
Frontiers in Ecology and Evolution

OPEN ACCESS

EDITED BY

Pavel Kindlmann,
Charles University, Czechia

REVIEWED BY

Sourav Kumar Sasmal,
Indian Institute of Technology Roorkee,
India
Jan Alfred Freund,
University of Oldenburg, Germany

*CORRESPONDENCE

Thomas J. Löffler

lothomas@ethz.ch;

thomas.loeffler@wsl.ch

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 07 April 2023
ACCEPTED 27 September 2023

PUBLISHED 16 October 2023

CITATION

Löffler TJ and Lischke H (2023) Changing
relative intrinsic growth rates of species
alter the stability of species communities.
Front. Ecol. Evol. 11:1202022.
doi: 10.3389/fevo.2023.1202022

COPYRIGHT

© 2023 Löffler and Lischke. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 16 October 2023

DOI 10.3389/fevo.2023.1202022
Changing relative intrinsic
growth rates of species alter the
stability of species communities
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1Geological Institute, Department of Earth Sciences, Swiss Federal Institute of Technology ETH,
Zürich, Switzerland, 2Dynamic Macroecology, Land Change Science, Swiss Federal Institute for Forest,
Snow and Landscape Research WSL, Birmensdorf, Switzerland
Introduction: It is perplexing when species-rich ecosystems change abruptly

and, for example, dominant or economically interesting species populations

collapse. Although various aspects of such ecosystem regime shift at tipping

points have been studied, little attention has been paid to the possible

dependence of community stability on the intrinsic growth rates of their

species. Intrinsic growth rates of species can vary, e.g., due to evolution,

environmental changes or fluctuations, disturbances, or human influences

such as exploitation of certain species.

Methods:We analyse theoretically and computationally the stability behaviour of

the n-species Lotka–Volterra competition model.

Results and discussion: Depending on the competitive strengths of the species,

changes in the relative intrinsic growth rates of competing species have a strong

effect on community stability.

KEYWORDS

Lotka–Volterra competition model, relative intrinsic growth rate, community stability,
stability change, feasibility
1 Introduction

A change in stability of ecological communities can lead to regime shifts or collapses

(Beisner et al., 2003; Scheffer and Carpenter, 2003; Sahade et al., 2015; Heymans and

Tomczak, 2016; Kareiva and Carranza, 2018). Thus, in the current debate on the potential

impacts of environmental changes on natural habitats, such as, e.g., climate change,

exploitation of certain species (Bland et al., 2018; Gamelon et al., 2019), or the introduction

of neobiota into a habitat (Case, 1995; Mieth and Bork, 2010), it is of vital interest to study

their influences on community stability. One way how environmental changes influence

communities is via intrinsic growth rates of species. These can be altered, e.g., by increased

temperatures (Hansen et al., 2019; Bauman et al., 2022), more frequent extreme climatic

events (Lloret et al., 2012) such as droughts, increased sedimentation (Sahade et al., 2015),

through phenotypic or evolutionary changes (Dakos et al., 2019), or direct support,
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removal, or addition of species’ individuals (Selaković et al., 2022)

or populations (Stinson et al., 2006; Campbell et al., 2022). To

understand community change, Lotka–Volterra (LV)-type models

are often used, which, like theoretical ecological models in general,

are based on a few features of the ecological system under study that

are considered essential (Jorgensen and Fath, 2011). These models

are applied for thought experiments to better understand the

ecological system and evaluate consequences of their settings. A

common approach is to analyze the effects of species characteristics

of these LV models on the stability of equilibria that reflect the

community composition in terms of species identities and

abundances. These characteristics, e.g., the intrinsic growth rates,

are assumed to depend on the environment. Many studies of LV

models focused on the influence of interaction parameters (May,

1972; Allesina and Tang, 2012; Kessler and Shnerb, 2015; Lischke

and Löffler, 2017) and carrying capacity (Liautaud et al., 2019) on

community stability. However, the influence of intrinsic growth

rates on stability has been investigated in only a few studies. The LV

model formalisms used differ in how the intrinsic growth rates

determine the dynamics. In the r-formalism (Saavedra et al., 2017;

Tabi et al., 2020), equilibria depend on the intrinsic growth rates. In

this formalism, it was shown that the stability of the special case of

feasible and diagonally and thus globally stable equilibria depends

on the intrinsic growth rates (Grilli et al., 2017; Song and Saavedra,

2018). In the Modern Competition Theory (MCT) formalism

(Chesson, 2000; Song et al., 2020), it has been mathematically

shown that different intrinsic growth rates can change the

stability of a community (Strobeck, 1973). However, it is unclear

which communities change their equilibrium stability with which

changes in intrinsic growth rates. To address this question, we use

theoretical and computational analyses to systematically examine

how changes in positive intrinsic growth rates affect the general

local stability of communities. In addition, we investigate how these

effects depend on species number and interaction parameter values.

We focus on competition, which is important for plant

communities (Fort, 2020), microorganisms (Gause, 1932), or

marine faunal communities in kelp holdfasts (Allesina and

Levine, 2011), for example.
2 Methods

2.1 Theoretical reasoning

2.1.1 Model formulation
The Lotka–Volterra competition (LVC)model (Gause, 1932) in the

MCT formalism _xi = xiri
�
1 − o

j=1,…,n

dijxj
K i

�
,   i = 1,…, n,   ri,  K i,  

dij ∈ R+,   xi ∈ R is a classical nonlinear theoretical model that is

often used to study community ecological research questions. It

describes the changing state xi of a population characteristic, such as

abundance. Ecological processes are abstracted by three parameters, the

intrinsic growth rates ri, competition strengths dij, and carrying

capacities Ki. For our study, it is important to separate ri from the

other parameters. We transformed the LVC model so that besides ri
only one parameter remains. Normalizing the competition strengths
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and carrying capacities with the intra-specific competition dii by dij = dij
/dii andKi = Ki/dii (which are the equilibria of the species if they do not

interact), then substituting zi = xi/Ki, (the proportion of abundance to

equilibrium abundance of species if they do not interact) and eij = Kj/Ki

= Kj dii/Ki djj (the ratio of the equilibria of two species if they do not

interact), and writing sij = dij eij, the LVC model becomes

_z i = z iri
�
1 − o

j=1,…,n
sijz j

�
,   i = 1,…, n,   sij,   ri ∈ R+,   z i ∈ R,   sii = 1.

The parameter sij =
1
Ki
1
Kj

dij
djj

summarizes the limitation of species i

relative to species j and the effect of species j on species i relative to

the effect of species j on itself (Adler et al., 2018).

2.1.2 Equilibria
A solution z of the LVC model has 2n combinations of

surviving (zi ≠ 0) and extinct (zi = 0) species and therefore the

model has 2n equilibria (Goh, 1978), some of which are feasible

(i.e., community dynamics with non-negative abundances) and

stable (Fried et al., 2017; Lischke and Löffler, 2017). In ecological

processes, only feasible equilibria z*i ∈ R+ are of interest.

Assuming an equilibrium z* has n0 = |N0| extinct and n+ = |N+|

surviving species, where N0 and N+ contain the indices of extinct

and surviving species, respectively (Lischke and Löffler, 2017;

Serván et al., 2018), the equilibria of the LVC model are z*i = 0,

i ∈ N0 (extinct) andoj∈N+ (sijz*j ) = 1,   i ∈ N+ or short Sz* = 1n+ =

�
1,…, 1|fflffl{zfflffl}
n+   times

�T
, S = (sij)i,j∈N+ (surviving). Therefore, these equilibria

and their feasibility

z* = S−11n+ ≥ 0 (1)

are independent of the intrinsic growth rates ri.

2.1.3 Eigenvalues of the Jacobian
To determine the stability of equilibria, the eigenvalues of the

Jacobian matrix J of the LVC model are needed. The eigenvalues are

the roots of the characteristic polynomial of J and the sign of their

real parts determines the stability of the LVC model. The intrinsic

growth rates can change this sign for n ≥ 3 (Strobeck, 1973; Marcus,

1990). J has the elements ∂ _zi
∂ zj

=f ri(1 − siizi − o
j=1,…,n

sijzj),  i = j

−risijzi,   i ≠ j

.

With J* = Jjz=z* the Jacobian at an equilibrium z* and using a

similarity transformation (Lischke and Löffler, 2017), J* becomes a

block triangular matrix J =
� J++ J+0

0 J00

�
. J++ describes the influence

of the n+ = |N+| surviving (z*i > 0, i ∈ N+) and J00 denotes the

influence of the n0 = |N0| extinct species (z*i = 0, i ∈ N0) on the

stability, where N+ andN0 are the index sets of surviving and extinct

species, respectively (Lischke and Löffler, 2017; Serván et al., 2018).

The determinant of J is the product of the determinants of J++ and
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J00 and consequently the eigenvalues of J and also of J* are the

eigenvalues of J++ and J00. J00 is an n0 × n0 diagonal matrix with

elements ri(1 −oj∈N+ sijz*j ),   i ∈ N0, which are the eigenvalues. J++

= (gij), i, j ∈ N+ is an n+ × n+ matrix with elements gij =

−sijriz*i ,   i, j ∈ N+. The eigenvalues lj, j ∈ N+ of J++ must be

calculated numerically to determine (in)stability by looking at the

sign of the real parts.

2.1.4 Stability depending on intrinsic growth rate
The equilibrium z* is (Lyapunov) stable if the real part Re(ln) of

each eigenvalue ln, 1 ≤ n ≤ r of the Jacobian matrix J of the LVC

model at z*, i.e., J* = Jjz=z* is negative (Logofet, 2005). The

eigenvalues of J* are those of J00, which are

J00 = ri(1 −oj∈N+ (sijz*j )),   i ∈ N0 (2)

for extinct and the eigenvalues of J++ = (gij) = ( − sijriz*i ),   i,   j

∈ N+ for surviving species (cf. Section 2.1.3). For the extinct species,

the intrinsic growth rates ri ∈ R+ cannot change the sign of the

eigenvalues of Eq. 2, i.e., they do not affect the stability of the

equilibria. Thus, it is sufficient to consider the matrix J++ of

survivors. For convenience in the following, we write n and J

instead of n+ and J++ and omit N+. By normalizing the intrinsic

growth rates by ri = ri/rc, rc =o1≤i≤nri (i.e.,o1≤i≤nri = 1 and ri ∈
[0, 1]), the matrix J becomes

J = ( − sijriz*i ) = rc( − sijriz*i ) = −rc�J , 1 ≤ i, j ≤ n (3)

Because the constant factor rc ∈ R+ has no influence on the sign

of the real part of the eigenvalues of J, only the relative intrinsic

growth rates ri influence the stability of the equilibria. The values of

the relative intrinsic growth rates are in the (n − 1)-unit simplex

Dn−1 = fri ∈ ½0, 1�njo1≤i≤nri = 1g (r-space, Figure 1).
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2.2 Numerical examinations

We studied the feasibility and stability by calculations in the s-

and r-space (Figure 1). We used a numerical analysis framework

(Figure 1, cf. Section 2.2.1) to investigate the feasibility (cf. Section

2.2.2) and the effects of changes in the intrinsic growth rate on the

stability of the feasible matrices of the s-space (cf. Sections 2.2.1–

2.2.5). In addition, the results were analyzed using different statistical

measures in different reference regions of the s-space (cf. Sections

2.2.6–2.2.11) and against the number of species (cf. Section 2.2.9).

2.2.1 Randomly generated S matrices
The values smin and smax, determining the range of competition

strengths in a community, were uniformly sampled (i.e., randomly

sampled from a uniform distribution) in the s-space (Figure 1) within

specified regions. The results of the analyses were visualized in the

(smin, smax)-plane. For every point s = (smin, smax), the elements sij of

the matrix S were uniformly sampled between smin and smax, with one

sij = smin and one skl = smax for off-diagonal positions in the matrix.

The intra-specific coefficients on the diagonal were set to sii = 1. Every

point s = (smin, smax) defines infinitely many matrices S and the

generation of S matrices stopped with the first feasible matrix found,

i.e., one which defines a feasible solution z* of the LVC model, or

when reaching a predefined maximum number ~zmax of trials to avoid

endless loops (cf. Section 2.2.2).
2.2.2 Probability of feasibility
Since feasibility of the S matrices is a prerequisite for the

investigations of stability change, we examined how likely it is to

find a feasible matrix in the s-space (cf. Figure 2 and S1). Testing the

feasibility of uniformly sampled matrices S of a point s = (smin, smax) is

a Bernoulli experiment, i.e., the number of trials of finding the first

feasible S follows a geometric distribution. Thus, if the probability of
FIGURE 1

Overview over computational analysis of stability changes by the relative intrinsic growth rates r, demonstrated for the example n = 3. The analysis
was repeated for different numbers n of species. For uniformly sampled points s in the (smin, smax)-space (short s-space), matrices S with smin ≤ sij ≤
smax were uniformly sampled. A point s stands for an infinite number of communities, each of which is characterized by its competition matrix S. The
gray tones of the matrices and the tree sizes exemplify competition strengths. The sampling was repeated until a matrix S was feasible, i.e., all
species had positive abundances at the equilibrium, or the maximal number of trials was reached. This matrix S was combined with m different
relative intrinsic growth rate vectors r uniformly sampled from the unit simplex Dn−1 = fri ∈ ½0, 1�njo1≤i≤nri = 1g (r-space) (red and blue points on the

gray triangle in the unit cube). The stability of the Lotka–Volterra competition model with matrix S and each sampled relative intrinsic growth rate
vector r was determined by calculating the eigenvalues of its Jacobian matrix (blue points in the unit simplex are stable and red ones are unstable).
Finally, three stability measures were calculated from the stability behavior in the unit simplex for the matrices S of points s = (smin, smax).
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finding a feasible matrix of a point s = (smin, smax) is pf,s, then the mean

number of trials required is zs = 1=pf ,s (Ibe, 2013). Per point s, the

sampling rate ~pf ,s = ~zs=~ztotal,s for finding a feasible matrix is an

estimator for pf,s. Thereby, ~ztotal,s is the number of sampled S

matrices and ~zs is the found number of feasible ones. To ensure

that the estimator ~pf ,s satisfies a certain accuracy, ~ztotal,s was iteratively
increased until ~pf ,s converged, i.e., the last two estimations ~pf ,s,i and
~pf ,s,i+1 differed by less than the absolute eabs and relative erel
thresholds, i.e., j~pf ,s,i+1 − ~pf ,s,ij ≤ eabs = 10−3 and j~pf ,s,i+1 − ~pf ,s,ij=
~pf ,s,i+1 ≤ erel = 10−2. With this probability estimator value ~pf ,s,i+1,

the minimum number of trials required to find the first feasible

matrix S is ~zmin,s = 1=~pf ,s,i+1, i.e., ~zmin,s = ~ztotal,s,i+1=~zs,i+1 (if 0 < ~zs,i+1).
The number ~zmax = max(~zmin,s) was used as the upper limit in

further simulations to find a feasible S matrix (cf. Section 2.2.1)

with the predefined accuracy. This setup was limited by

computational power to n = 17 for the chosen 30,000 s points in

the chosen region.

2.2.3 Changeable stability
At each point s = (smin, smax),m = 1,000 relative intrinsic growth

rates vectors r ∈ Dn−1 were uniformly sampled from the r-space and
Frontiers in Ecology and Evolution 04
the eigenvalues of the LVC model consisting of the matrix S and

each r vector were calculated to determine (in)stability by

determining numerically the eigenvalues of the Jacobian J (Eq. 3).

Different stabilities for different r vectors mark then a stability

change with r. Points s = (smin, smax) that change their stability with r

will be referred to as changeable stability points below.

2.2.4 Triangle Tn of changeable stability
Changeable stability points occurred only in a triangular region

Tn of the s-space, for each number n of species (cf. green lines in

Figures 3, 4; Figures S2–S4). Outside Tn, the examined points were

either always unstable or always stable. These triangles Tn are

determined by the points (1, 1), (0, smax,u,n), and (0, smax,l,n),

where smax,u,n (smax,l,n) is the maximum (minimum) intersection

point on the smax-axis (i.e., intercept) of all lines through (1,1) and

each s-point (smin,i,n, smax,i,n) with changeable stability. Describing

such a line as linear equation by smax=b smin+a and inserting the

point (1,1) results a=1-b, thus smax = b smin+1-b and therefore b =
smax−1
smin−1

. For a given line through a point (smin,i,n, smax,i,n), it is bi =
smax,i,n−1
smin,i,n−1

and ai = 1 − bi =
smin,i,n−smax,i,n

smin,i,n−1
. The intercept is at smin = 0 and
FIGURE 3

Example for n = 9 of stability probability pst,s over 1,000 different relative intrinsic growth rate vectors rk (0 means always unstable and 1 always
stable) of feasible LVC model at points s = (smin, smax). Center: The found points with changeable stability are in the triangle T9, which is delimited by
the green lines through the point s = (1, 1) and through the points with the maximum and minimum slope (larger red and blue dot). The values smax,u,n

and smax,l,n are the intercepts of the green lines at the smin = 0 axis. The search range (yellow delimited triangle) was chosen heuristically slightly larger
than the triangle T8 to ensure that points with changeable stability were not overlooked. Left: purely unstable; right: purely stable s points. In T9, the
region with the changeable stability overlaps with the regions of purely unstable points above and purely stable points below. For all simulated n, cf.
Figures S2–S4.
FIGURE 2

Examples of probability pf,s of finding a feasible matrix S of s = (smin, smax) points with smin ≤ sij ≤ smax for a selected number of species n by a
Bernoulli experiment (cf. Section 2.2.2). In the chosen range, for all simulated n, 30,000 s points were uniformly sampled. The probability of finding a
feasible matrix decreased with increasing the number n of species, but remained high in the bottom triangle Dn (cf. Section 2.2.8).
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its value is therefore ai. Finally, the value smax,u,n = max
i
(ai) is the

highest and smax,l,n = min
i
(ai) the lowest intercept.

2.2.5 Adaptive sampling region
Since the research topic of changeble stability is limited to the regions

Tn, examinations can be restriced to Tn, to minimize the computational

effort. Since the triangular regions Tn (cf. green lines in Figures 3 and 4,

and Figures S2–S4) change with n, we determined iteratively search

regions around Tn. Starting for n = 3 with smax = [0, 40], the first region

T3 was chosen arbitrarily large for the changeable stability search. To

determine the search region for changeable stability for the current n, the

green triangle Tn−1 of the last iteration was used. It was heuristically

(based on the pre-studies) extended by multiplying the upper and lower

intercepts smax,u,n−1 and smax,l,n−1 (cf. Section 2.2.4) with 1.2 and 0.6,

respectively, to ensure no changeable stability points were missed. These

search regions are the yellow triangles in Figures 3 and 4 and Figures S2–

S4. This reduced the computational effort required to find enough points

of changeable stability and allowed to study changeable stability for up to

n = 23 species on a computer cluster.
Frontiers in Ecology and Evolution 05
2.2.6 Stability change probability
As probability with which a point s changes its stability, we

calculated the mean of the stability states over all r vectors at that

point. The (in)stability of an LVC model with rt ∈ Dn−1 and matrix

S was recorded by st = 1 for stability and st = 0 for instability. The

mean value pst,s =
1
mot=1,…,mst is the probability of the LVCmodel

to be stable. pst,s = 1 means always stable, pst,s = 0 means always

unstable, and 0< pst,s< 1 means changeable stability. The value psc,s =
pst,s (1 − pst,s)|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
change   from   stable   to   unstable

+ ( 1 − pst,s)pst,s|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
change   from   unstable   to   stable

= 2pst,s(1 − pst,s)
is then the probability that a stability change occurs at all.

2.2.7 Mean probability of stability change
To assess the influence of the community size n on the stability

behavior, we wanted to know the mean probability of a stability

change in the region Tn and for any larger region containing Tn.

Within the triangle Tn, we calculated the mean probability of a stability

change over all kn examined s points as mT
n,sc =

1
kn os=1,…,kn

psc,s.
FIGURE 4

Points s = (smin, smax) with changeable stability for selected n, with the stability probability pst,s over 1,000 different relative intrinsic growth rate
vectors rk. All points with changeable stability were in the triangles Tn that are delimited by the green lines through the point s = (1, 1) and through
the points with the maximum and minimum slope (two larger dots per panel). The values smax,u,n and smax,l,n are the intercepts of the green lines at
the smin = 0 axis. The search range (yellow delimited triangle) was heuristically chosen slightly larger than the triangle Tn−1 to ensure that points with
changeable stability were not overlooked. For n = 3, the simulation range was heuristically chosen large. Note that the scale for smax differs in the
panels. For all simulated n, cf. Figure S2.
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Then, theexpected value of the number of changeable stability points

in Tn is mT
n,scA

T
nr with area AT

n = 1
2 (smax,u,n − smax,l,n) of Tn, sample

density r, and consequently sample size AT
nr. In an arbitrary reference

region with area Aref, which contains Tn, the sample size is Arefr and

the expected value of the number of changeable stability points is

mAref

n,sc A
ref r, which is the same as mT

n,scA
T
nr because changeable stability

only happens in Tn. Therefore, the mean probability of a stability

change over all kn examined s points in Aref is mAref

n,sc = mT
n,sc

AT
n

Aref . We see

that mAref

n,sc depends on n via mT
n,sc andA

T
n and inverse linearly on Aref. In

the evaluation (cf. Figure 5), we used hn,sc = mT
n,scA

T
n , i.e., the n

dependent part, from which mAref

n,sc can be calculated for any reference

region by dividing through Aref.

2.2.8 Mean probability of stability loss
Considering a community that is stable, but of which we know

neither r nor s, we calculated the average probability that it will lose

its stability if r changes. Such a stable community can be either

located in the purely stable region of the s-space or in Tn, where it

can be either purely or changeable stable. We looked first at a point s

in Tn with changeable stability that is stable for a given r. The

probability that this stable point changes to unstable is 1 − pst,s and

the mean probability of such a stability loss in Tn is msc,sl =
1

kn,sc o0<pst,s<1
(1 − pst,s) with kn,sc = |psc,s > 0| the number of all

examined points with changeable stability. With kn (kn,st) as the

number of all (always stable) s points in Tn, the fraction of the

changeable stability points s in Tn is kn,sc/kn and that of changeable

stability and always stable points s is (kn,sc + kn,st)/kn. Additionally,

the triangle Dn below Tn down to the diagonal dmin=max := (smin =

smax) (i.e., where smin = smax), which, according to the simulations

contains only purely stable s points, has the area AD
n = 1

2 smax,l,n.

Then,
ATn kn,sc

kn

AD
n +AT

n (
kn,sc+kn,st

kn
)
is the fraction of changeable stability points of

all stable points. The mean probability that a stable point s loses its

stability is then mT+D
n,sl = msc,sl

ATn kn,sc
kn

AD
n +AT

n (
kn,sc+kn,st

kn
)
(cf. Figure 5).
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2.2.9 Fit of axis intercepts of the lines
of triangles Tn

To get a general idea of the change of the triangles’ Tn size and

location in the s-space with increasing community size n, we

approximated the intercepts smax,l,n and smax,u,n (cf. Section 2.2.4) by

functions of n. To this aim, we determined these intercepts of the

lower and upper lines of the triangles for each n. Then, we fitted these

intercepts with different functions. Intercepts for n = 3 were excluded

because the first simulation range was chosen by heuristic pre-studies.

We chose the decreasing functions a0 + a1e
−c, a0 + a1e

−cn, a0 +

a1e
−cnd  , a0 + a1e

−cnd + a2e
−dn, a0 + a1n

−c + a2e
−dnf , a0 + a1e

−cnd + a2

e−fn, a0 + a1e
−cnd + a2e

−fng , a0 + a1(p=2 − arctan(cn)) and fitted them

smax,l,n and smax,u,n by a nonlinear least squares fit (R Core Team,

2021), weighted with w = n3=on=4,…,23n
3 to emphasize higher n.

Using the lowest value of the second-order Akaike Information

Criterion (AICc) to test the quality of the fit (Barton, 2020), the

best fitting function was chosen (cf. Table S1; Figure 5A).
2.2.10 Local sensitivity of stability to changes of r
Generally, the local sensitivity quantifies how an output variable

responds to changes in a given (local) value of an input variable or

parameter. This measure helps to interpret the effects of the

arrangement of stable and unstable r points in r-space on stability

changes. Here, the equilibrium of the LVCmodel is either stable (sn
= 1) or unstable (sn = 0), and hence, its local sensitivity to changes

in the relative intrinsic growth rate vectors rt ∈ Dn−1 is
Z

Dn−1

ds
dr

dDn−1jt (Pianosi et al., 2016). This can be aproximated by 1
mon

jst − sn j
dtn

,   n = 1,…,m,   n ≠ t   with the squared Euclidian

distance dtn =oj=1,…,n(rt j − rnj)
2 (Spencer , 2014) , which

emphasizes the effect of short distance changes. Normalizing with

the maximum possible local sensitivity 1
mon

1
dtn

,   n = 1,…,m,   n

≠ t , where all rn have a stability state other than rt, the local
BA

FIGURE 5

Changeable stability over n (4 ≤ n ≤ 23). (A) Functions of n that fit best (Table S1) the upper intercepts smax,u,n (left) and lower intercepts smax,l,n (right)
of the boundaries of the changeable stability triangle Tn (green lines in Figures 3, 4, S2–S4) with the smin = 0 axis (fit by LOESS method; Hadley,

2016). (B) mT
n,sc is the mean probability of a stability change in Tn. hn,sc is the n dependent part of mAref

n,sc = hn,sc

Aref , the mean probability of stability change

in a reference region of area Aref that contains Tn. mT+D
n,sl is the mean probability of stability loss, i.e., that a point s in a stable state becomes unstable.
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sensitivity measure is gt =on
jst − sn j

dtn
=on

1
dtn

,   n = 1,…,m,   n

≠ t with 0 ≤ gt ≤ 1. The measure gt indicates how likely a change in

stability is for a given rt relative to all other r. The value of gt
depends on the location rt ∈ Dn−1 and the distances dtn of the rn to

rt with a different stability state and is able to distinguish between

different arragements of stable and unstable r vectors (cf. example in

Figure S6). The gt were grouped in n and pst,s classes and

represented as frequency distributions (Figures 6, S5).
2.2.11 Sensitivities for random and clustered
arrangements of stable points

To get an idea about the spatial arrangements in Dn−1 of stable

and unstable r vectors underlying the obtained frequency

distributions of sensitivity gt, we compared these frequency

distributions to those generated from given spatial arrangements

of stable and unstable points. To this aim, we generated random and

clustered (in the center and in the corner of the simplex) spatial

patterns of 10,000 points with different probabilities p of two states

of red and blue points (Figure S6). Blue and red were interpreted as

stable and unstable, respectively. The sensitivity measure gt was

applied to these arrangements for all n and p. Comparing the

resulting distributions with the distributions of the sensitivities gt to
a change in r (Figure S5) with the Kolmogorov–Smirnov test

statistic (R-function ks.test; R Core Team, 2021) revealed that the

latter were most similar to the clustered distributions for n up to

about n = 10 and to the random distributions for n > 10 (Figure S7).
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3 Results

3.1 Theoretical results

The theoretical examinations show that (a) the equilibria z* and
their feasibility are independent of the intrinsic growth rates ri (Eq.

1) and (b) the intrinsic growth rates of the extinct species cannot

change the sign of the eigenvalues and therefore do not affect the

stability of the equilibria (Eq. 2). The Jacobian matrix J of the

surviving species contains the intrinsic growth rates ri that (c) have

therefore an influence on the eigenvalues and the stability of the

equilibria (Eq. 3). This influence on stability results (d) from the

relative intrinsic growth rates ri, since the constant factor rc ∈ R+

has no effect on the sign of the real part of the eigenvalues of J

(Eq. 3).
3.2 Feasibility

We studied the feasibility by calculations in the s-space. Figure 2

and Figure S1 show the probabilities pf,s to find a feasible matrix S

for points s = (smin, smax) with smin ≤ sij ≤ smax (cf. Section 2.2.2).

Overall, the probability of finding a feasible matrix decreased with

increasing the number n of species, but remained high in the

bottom triangle close to the diagonal dmin=max (i.e., where smin =

smax). For the studied n ≤ 17, each with 30,000 s points in the

selected range, always a feasible matrix S was found with probability
FIGURE 6

Examples of relative frequency distributions of local sensitivities gt for all intrinsic growth rate rt vectors of all changeable stability s = (smin, smax)
points, for selected species numbers n = 3, 5, 10, and 20 (rows) and stability probabilities pst,s (columns are the means of classes of width 0.1). The
white numbers are the means of gt. For all n, cf. Figure S5.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1202022
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Löffler and Lischke 10.3389/fevo.2023.1202022
pf,s ≥ 10−6. Therefore, in all subsequent simulations, a maximum of
~zmin,s = 106 random matrices S were generated to find a feasible one

for each s point (cf. Section 2.2.1).
3.3 Stability

We used the numerical analysis framework (Figure 1, cf. 2.2) to

investigate the effects of changes in the intrinsic growth rate on the

stability of the feasible matrices of the s-space. In combination with

heuristic pre-studies that identified interesting parameter ranges,

the available computing capacity allowed a systematic numerical

analysis for species numbers up to n = 23. The eigenvalues of the

Jacobian J, which depends on the matrix S and the relative intrinsic

growth rate vectors rk = (ri)k ∈ Dn−1, k = 1,…,1000, showed that,

often, the LVC model for the same S matrix was stable for some rk
vectors (stable r vectors) and unstable for others (unstable r vectors).

In such cases, stability changes between some of the different rk
vectors (changeable stability). Points s = (smin, smax) with changeable

stability are located in triangles Tn (green lines through the point s =

(1, 1) in Figures 3, 4 and Figures S2–S4). Figure 3 shows the example

of a nine-species community (n = 9) with points that were unstable

(left), had changeable stability (center), and were stable (right).

The points of changeable stability in Tn had a probability for

feasibility higher than 10−4 (compare Figure 2 with Figure 4, and

Figure S1 with Figure S2). The stability probability pst,s for points

with changeable stability (Figures 3, 4, Figure S2) increased from

close to 0 (red: unstable communities for almost all rk) to 0.5 (white:

stable/instable communities for half of the rk each) to close to 1

(blue: stable communities for almost all rk). Consequently, the

stability change probability psc,s (cf. Section 2.2.6) is 0 for nearly

stable and instable s points, increasing to 1 at pst,s = 0.5. The

triangles Tn with the changeable stability overlap with the regions of

purely unstable points above and purely stable points below for all

examined n (Figure 3 and Figures S2–S4). Thus, the points in the s-

space represent communities that transition from unstable to

changeable stability to stable as smax decreases. Figure 4 and

Figure S2 show that wi th increas ing n , Tn ro ta tes

counterclockwise and its area decreases, i.e., its upper and lower

bounds smax,u,n and smax,l,n both decrease and approach each other.
3.4 Changeable stability depending on
species number

Figure 5A shows the functions of the number of species (4 ≤ n ≤

23) that best fit the smax,u,n and smax,l,n intercepts of Tn (Table S1,

Section 2.2.9). As the number n of species increases, smax,u,n and

smax,l,n decrease and approach each other. This corroborates that the

region of Tn shrinks and rotates in the direction of the diagonal

dmin=max (i.e., where smin = smax). Therefore, as the number of

species increases, feasible and stable or stability changing

competitive communities have more and more weaker and

similar interactions smin ≤ sij ≤ smax. However, the coefficients a0
of the fits of different functions (Table S1) indicate that smax,u,n and

smax,l,n possibly do not converge (a0 of smax,u,n > a0 of smax,l,n). Thus,
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for every n, there is possibly a non-empty Tn, which probably also

contains purely stable communities. Since the fit qualities (AIC in

Table S1) of the functions for smax,l,n were very similar, it is unclear

whether a0 of smax,l,n is zero or positive, i.e., whether the region

containing only stable points completely coincides to dmin=max for

large n. Figure 5B shows that the mean probability mT
n,sc (cf. Section

2.2.7) of an r-induced stability change in Tn ranges between close to

0 and 4%. hn,sc, the n-dependent part of the mean probability mAref

n,sc

of stability change in a reference region of area Aref that includes Tn,

is of the same order of magnitude and decreases linearly with n.

mAref

n,sc can be calculated for any reference region by dividing hn,sc
through Aref (cf. Section 2.2.7). In the region Dn between Tn and the

dmin=max diagonal, all s points are purely stable. With the lower

boundary of Tn turning in the direction of the diagonal, Dn also

becomes smaller. In the shrinking combined region of pure and

changeable stability (Dn and Tn), the mean probability mT+D
n,sl of a

(changeable or purely) stable point to become unstable starts at 0.25

and decreases to approximately 0.075 with increasing n

(cf. Section 2.2.8).
3.5 Sensitivity of changeable stability to
intrinsic growth rate

We determined how sensitive the stability of each changeable

stability point s = (smin, smax) is to distances from each vector rt to all

other vectors rk ∈ Dn−1 (cf. Section 2.2.10). These distances indicate

how much rt must be changed to move the LVC model to another

stability state. We calculated the relative frequency distribution of

the local sensitivity measure gt (cf. Section 2.2.10) over all s points in

combined classes of stability probability pst,s and n (panels in

Figures 6; S5). The mean sensitivity (white numbers, Figures 6; S5)

increases with n up to 0.49 and is highest for pst,s = 0.5. For pst,s close

to 0 and 1, gt is very high for a few rt and very low for most rt (left-

skewed). With pst,s at 0.3 and 0.7, gt is either low or high (bimodal),

and with pst,s at 0.5, the distribution of gt is unimodal. For large n, the

peaks of the distribution are narrow, while for small n, they are

broader and more left-skewed. Comparison with the pattern

resulting from random and clustered spatial arrangements

(cf. example in Figure S6) indicates that the arrangement of the

stable r vectors in the r-space is close to random for large n and close

to clustered for small n (Figure S7). The s points with a stability

probability pst,s approximately 0.5 in the center of the triangle Tn
(white points in Figures 3, 4; S2) are in average most sensitive to

changes in r (white numbers in the panels, Figure 6 and Figure S5),

and the single relatively narrow peaks imply that the sensitivity gt is
similar for all r. However, for s points with pst,s at 0.3 (0.7) bordering

the center of Tn (light blue and light red points in Figures 3, 4; S2),

the average sensitivity is smaller and the bimodality implies that the

sensitivity to changes in r is different over the r-space.

4 Discussion

In our MCT formulation of the LVC model, a community is

represented by the combination of the competition matrix S and the

intrinsic growth rate vector r. The matrix S determines the
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composition of species at equilibrium and, together with r, the

trajectory leading to that equilibrium. A change in the stability of

the equilibrium implies a change in the composition of the

community and of its dynamics. Gain of stability sets in motion

the assembly of a new community, with species provided, e.g., by

immigration. Loss of stability means that a community that is on its

way to or already in a stable equilibrium moves away from it and

toward another stable equilibrium with different species (Chesson,

2018). Such a loss has different consequences in real systems

ranging from subtle changes to regime shifts (Scheffer and

Carpenter, 2003). It can mean the replacement of a few species by

other species up to the complete exchange of a community, or the

loss of a few species up to mass extinction (Reyer et al., 2015).

Our results show that community stability can be altered by

changes in the relative intrinsic growth rates of species. However,

this only happens within a certain range of competitive strengths.

Changes in relative intrinsic growth rates, like other aspects of

community dynamics, can be caused by many processes or drivers.

Such drivers, including temporal or spatial environmental changes

[e.g., in climate (Louthan and Morris, 2021; Usinowicz and Levine,

2021), nutrients (Griffiths et al., 2015), sediments (Sahade et al.,

2015), and pathogens (Mordecai, 2011; Metz et al., 2012)] and

human activities [e.g., climate change, selective harvesting (Turkalo

et al., 2017)], that affect species differently can trigger a change in a

community from stable to unstable or vice versa. Consequently,

even a change in the r of a single species can change the stability of

an entire community. Even if the environment remains the same,

the relative intrinsic growth rates r change when, in a community,

species go extinct or new species are added by introduction,

invasion, or evolution (Munson and Lauenroth, 2009; Gioria

et al., 2018; Linders et al., 2019).

As long as the equilibrium of the community remains stable, i.e.,

a tipping point has not yet been reached, a changing r does not affect

the composition of the community at equilibrium, which therefore

does not provide an early warning sign of a change in stability

(Boerlijst et al., 2013). On the other hand, if the community is not in

equilibrium, a change in r will affect species abundances and

dynamics, which could be used as an early warning sign. For

example, different recovery rates under different r after

perturbations can be such an early warning sign (Munson and

Lauenroth, 2009; Gioria et al., 2018; Brondizio et al., 2019; Linders

et al., 2019). At the tipping point, the stability changes abruptly, but

the inertia of a real system can cause it to take some time to reach a

new stable equilibrium. (Lloret et al., 2012).

In detail, our results show that positive intrinsic growth rates of

species do not affect species composition, abundances, and

community feasibility (Chesson, 2018), but that they can affect

community stability when there are at least three species. Thereby,

the intrinsic growth rates of extinct species have no influence on the

stability of equilibria (Chesson, 2018). However, the relative intrinsic

growth rates of the surviving species influence the stability and thus

their coexistence. Interestingly, in the permanence theory, which takes

a different view on stable coexistence, the intrinsic growth rates of

species in an equilibrium do not matter (Chesson, 2018). Studies using

the LVC model in the r-formalism have also shown that intrinsic

growth rates influence not only community stability but also the
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feasibility (Saavedra et al., 2017; Saavedra et al., 2020; Song et al., 2021;

Selaković et al., 2022). Our results show that it is the relative values of

intrinsic growth rates that affect the stability of a community. This is

consistent with results of the r-formalism LVC model that it is

sufficient to use normalized r vectors as a measure of structural

stability (Grilli et al., 2017). Any influence that alters relative

intrinsic growth rates and affects species differently can trigger a

change in a community from stable to unstable or vice versa, i.e., a

tipping point is crossed. Consequently, even a change in the r of a

single species can change the stability of an entire community.

Our approach to determine the sensitivity has a similarity to the

structural stability approach in that it combines feasibility and

stability depending on parameter ranges (Rohr et al., 2014; Grilli

et al., 2017). However, it is less restrictive as it considers arbitrary

competition matrices and thus community compositions and

applies the general Lyapunov stability criterion (Logofet, 2005).

The local sensitivity used represents the risk that a change in r will

move a community to a different stability state, emphasizing small

changes in r that are assumed to be more likely. We found that the

mean local sensitivity increases with community size and is highest

in the center part of Tn, where also stability change probability psc,s
is the highest. The sensitivity of a community is not homogeneously

distributed in r-space (Grilli et al., 2017) and therefore depends on

the position of the community in r-space. That means, local

sensitivity can be similar but also highly different for

communities with the same interaction matrices but different r

vectors. Overall, there is a non-negligible risk that already a small

environmental change affecting r can trigger a stability change.

Each point s = (smin, smax) represents an infinite number of

competition matrices S, one of which was selected that allowed a

feasible community. For all species numbers studied, the points s

with changeable stability are in a region Tn between and

overlapping with the regions of completely unstable and

completely stable points. As smax in Tn decreases, there are more

and more relative intrinsic growth rates for which the communities

are stable and at the same time the probability of a stability change

first increases and then decreases again. The region Tn shrinks as

species numbers n increase and approaches the diagonal dmin=max,

implying that the competition strengths sij of the communities

become smaller and more similar. The mean probability mT
n,sc of a

community uniformly sampled in Tn to change its (in)stability is

less than 4% independent of n. The mean probability mAref

n,sc of a

stability change in a reference region (which includes Tn), decreases

with n and also with increasing the reference region. Thus, the

larger the reference region, the less frequently a changeable stability

community is found by random sampling. However, the mean

probability mT+D
n,sc of a given stable community—that is necessarily

either purely or changeable stable with a stable r vector—to become

unstable is between 25% and 8% and decreases with n

(cf. Figure 5B). This risk of stability loss is not negligible, but

species-rich communities are less susceptible to it than species-poor

ones (De Boeck et al., 2018). Additionally, a change in intrinsic

growth rates is much more likely to cause a stable community to

lose its stability than a community randomly selected in an arbitrary

region to change its stability. Because stable communities are in

restricted regions (Tn and Dn) whose sizes decrease with n, they are
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difficult to hit by random sampling in any larger region, in

particular for large communities, which contributes to the

stability–diversity debate (Gardner and Ashby, 1970; May, 1972;

Goh and Jennings, 1977; McCann, 2000). Additionally, the regions

with (changeable) stability are located where the probability of

feasibility is high. This is in accordance to the results of the

structural stability approach (May, 1972), where feasibility implies

stability, that “the larger the system is, the smaller is the set of

conditions leading to coexistence” (Grilli et al., 2017). However, the

fits of the intercepts of the changeable stability regions suggest that

feasible and stable randomly assembled matrices exist even for high

n, similarly to previous findings (Serván et al., 2018). This provides

a new aspect to the theoretical explanation for the existence of

species-rich competing communities (Hutchinson, 1961; Chesson,

2000; Li and Chesson, 2016; Saavedra et al., 2017; Schreiber

et al., 2023).
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