environment, China has been developing ecological projects since the 
1970s, conserving and restoring natural forests and expanding forest 
plantations. Plantations are a completely different forest type from 
natural forests. Plantations are formed entirely by artificial planting, 
while natural forests grow naturally or regenerate through human 
promotion. Plantations are characterized by short rotation periods, 
good materials, and high survival rates. Guangxi Zhuang Autonomous 
Region of China, a province with rich forest resources, has undergone 
a large amount of deforestation and land reclamation for economic 
development, resulting in a sharp decline in forest resources. With the 
launch of the “Coastal Shelterbelt” Program in 1991 and the “Grain-
for-Green” program in 1999 (Deng et  al., 2014), Guangxi began 
planting large areas of forest plantations and has created a large 
amount of forestry output through rotational logging and replanting.

Plantations are currently the main raw material for timber supply 
in China, and the repetitive deforestation and afforestation resulting 
from their rotation is an important influence on changes in regional 
carbon sinks. Although the rapid expansion of plantation forestry can 
alleviate the demand for timber for social development, reduce the 
increasing level of carbon dioxide in the atmosphere (Bonan, 2008), 
and mitigate climate change to a certain extent, the rapid development 
in a crude manner has also brought about a series of ecological and 
environmental problems, which are disruptive to the balance of the 
original ecosystem. Furthermore, compared to the natural forests, the 
non-native and exotic species in plantation forestry projects can 
change the physical, chemical, and biological properties of the soil, 
which may also reduce soil quality and forest productivity. Thus, the 
problems caused by massive plantations should not be  ignored 
(Jackson et al., 2005; Brockerhoff et al., 2008). Likewise, timely and 
accurate information on the distribution of plantation resources and 
continuous monitoring of the dynamic changes in plantation forests 
are of great significance to forestry management, economic estimation 
of plantation forests, ecological environmental protection, and carbon 
cycle research.

With the launch of satellites carrying various sensors and the 
rapid development of remote sensing technology, remote sensing has 
become an important means of monitoring plantation forests. 

Plantation forests and natural forests both belong to forest land cover 
type, so they are highly similar in many characteristics, as a result, how 
to distinguish between them becomes a problem worthy of research. 
In terms of distinguishing natural forests from plantation forests, most 
studies are based on the classification of land use and land cover 
(LULC). As for the classifier selection, the traditional classifiers of 
remote sensing are involved in many researches, such as Decision Tree 
(Han et al., 2018), Support Vector Machine (Razak et al., 2018). Recent 
studies have widely used random forest as the classifier (Senf et al., 
2013; Wu et al., 2022), because random forest classifier can achieve 
higher accuracy, handle high-dimensional features and avoid 
overfitting. The difference mainly lies in the fact that researchers chose 
different classification features. Since the spectral features of plantation 
forests and natural forests are highly similar, it is more difficult to 
distinguish between them using only spectral features. Some studies 
have used phenological features (Senf et al., 2013). The advantages of 
using such features are that some plantation species, such as rubber 
trees, have a deciduous period, which has obvious phenological 
features that can be used to separate them from natural forests (Senf 
et  al., 2013). However, methods using phenological features have 
limitations, because evergreen plantations, for example eucalyptus, 
that do not have a deciduous period may not be easily separated from 
natural forests using the phenological characteristics (Wu et al., 2022). 
Other studies use multiple features (Torbick et al., 2016; Xu et al., 
2017; Fagan et al., 2018; Sun et al., 2022; Wu et al., 2022), including 
spectral, textural, topographic, and ancillary data. The regular planting 
of plantations results in different texture characteristics than natural 
forests, and some plantations will be planted in areas with relatively 
gentle slopes. These combined features can separate plantations from 
natural forests through multi-feature methods (Torbick et al., 2016). 
However, when multiple features are used, parameter selection is 
required to choose the optimal parameters (Wu et al., 2022).

In terms of plantation change detection and spatiotemporal 
distribution information extraction, there are two main methods. The 
first is to directly compare the differences after LULC classification, 
and the second is based on long time series change detection. For the 
first method, forest change is monitored based on LULC classification 
by comparing the classification results of images in different time 
periods, usually through the land conversion matrix (Mahmoud et al., 
2011; Liu et al., 2016; Twisa and Buchroithner, 2019; Chen, H et al., 
2021; Sun et  al., 2021; Wang et  al., 2021; Chen et  al., 2023). The 
advantage of this method is that it can reduce the effects of light 
radiation differences, sensor differences, and seasonal phenology 
differences, and can clearly represent the land cover type conversion 
(Twisa and Buchroithner, 2019). The disadvantage is that there are 
different degrees of error in the classification results for different time 
phases, and in some cases the error can be even greater than the 
degree of change (Azizan et  al., 2021). Moreover, if only optical 
satellites are used, it also leads to the problem of susceptibility to cloud 
influence and difficulty in obtaining high-quality coverage of the 
complete study area in certain cloudy and rainy areas, especially in 
large regions (Azizan et al., 2021). In contrast, methods based on long 
time series change detection can directly detect vegetation changes, 
and the problem of images being obscured by clouds can be solved by 
processing multi-year time series data. Breakpoint detection 
algorithms such as Landsat-based detection of Trends in Disturbance 
and Recovery (LandTrendr) and Continuous Change Detection and 
Classification (CCDC) can significantly reduce the effects of clouds, 
cloud shadows, and snow, realizing to monitor the dynamics of 
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different land cover types. Grogan et al. (2015) used the LandTrendr 
algorithm to study forest disturbance caused by rubber forest 
expansion. The LandTrendr algorithm, proposed by Kennedy, was 
designed specifically for Landsat time series imagery to detect trends 
in forest change (Kennedy et al., 2012). Specifically, LandTrendr uses 
characteristic points in a time series consisting of annual synthetic 
values to segment long-term trends in vegetation into segments and 
simulate the process of vegetation change based on a segmented linear 
model. In this method, several complex control parameters are 
necessary and need to be  constantly changed depending on both 
signal-to-noise ratios and spectral characteristics of the different 
sensors (Kennedy et al., 2012). In addition, the CCDC algorithm, 
based on all available Landsat images, first initializes the model 
according to 15 cloud-free observations in each pixel’s time series and 
then detects changes by comparing the discrepancies between the 
model predictions and observations (Zhu and Woodcock, 2014). The 
algorithm can detect a wide range of land cover changes, both gradual 
(e.g., changes due to vegetation growth and succession, pests, 
abnormal weather, etc.) and abrupt changes, which also can be applied 
to improve land cover classification accuracy. Besides, as the CCDC 
algorithm makes use of all available Landsat images, its change 
detection results are more comprehensive than that of using only 
annual composite images and are particularly effective in gradual 
change detection (Vogelmann et al., 2016). The cost of data storage has 
fallen dramatically in recent years and we have witnessed a rapid 
increase in computing power, which has laid the foundation for time 
series analysis using Landsat data (Zhu, 2017), especially with the 
advent of the Google Earth Engine (GEE) cloud platform, which 
provides an efficient solution for the spatial and temporal dynamics 
analysis of plantations using medium resolution long time series 
Landsat imagery in large scale.

The objectives of our study are to: (1) explore the possibility of 
using the CCDC algorithm to discriminate plantations from natural 
forests through plantations’ temporal features of rapid growth and 
harvest rotation in a large area of cloudy and rainy conditions, (2) 
describe the spatiotemporal dynamic changes of plantations from 
different perspectives, including area changes, expansion years, and 
expansion times. Based on the above background, we adopted the 
CCDC algorithm and used all available Landsat images from 2000–
2020 to map annual plantation forest distribution in Guangxi Zhuang 
Autonomous Region and analyze their spatial and temporal dynamic 
changes. The values and contributions of this study are: (1) using the 
fitting parameters of CCDC as classification features to extract 
information on the rapid growth of plantation forests and distinguish 
them from natural forests, which provides a fast and effective method 
for long time and large area plantation forest identification and spatio-
temporal distribution information extraction and (2) revealing the 
spatio-temporal distribution information and change characteristics 
of plantation forests in Guangxi within 20 years, which can provide 
data support and decision reference for plantation forest resource 
investigation, management and rotation time adjustment.

2. Materials and methods

2.1. Study area

Guangxi Zhuang Autonomous Region (104°28′-112°04′ E, 20°54′-
26°23’ N, Figure  1) is a provincial-level administrative region in 

China, located in South China, with a land area of 2.38 × 105 km2. The 
terrain is high in the northwest and low in the southeast, surrounded 
by mountains and plateaus, known as “Guangxi Basin.” It belongs to 
subtropical monsoon climate and tropical monsoon climate, with 
warm climate, abundant precipitation and sufficient light. Guangxi has 
superior hydrothermal conditions and long tree growth season, which 
is suitable for the growth of various trees. Guangxi are rich in forestry 
land resources, and the natural conditions for the development of 
plantations are superior.

In the mid-1980s, Guangxi’s forest coverage rate was only 22%. 
Over the past 30 years, Guangxi has been reforesting an average area of 
about 2,666 km2 annually. Since 2012, Guangxi has continuously planted 
2,000 km2 of trees every year. The forest stock volume increased from 
6.40 × 108 m3 in 2012 to 9.78 × 108 m3 in 2021, with an average annual 
growth rate of 12.5%. The annual output of timber increased from 
2.1 × 107 m3 in 2012 to 3.9 × 107 m3 in 2021, with an average annual 
growth of 7.1%, which made Guangxi the largest timber producing area 
in China. The total output value of forestry industry increased from 
219.4 billion yuan in 2012 to 848.7 billion yuan in 2021, with an average 
annual growth rate of 16.2%. In 2018, the forest area of Guangxi is 
1.48 × 105 km2, with the forest coverage rate reaching 62.55%, nearly 
twice the national average forest coverage rate. Over 30 years, the forest 
area has increased by 96,000 km2 (mostly plantations), with the increase 
equal to nearly twice the original stock. Eucalyptus (evergreen forests) 
is the main type of plantations in Guangxi. Eucalyptus timber 
production accounts for about 70% of China. Given the abundant 
precipitation, the rapid increase in the evergreen plantations and the 
existence of a large timber industry (plantation forest logging rotation), 
Guangxi is very suitable to test method using plantations’ temporal 
features of rapid growth and harvest rotation to distinguish plantations 
and natural forests in rainy areas.

2.2. Data source and preprocessing

Table 1 shows the data used in this study. The imagery data used 
in this study were acquired from Landsat series of satellites including 
Landsat 5, 7, and 8 images with a total number of 15,522 from 2000-
01-01 to 2020-12-31. All of the images are surface reflectance 
products, which contain four visible and near-infrared bands, and two 
short-wave infrared bands, and were processed to orthorectified 
surface reflectance.

The two sets of samples used in this study were derived from 
GlobeLand30 and Global Forest Cover, consisting of a land cover 
sample set and a plantations/natural forests sample set. The land cover 
sample points were sampled from the GlobeLand30 of 2000 and 2010 
using the stratified random sampling method. GlobeLand30, a 30 m 
spatial resolution global land cover dataset (Chen, J et  al., 2021), 
includes a total of 10 primary types, namely: cultivated land, forest, 
grassland, shrubland, wetland, water bodies, tundra, artificial surfaces, 
bareland, and permanent snow and ice. The dominant land cover in 
Guangxi is forest, followed by cultivated land. Grassland and 
shrubland account for a small amount in Guangxi, and water bodies 
and artificial surfaces are even less. Wetlands, tundra, bareland, and 
permanent snow and ice are almost non-existent in Guangxi. 
Moreover, the main object of this study are plantations which are one 
type of forests, therefore in the land cover classification section, the 
samples from GlobeLand30 were simply divided into five categories: 
farmland, forest, grassland, water, and artificial surface.
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Samples of plantations and natural forests were obtained using the 
Global Forest Change product (Hansen Global Forest Change v1.9 
2000–2021, GFC) developed by M.C. Hansen’s team at the University 
of Maryland (Hansen et  al., 2013). The method for generating 
pre-selected sample points using the GFC is shown in the top right of 
Figure 2. First, the “treecover” band of the GFC product was used to 
produce a mask of the forest coverage. Second, the forest coverage area 
was divided into two complementary class layers by intersecting the 
“loss” band and the “gain” band. The two class layers are “Both 
Loss&Gain” (logging rotation will result in both “loss” and “gain” in 
plantation areas) and “Not Both.” Third, a stratified random sampling 
method was applied to generate two types of pre-selected sample 
points. Finally, the sample points were filtered and validated based on 
high-resolution satellite imagery from the Google Earth Pro platform. 

Combined with priori knowledge from ground surveys, plantation 
sample points were identified on the basis of three characteristics: (1) 
signs of logging rotation (“plantation – bare soil – plantation” time 
serial characteristics), (2) regular plantation characteristics, and (3) 
signs of artificial work.

2.3. Methods

The research framework (Figure 2) was divided into four steps: (1) 
spectral indices calculation: de-clouding and index calculation of Landsat 
surface reflectance data, (2) CCDC breakpoint detection and segment 
fitting: temporal segmentation and segment fitting at the pixel level using 
the CCDC algorithm, (3) classification of segments: classifying land cover 

FIGURE 1

Location of the study area.

TABLE 1 Data used in this study.

Data Description Data source

Landsat 5,7,8
The images are surface reflectance products acquired from 2000-01-01 to 2020-12-31, with a spatial 

resolution of 30 m. Red, Green, Blue, NIR, SWIR1 and SWIR2 bands were used in this study

GEE data catalog (https://

developers.google.com/earth-

engine/datasets)

Sample points of plantations/

natural forests

The sample points were visually interpreted based on HD images from Google Earth Pro. The time tag 

of these samples are year 2016
Google Earth Pro software

Globeland30 The 30-m land cover maps of 2000 and 2010 were used for land cover sample point collection

Official website of GlobeLand30 

(http://www.globallandcover.

com/defaults.html?src=/)

Global Forest Cover Change This product was the reference for initial filtering of the plantations/natural forests samples

GEE data catalog (https://

developers.google.com/earth-

engine/datasets)
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types to generate annual forest extent, and then masking with forest extent 
to annually classify plantations and natural forests, and (4) validation of 
the accuracy of the plantations’ extraction results.

2.3.1. Spectral indices calculation
The Landsat images were pre-processed on the GEE platform, 

which is the world’s most advanced cloud computing platform 
dedicated to processing geospatial observations such as satellite 
imagery. Firstly, clouds, cloud shadows, water vapor and snow in the 
Landsat images were removed by using pixel_qa, radsat_qa, and sr_
aerosol quality bands. Normalized Difference Vegetation Index 
(NDVI), Normalized Burn Ratio (NBR), and Normalized Difference 
Fraction Index (NDFI) were then calculated and integrated into the 
Landsat surface reflectance datasets.

NDVI (Eq.  1) is the most commonly used vegetation index, 
reflecting the background effects of the plant canopy, such as soil, wet 
ground, snow, dead leaves and roughness. The value of NDVI raises 
with the increasing of vegetation coverage. NDVI was widely 
employed to characterize vegetation phenology for mapping 
plantation (Wu et al., 2022). NBR enhances larger areas of fire, and is 
calculated similarly to NDVI (Eq. 2). Duan et al. (2022) proved that 
NBR outperformed NDVI, EVI, NDMI in short-rotation plantation 
identification. NDFI can be used to express the degree of degradation 
of forest vegetation and the health of the forest. The four components 
of NDFI were calculated through Spectral Mixing Analysis (SMA 
model). The SMA model assumes that the image spectra are formed 
by a linear combination of four pure spectra (i.e., endmembers) 
(Souza et al., 2005). The Landsat surface reflectance of each pixel can 

be decomposed into fractions of GV, NPV, Soil and Shade through 
SMA model, and then NDFI can be  calculated by these four 
endmembers (see in Eqs 3, 4). NDFI enhances the degradation signal 
caused by selective logging and is sensitive to forest disturbance 
detection using CCDC (Zhang et al., 2022). As we were trying to 
discriminate plantations from natural forests through plantations’ 
temporal features of rapid growth and harvest rotation, NDFI was 
selected as one of the features in this study.

 
ND I NIR RED

NIR RED
V =

−
+  

(1)

 
NBR NIR SWIR

NIR SWIR
=

−
+  

(2)

 
GV GV

Shadeshade =
−100  

(3)

 
NDFI

GV NPV Soil
GV NPV Soil

shade

shade
=

− +( )
+ +( )  

(4)

where NIR  is the surface reflectance of the near-infrared red 
band, RED is the surface reflectance of the red band, SWIR  is the 
surface reflectance of short wave infrared red band, GV  is the green 
vegetation endmember, Shade is the shadow endmember, GVshade  is 

FIGURE 2

Workflow of plantation extraction.
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an intermediate variable for the calculation of NDFI  in equation 4, 
NPV  is the non-photosynthetic vegetation endmember and Soil  is 
the soil endmember (Erith et al., 2020).

2.3.2. Breakpoint detection and segment fitting
CCDC algorithm was adopted as the main algorithm for plantation 

extraction. The CCDC algorithm, a change detection algorithm 
proposed by Zhu and Woodcock (2014) in 2014, uses a harmonic model 
with variable coefficients to fit and predict each band or spectral index 
of Landsat time series at a pixel level for a given date (Figure 3). The 
harmonic model has three modes (four, six, and eight parameters, see 
Eq. 5). When the model fitting prediction differs significantly (greater 
than three times the RMSE) from the actual observation, anomalous 
slopes occur, or the first or last observation differs by three standard 
deviations from the model prediction during model initialization, the 
point is identified as a breakpoint (Zhang et al., 2022). The CCDC 
algorithm divides the time series of the image into a finite number of 
segments based on breakpoints. Each segment contains three types of 
coefficients: the harmonic model fitting coefficients, the spectral phase 
coefficients, and the breakpoint indication coefficients (Table  2). 
Different land cover types correspond to different CCDC coefficients, 
based on which plantations were extracted. The CCDC algorithm has 
been integrated into the API on the GEE platform and the corresponding 
parameters can be  set to obtain the information for each segment. 
Table 3 explains the input parameters and the specific values for the 
CCDC algorithm applied in this study.

 

( ) , , ,

, , ,

, ,

, cos

sin cos sin

cos sin

∩  = + × + ×  
 

     + × + × + ×     
     

   + × + ×   
   

0 0 1

1 2 2

3 3

2

2 4 4

6 6

πρ

π π π

π π

i i ifitted

i i i

i i

i x a b x a x
T

b x a x b x
T T T

a x b x
T T  

(5)

where x  is the Julian date, i  is the ith Landsat band or 
vegetation index, T  is the number of days per year (i.e., 365), a i0,  
is the coefficient for overall value for the ith Landsat band or 
vegetation index, b i0,  is the coefficient for inter-annual change for 
the ith Landsat band or vegetation index, a i1, , b i1, , a i2, , b i2, , a i3,  
and b i3,  are coefficients for intra-annual change for the ith Landsat 
band or vegetation index and ( ),∩ρ fittedi x  is the predicted value 
for the ith Landsat band or vegetation index at Julian date x. The 
equation 5 has three modes (four, six, and eight parameters). In the 
four-parameter mode, a i2, , b i2, , a i3,  and b i3,  are set to zero. In the 
six-parameter mode, a i3,  and b i3,  are set to zero. In the eight-
parameter mode, all of the eight parameters are used. We chose the 
eight-parameter mode in this study.

2.3.3. Classification and validation
The random forest classifier was adopted for land cover 

classification and then plantation extraction. The features in Table 4 
were used as features for the classification. As CCDC algorithm 
generated a fitted model for every band or index, there were 154 
features used for classification (the number of band/spectral indices 
multiplies the number of CCDC coefficients and adds the number of 
auxiliary bands).

Land cover classification was first performed to generate 
annual forest extends, with sample points from five categories 
(farmland, forest, grassland, water and artificial surface) in 2000 as 
the training set and those in 2010 as the validation set. The forest 
extent mask was then used to extract forest coverage. Plantations 
and natural forests were classified in the forest extent. The 
plantations/natural forests samples were divided by the proportion 
of 7:3 into training and validation sets. As the timestamps for all 
the plantation and natural forest samples were 2016, the result 
accuracy of the plantation extraction in 2016 were validated by 
confusion matrix.

FIGURE 3

Diagram of CCDC temporal segmentation.
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3. Results

3.1. Validation of land cover classification 
and plantation extraction

To test the applicability of CCDC for plantation forest extraction, 
we evaluated the accuracy of the classification results. Table 5 is the 
confusion matrix of land cover classification results in Guangxi in 
2010. As shown in Table 5, the overall accuracy is 87.83%, among 
which the user accuracy of the forest type is 90.54%, and the producer 
accuracy of the forest type is 94.77%. The accurate forest extraction 
can provide an effective forest range mask for plantation extraction. 
Table 6 shows the accuracy evaluation of plantation extraction results 
in 2016. The overall accuracy of the plantation extraction results is 
88.77%, with the user accuracy of 92.21% and the producer accuracy 
of 83.85%, both of which are relatively high. The validation results 
indicate that the plantation extraction method adopted in this study 
has high accuracy and can provide strong support for the subsequent 
analysis of the spatiotemporal distribution of plantation forests.

3.2. Distribution pattern of plantations

In order to investigate the changes in the distribution pattern and 
area of plantation forests, we annually mapped land cover from 2000 to 
2020 and then calculated the area of each type, five maps of which were 
shown in this paper. In addition, the changes from 2000 to 2020 were 
also mapped. Figures  4A–E are land cover classification maps of 
Guangxi in 2000, 2005, 2010, 2015, and 2020, and Figure 4F shows the 
land cover conversion from 2000 to 2020. Figure  4 shows that the 
dominant land cover types in Guangxi are natural forest, farmland and 
plantations. Figure 5A is the annual area ratio graph of 6 land cover 
types. Figures 5B,C show the area changes of all the land cover types. As 
shown in Figure 5, from 2000 to 2020, the area of natural forests was the 
largest, followed by the area of farmland, both of which decreased year 
by year. On the contrary, the area of plantations was increasing in the 
general trend, except for the last year which decreased. The area changes 
of grassland and water land cover types are not obvious, while the area 
of artificial surface has increased a little.

As shown in Figures 4A–E, the forest (natural and plantation 
forests) coverage rate of Guangxi is high and increasing year by year, 
with the forest distributed around the border of Guangxi and gradually 
extending to the central part of Guangxi. The farmland is radially 
distributed from the central part of Guangxi to the surrounding area. 
Over the past 20 years, the area of farmland has gradually reduced 
from 8.29 × 106 ha in 2000 to 6.90 × 106 ha in 2020 (shown in 

Figure  5C). Accordingly, Figure  4F shows that a large number of 
farmland and natural forests were transformed into plantations, which 
is closely related to the “Grain-for-Green” program and logging 
rotation in Guangxi.

In 2000, plantation forests were mainly distributed in central, 
southern and eastern parts of Guangxi, a small number of which were 
in the north, with a total area of 2.37 × 106 ha. In 2005, the density of 
plantation forests in the central and southern Guangxi increased a bit 
on the original basis, with the area increasing to 2.87 × 106 ha. In 2010 
and 2015, plantations distributed in the central, southern, and eastern 
parts significantly increased and extended to the north, with the area 
of 3.86 × 106 ha and 4.70 × 106 ha, respectively. By 2020, the area of 
plantations has reached 5.11 × 106 ha, which is 2.16 times that of 
20 years ago.

3.3. Analysis of spatiotemporal changes in 
plantations

To describe plantations in a finer perspective, we mapped the year 
and frequency of plantation expansion. Figure 6 shows the annual 
distribution map of the initial expansion years of plantations from 
2000 to 2020. The values in the map indicate the year when the land 
cover of the pixel was first converted into plantations. Among them, 
the value of 2000 represents the surviving plantations in Guangxi as 
of 2000. Over the past 20 years, plantations in Guangxi have clearly 
shown a tendency to expand from the southeast to the northwest. As 
of 2000, plantations were mainly distributed in the central and 
southeastern parts of Guangxi, which were in a larger density and 
distributed in patches. By contrast, the degree of fragmentation of 
plantations in the north and northwest was higher, because the 
northwest and northern regions are characterized by karst terrain, 
rocky desertification, and fragile ecological environment, which is not 
conducive to the growth of plantations. After 2000, the plantations in 
the central, southern, and eastern regions continued to increase on the 
basis of the original plantations, while the plantation forests in the 
northern and western regions grew in a scattered and slow manner.

Figure 7 shows the chart map of the expansion area of Guangxi’s 
plantations from 2000 to 2020, representing the total area of 
plantations which first expanded in that year. In the past 20 years, the 
year with the least expansion area of plantations was 2002, with about 
4.99 × 104 ha, and the year with the most expansion area was 2009, 
with about 2.58 × 105 ha. The area of the first expansion into plantation 
forests shows a fluctuating state, but all are positive, indicating that in 
addition to the original plantation forests, new plantation forest land 
in Guangxi expanded every year.

TABLE 2 Segment coefficients of CCDC.

Coefficient type Coefficient term Description

Harmonic coefficients Sin, Cos, Sin2, Cos2, Sin3, Cos3, Slope, Intercept Parameters of the harmonic model, indicating the coefficients of the 1st, 2nd, and 3rd 

sine and cosine terms, the slope and the intercept, respectively

Spectral phase coefficients AMPLITUDE, PHASE, AMPLITUDE2, PHASE2, 

AMPLITUDE3, PHASE3, RMSE

Seasonal indicators extracted from the harmonic model, indicating the 1st, 2nd, and 

3rd amplitudes, phase, and the root mean square error of the fit, respectively

Beakpoint indication 

coefficients

tStart, tEnd, tBreak, Magnitude Time indicators of the segments, indicating the start time of one segment, the end time 

of one segment, the breakpoint detection time, the magnitude of the change from one 

segment to the next segment
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TABLE 5 The confusion matrix of land cover classification in 2010.

Land cover 
type

Farmland Forest Grassland Water Artificial 
surface

Producer 
accuracy

Farmland 459 40 12 9 16 85.63%

Forest 23 689 12 2 1 94.77%

Grassland 24 30 51 0 3 47.22%

Water 3 1 1 72 0 93.51%

Artificial surface 7 1 0 1 71 88.75%

User accuracy 88.95% 90.54% 67.11% 85.71% 78.02%

Overall accuracy = 87.83% Kappa coefficient = 0.8084

TABLE 6 The confusion matrix of plantation extraction in 2016.

Land cover 
type

Natural 
forest

Plantation Producer 
accuracy

Natural forest 352 25 93.37%

Plantation 57 296 83.85%

User accuracy 86.06% 92.21%

Overall accuracy = 88.77% Kappa coefficient = 0.7744

Figure 8 shows the number of times the land cover type changed 
to plantation forests from 2000 to 2020. If this value is greater than 1, 
it corresponds to the number of logging-and-replantation events in 
the past 20 years. For instance, value 2 indicates that the pixel was once 
harvested as plantations and replanted subsequently, and value 3 
indicates such events happened twice. Logging-and-replantation most 
frequently occurred in central, southern and eastern Guangxi, which 
is consistent with the areas where plantation forests are distributed in 
patches shown in Figure 4, indicating that logging rotation events 
more intensively occur in areas with dense plantation forests. Figure 9 
shows the percentage of plantation expansion times. The expansion 

frequency value of 1 indicates that an area of 3.93 × 106 hm2 of land has 
been converted to plantations once in 20 years, accounting for 70% of 
all plantation areas. The value 2 indicates that an area of 1.25 × 106 hm2 
of land has been converted to plantations 2 times, showing one 
logging-and-replantation event. As shown in Figure 9, 30% of the land 
that has been converted to plantation forests was transformed into 
plantations at least 2 times, which means that 30% (1.71 × 106 hm2) of 
plantation forests have been harvested and replanted at least once over 
20 years.

4. Discussion

In this paper, based on the CCDC algorithm, we used all available 
Landsat data from 2000 to 2020 to distinguish between plantations 
and natural forests in Guangxi and describe the expansion years and 
replanting times of plantations. Applying the CCDC algorithm to 
plantation forest extraction has the following advantages: (1) The 
characteristics to discriminate plantation forests from natural forests 
are derived from the parameters of the CCDC fitting curve, which are 
different from the spectral, textural or phenological features used in 

TABLE 3 Input parameters of CCDC.

Parameters Value Description

breakpointBands NDFI, NBR, NDVI, Soil, 

GREEN, SWIR2

The name or index of the bands to use for change detection. If unspecified, all bands are 

used

tmaskBands GREEN, SWIR2 The name or index of the bands to use for iterative TMask cloud detection

minObservations 6 The number of observations required to flag a change.

chiSquareProbability 0.99 The chi-square probability threshold for change detection in the range of [0, 1]

minNumOfYearsScaler 1.33 Factors of minimum number of years to apply new fitting

dateFormat 1 The time representation to use during fitting: 0 = jDays, 1 = fractional years, 2 = unix 

time in milliseconds

lambda 20/10,000 Lambda for LASSO regression fitting

maxIterations 25,000 Maximum number of runs for LASSO regression convergence. If set to 0, regular OLS 

is used instead of LASSO

TABLE 4 Classification features.

Bands/spectral indices CCDC coefficients Auxiliary bands

BLUE, GREEN, RED, NIR, SWIR1, SWIR2, NBR, 

NDFI, NDVI, Soil

RMSE, Intercept, Slope, Sin, Cos, Sin2, Cos2, Sin3, Cos3, 

Amplitude, Phase, Amplitude1, Phase1, Amplitude2, Phase2

Elevation, Aspect, DEM, Rainfall
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most previous studies. Plantations and natural forests both belong to 
the forest land cover type, therefore, little difference in spectral or 
texture features can be  detected when using medium-resolution 

optical satellite data, resulting in hard work to difference the two types. 
Hence, in previous studies of small areas, high spatial resolution 
images or optical images fused with LiDAR were frequently used 

FIGURE 4

The land cover classification maps and the land cover change map in Guangxi from 2000 to 2020. (A) The land cover classification map in 2000. 
(B) The land cover classification map in 2005. (C) The land cover classification map in 2010. (D) The land cover classification map in 2015. (E) The land 
cover classification map in 2020. (F) The land cover change map from 2000 to 2020.
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FIGURE 5

The area change graphs of 6 land cover types in Guangxi from 2000 to 2020. (A) The area ratio of 6 land cover types from 2000 to 2020. (B) The area 
change graph of grassland, water and artificial surface. (C) The area change graph of farmland, natural forest and plantation.

FIGURE 6

Plantation expansion map in Guangxi from 2000 to 2020.
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(Fagan et al., 2018; Wu et al., 2022). In large-area studies using only 
medium-resolution satellites, phenological features are commonly 
used to extract plantation forests with significant deciduous periods 

such as rubber forests (Li et al., 2015; Xiao et al., 2019; Yang et al., 
2021; Xiong et al., 2022). In contrast, the plantation forests in Guangxi 
are mainly evergreen forests such as fir, horsetail pine, and eucalyptus, 

FIGURE 7

Area of plantation expansion in Guangxi from 2000 to 2020.

FIGURE 8

Plantation expansion frequency map in Guangxi from 2000 to 2020.
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FIGURE 9

Percentage of plantation expansion frequency in Guangxi from 2000 
to 2020.

thus they do not have obvious phenological characteristics enough to 
distinguish them from natural forests. Fortunately, plantation forests 
are characterized by rapid inter-annual variation in growth due to 
artificial planting, which is very different from the more slow-growing 
natural forests. The CCDC algorithm can precisely describe the 
change trend of pixels (Zhu and Woodcock, 2014), which can be used 
to more accurately identify plantations, (2) The CCDC algorithm uses 
all available images with less cloud at the pixel scale, which can greatly 
improve the utilization of partially cloudy images and reduce the 
influence of clouds and rain on the classification, thus resulting in 
more conducive recognition of plantation forests in large areas. Cases 
are often mentioned in previous studies sorely using optical satellites 
that cloud and rain contaminated pixels lead to less available data and 
limitations in classification accuracy and study regions (Wu et al., 
2022), and (3) The entire experiment ran on the GEE platform, 
including preprocessing, segmentation, classification and 
spatiotemporal distribution description. GEE platform is the world’s 
most advanced cloud computing platform dedicated to processing 
geospatial observations such as satellite imagery. The GEE cloud 
database integrates nearly 40 years of historical archived data from the 
Landsat series of satellites, providing individual users with strong 
computing power and cloud storage, as well as a fast and easy 
JavaScript language API interface for data processing, algorithm 
implementation, and result analysis (Dong et al., 2016; Gorelick et al., 
2017). The area of Guangxi is 2.38 × 105 km2, and a total of 15,522 
Landsat images were used. In this study, GEE platform’s massive cloud 
storage and fast calculation speed provided much support to process 
such a large volume of data.

To further improve the classification accuracy and provide a 
finer description of the dynamic change of plantations, 
improvements can be made in the following directions: (1) In this 
study, plantation and natural forest samples from 2016 were used for 
classification training and accuracy validation of plantation 
extraction, while the study period in this paper is up to 20 years, and 
using samples from one single year may affect the classification 
accuracy due to inadequate samples. Therefore, samples of plantation 
forests and natural forests in different years should be  added to 

improve the completeness of the samples in future research work 
and (2) We discussed the inter-annual variation of plantation forests 
in this paper. Actually, the fitted model of CCDC algorithm can 
describe the intra-annual variation, and thus the time of plantation 
expansion can be further accurate to months. Therefore, the changes 
of plantation forests on a regular basis of every 6 months or every 
month can be explored.

5. Conclusion

In this study, the CCDC algorithm was used to extract plantations 
in Guangxi and explore their spatial and temporal dynamic changes 
from 2000 to 2020. The following conclusions are obtained:

1. The overall accuracy of the plantation extraction is 88.77%, with 
the user accuracy of 92.21% and the producer accuracy of 83.85%, 
which proves that CCDC fitting coefficients are effective to 
discriminate plantations from natural forests.

2. Plantations in Guangxi increased significantly in the past 
20 years. The area of plantations in Guangxi has increased from 
2.37 × 106 ha in 2000 to 5.11 × 106 ha in 2020, 2.16 times that of 
20 years ago.

3. Guangxi is expanding new plantation land every year. The year 
with the most expansion of plantations was 2009, about 2.58 × 105 ha. 
Plantation harvest rotation events occurred more frequently in 
densely distributed areas. Over 20 years, 30% of plantations have 
experienced at least one logging-and-replanting rotation event.
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