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Can meteorological data and
normalized difference vegetation
index be used to quantify soil
pH in grasslands?

Erfu Dai1, Guangyu Zhang1, Gang Fu1* and Xinjie Zha2

1Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and
Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing, China, 2Xi’an University of Finance and Economics, Xi’an, China
Quantifying soil pH at manifold spatio-temporal scales is critical for examining

the impacts of global change on soil quality. It is still unclear whether

meteorological data and normalized difference vegetation index (NDVI) can be

used to quantify soil pH in grasslands. Here, nine methods (i.e., RF: random-

forest, GLR: generalized-linear-regression, GBR: generalized-boosted-

regression, MLR: multiple-linear-regression, ANN: artificial-neural-network,

CIT: conditional-inference-tree, SVM: support-vector-machine, eXGB:

eXtreme-gradient-boosting, RRT: recursive-regression-tree) were applied to

quantify soil pH. Three independent variables (i.e., AP: annual precipitation, AT:

annual temperature, ARad: annual radiation) were used to quantify potential soil

pH (pHp), and four independent variables (i.e., AP, AT, ARad and NDVImax:

maximum NDVI during growing season) were applied to quantify actual soil pH

(pHa). Overall, the developed eXGB models performed the worst (linear

regression slope < 0.60; R2 = 0.99; relative deviation ≤ –43.54%; RMSE ≥ 3.14),

but developed RFmodels performed the best (linear regression slope: 0.99–1.01;

R2 = 1.00; relative deviation: from –1.26% to 0.65%; RMSE ≤ 0.28). The linear

regression slope, R2, absolute value of relative deviation and RMSE between

modelled and measured soil pH were 0.96–1.03, 0.99–1.00, ≤ 3.87% and ≤ 0.88

for the other seven methods, respectively. Accordingly, except the developed

eXGB approach, the developed other eight methods can have relative greater

accuracies in quantifying soil pH. However, the developed RF had the uppermost

quantification accuracy for soil pH. Whether or not meteorological data and

normalized difference vegetation index can be used to quantify soil pH was

dependent on the chosenmodels. The RF developed by this study can be used to

quantify soil pH from measured meteorological data and NDVImax, and may be

conducive to scientific studies related to soil quality and degradation (e.g., soil

acidification and salinization) at manifold spatial-temporal under future

globe change.
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1 Introduction

Soil pH, as one of the important indices of soil quality, is

generally the acidity and alkalinity of soil systems and ranges from 0

to 14 (Ji et al., 2014). Acidic, neutral and alkaline soils generally

refer to soils with pH < 7, = 7 and > 7, respectively. Soil pH can

regulate the mineralization of soil organic carbon (Dlamini et al.,

2016), soil microbial community structure (e.g. a-diversity,
community composition) (Zhang et al., 2020; Zhang and Fu,

2021), plant community structure (e.g. b-diversity) (Sun et al.,

2021; Wang et al., 2021b), plant growth (Veresoglou et al., 2011;

Wang et al., 2021a; Zhang et al., 2021), herbage nutritional quality

and storage (Fu et al., 2021; Zha et al., 2022). Soil pH is also closely

correlated with base cations (K, Ca and Mg) (Baumann et al., 2009),

soil nitrogen and phosphorus availability (Paul et al., 2001; Fu and

Shen, 2017). Thus, estimating soil pH variation at manifold spatio-

temporal scales is critical for examining the impacts of globe change

on soil quality and other related scientific studies in terrestrial

ecosystems (Odhiambo et al., 2020). Under such background, a

great deal of scientific studies explored the influence and feedback

of environmental factors on soil pH (Fernandez-Calvino et al., 2011;

Sikora et al., 2011; Hong et al., 2018; Puissant et al., 2019; Huang

et al., 2022). These earlier studies can be benefit for improving soil

quality and facilitating soil high-quality management. However,

most of these earlier studies are mainly performed at fine spatial

scales (i.e., single points or transect scale), because well documented

data on observed soil pH are relatively sparse due to the high time

and financial cost of observed soil pH (Wuest, 2015; Chen et al.,

2019). In order to obtain soil pH with larger spatial scales and

longer time series, spatiotemporal interpolation or model

development of soil pH is a good solution. Current soil pH

models can be divided into two types depending on whether or

not they depend on other variables (Mao et al., 2014; Odhiambo

et al., 2020). The soil pH models independent of other variables

(e.g., Kriging and inverse distance weighted spatial interpolation)

can obtain the soil pH during the sampling period of the whole

region, but cannot obtain the soil pH during the non-sampling

period. In other words, this method can only be used for spatial

interpolation of soil pH, but not for temporal interpolation of soil

pH. This limits the scope of application of this method (e.g., the

temporal change of soil pH cannot be studied). In contrast, the soil

pH models dependent of other variables can be used for spatio-

temporal interpolation of soil pH. The current soil pH models use

different independent variables, and the model accuracies of soil pH

do not increase with increasing the number of independent

variables, but even decrease (Chen et al., 2019; Jia et al., 2021;

Wang et al., 2022). Moreover, the widespread popularization and

application of such soil pH models are limited due to the availability

or relatively low accuracy of some independent variables

(Odhiambo et al., 2020). The development of machine learning

techniques (e.g., RF: random-forest) can provide new ideas on the

studies related to soil pH at manifold spatio-temporal scales (Chen

et al., 2019; Jia et al., 2021; Wang et al., 2022). However, it is not

clear on which one of machine learning techniques are better in

estimating soil pH than the other machine learning technologies.
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Consequently, further studies are needed to better serve for the

management of soil pH and quality at manifold spatio-temporal

scales under impacts of humankind activities and climate change.

Various grassland systems are the main land cover in the Tibet,

and they are the important foundation of high-quality development

of livestock in Tibet Autonomous Region (Fu et al., 2022; Zha et al.,

2022). Soil pH is closely correlated with grassland production and in

turn high-quality development of livestock in the Tibet (Zhang

et al., 2021). For example, soil pH was positively correlated with

aboveground net primary production along an elevation gradient in

alpine grassland of Nyenchen Tanglha (Wang et al., 2021a).

However, soil pH was negatively correlated with the content of

crude protein and water-soluble carbohydrate (Fu et al., 2022).

Under such background, many studies have investigated the

impacts of soil pH on ecosystem structure and function, and the

driving factors of soil pH in grassland regions (Ji et al., 2014; Yu

et al., 2019; Sun et al., 2021). However, these previous studies are

not performed over the whole grassland areas of the Tibet due to the

lack of large-scale soil pH datasets (Chen et al., 2019). In order to

resolve such issue, it is necessary to develop an optimal model of soil

pH in grassland areas of the Tibet.

Soil pH was estimated from measured meteorological data

and normalized difference vegetation index (NDVI) on the basis

of the RF, generalized-linear-regression (GLR), generalized-

boosted-regression (GBR), multiple-linear-regression (MLR),

artificial-neural-network (ANN), conditional-inference-tree

(CIT), support-vector-machine (SVM), eXtreme-gradient-

boosting (eXGB), and recursive-regression-tree (RRT) in

grassland areas of Tibet. Three previous studies have explained

the reasons why some of the nine methods (e.g., RF and SVM)

were adopted to model plant species a-diversity (Tian and Fu,

2022), herbage nutritional quality and production (Han et al.,

2022), soil moisture (Wang and Fu, 2023) in grassland areas of

Tibet. Besides the causes mentioned above, it is still not clear on

which one of the nine methods is best in quantifying soil pH of

grassland area in Tibet. Thus, the nine methods were used to

estimate soil pH. This study focused on comparing the accuracies

of the nine methods in estimating soil pH. Several studies have

confirmed that the performance of the RF approach was better

than other approaches in predicting some important plant

variables in grassland systems of Tibet (Han et al., 2022; Tian

and Fu, 2022). Therefore, we assumed that the RF approach had

the best performance in estimating soil pH amongst the nine

approaches in grassland areas of the Tibet.
2 Materials and methods

2.1 Data

Figure S1 illustrated soil sampling sites under fencing and

grazing conditions in grasslands of the Tibet. For each one of all

the sampling sites (1 km × 1 km), 3–5 quadrats (0.50 m × 0.50 m)

were randomly identified. We collected soil samples at 0–10, 10–20

and 20–30 cm using soil auger under fencing and grazing
frontiersin.org
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TABLE 1 The parameters for random-forest (RF), generalized-boosted (GBR), support-vector-machine (SVM) and recursive-regression-tree (RRT) of
soil pH.

Scenes Soil
depth
(cm)

RF GBR SVM RRT

R2 Mean
square
error

ntree mtry Tree Mean
train error

Mean cv
error

Mean
residual

Mean deci-
sion value

gamma rho
Support
vector No

R2

Potential 0–10 0.97 0.03 499 3 994 0.12 0.21 −0.06 0.06 0.33 0 187 0.80

10–20 0.95 0.04 683 2 986 0.10 0.23 0.00 0.00 0.33 0 128 0.63

20–30 0.95 0.04 716 3 985 0.11 0.31 0.03 −0.03 0.33 1 107 0.62

Actual 0–10 0.94 0.07 536 4 981 0.15 0.28 0.01 −0.01 0.25 0 201 0.74

10–20 0.90 0.08 482 4 962 0.13 0.29 0.03 −0.03 0.25 0 178 0.70

20–30 0.92 0.06 643 3 936 0.07 0.20 0.01 −0.01 0.25 0 90 0.85
F
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TABLE 3 The RMSE and relative deviation (%) values between modelled and measured soil pH (n = 30).

Parameters Method Potential soil pH Actual soil pH

0–10 10–20 20–30 0–10 10–20 20–30

Relative deviation RF −0.36 0.07 −1.13 0.13 −1.26 0.65

GBR −1.06 0.31 −1.07 0.31 0.35 0.24

MLR −2.67 2.15 −1.24 1.96 −0.82 2.74

ANN −2.67 2.15 −1.24 1.96 −0.82 2.74

GLR −2.70 2.26 −0.96 1.91 −1.23 3.87

CIT −0.56 1.92 −1.43 2.64 −2.33 1.83

eXGB −46.95 −45.48 −47.87 −45.12 −47.44 −43.54

SVM −0.63 0.71 −1.45 1.60 −1.21 2.37

RRT −1.00 1.00 −1.03 1.66 −2.14 1.36

RMSE RFR 0.17 0.19 0.22 0.16 0.28 0.24

GBR 0.26 0.21 0.23 0.31 0.35 0.24

MLR 0.84 0.79 0.76 0.61 0.73 0.57

ANNR 0.84 0.79 0.76 0.61 0.73 0.57

GLR 0.88 0.88 0.82 0.61 0.72 0.59

(Continued)
TABLE 2 The parameters for multiple-linear (MLR), generalized-linear (GLR), artificial-neural-network (ANN), conditional-inference-tree (CIT),
eXtreme-gradient-boosting (eXGB) of soil pH.

Scenes Soil depth (cm) MLR GLR ANN CIT eXGB

Intercept AT AP ARad NDVImax R2 Error Error Error Error

Potential 0–10 2.22 −0.15 0.00 0.00 0.39 75.33 64.96 48.18 312.81

10–20 5.24 −0.16 0.00 0.00 0.18 42.21 39.60 19.15 211.68

20–30 17.45 −0.26 0.00 0.00 0.20 35.44 33.66 18.84 180.31

Actual 0–10 14.66 0.20 0.00 0.00 0.00 0.48 68.71 63.29 64.66 321.45

10–20 14.62 0.18 0.00 0.00 0.00 0.44 47.23 46.19 50.16 275.23

20–30 19.59 0.09 0.00 0.00 0.00 0.61 17.67 16.78 17.98 132.94
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conditions in 2011 and 2013–2020. There were 290, 201 and 173

soil samples at 0–10, 10–20 and 20–30 cm under fencing conditions,

and 315, 258 and 149 soil samples at 0–10, 10–20 and 20–30 cm

under grazing conditions, respectively. Fresh soil samples were

stored in refrigerators at –20 °C before the measures of soil pH. A
Frontiers in Ecology and Evolution 04
soil pH meter was used to measure soil pH (soil-water ratio is 1:2.5)

(Sun et al., 2021). The observed soil pH was 5.49–9.46, 5.87–9.45

and 6.17–9.32 under fencing conditions, and 5.55–9.82, 5.78–9.73

and 5.86–9.35 under grazing conditions at 0–10, 10–20 and 20–30

cm, respectively.
TABLE 3 Continued

Parameters Method Potential soil pH Actual soil pH

0–10 10–20 20–30 0–10 10–20 20–30

CITR 0.40 0.75 0.34 0.66 0.66 0.38

eXGB 3.65 3.61 3.94 3.39 3.71 3.14

SVM 0.50 0.31 0.33 0.42 0.51 0.45

RRT 0.40 0.39 0.27 0.38 0.53 0.37
B C

D E F

G H I

A

FIGURE 1

Relationships between modelled and measured potential soil pH at 0–10 cm (p<0.05) for (A) RF, (B) GBR, (C) MLR, (D) ANN, (E) GLR, (F) CIT,
(G) eXGB, (H) SVM, and (I) RRT, respectively. The solid lines represent the linear fitting lines between modelled and measured soil pH. RF, random-
forest; GBR, generalized-boosted; MLR, multiple-linear; ANN, artificial-neural-network; GLR, generalized-linear; CIT, conditional-inference-tree;
eXGB, eXtreme-gradient-boosting; SVM, support-vector-machine; RRT, recursive-tree.
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We estimated soil pH under two scenes, including soil pH under

the scene affecting by simultaneously both climate change and

humankind activities (i.e., soil pH under grazing conditions; pHa),

and soil pH under the scene affecting by pure climate change (i.e., soil

pH under fencing conditions; pHp). Some studies indicated that both

temperature and precipitation can be closely correlated with soil pH

(Ji et al., 2014; Fu and Shen, 2017; Palpurina et al., 2017; Hong et al.,

2019; Zhao et al., 2022). Radiation is generally correlated with both

temperature and precipitation (Fu et al., 2022; Han et al., 2022; Tian

and Fu, 2022). Thus, the pHp were estimated by annual precipitation

(AP), annual temperature (AT) and annual radiation (ARad), which

were obtained by interpolating monthly temperature, monthly

precipitation and monthly radiation, respectively (Tian and Fu,

2022). The NDVI can be also closely correlated with soil pH (Chen
Frontiers in Ecology and Evolution 05
et al., 2019; Zhang et al., 2021), and can be used to reflect the

combined effects of climate change and anthropogenic activities (Han

et al., 2022; Tian and Fu, 2022; Sun et al., 2023; Wang and Fu, 2023).

Thus, the pHa were estimated by the AP, AT, ARad and NDVImax.

The RF, GLR, GBR, MLR, ANN, CIT, SVM, eXGB and RRT were

used as the estimated tools of soil pH (Tables 1, 2).
2.2 Statistic analyses

Dependent on prior studies (Fu et al., 2011; Han et al., 2022; Tian

and Fu, 2022), 30 dataset of soil pH, AT, AP, ARad and NDVImax

were randomly selected from all the measured dataset, and selected

dataset were used to test estimation accuracy of soil pH. The R2
B C

D E F

G H I

A

FIGURE 2

Relationships between modelled and measured actual soil pH at 0–10 cm (p<0.05) for (A) RF, (B) GBR, (C) MLR, (D) ANN, (E) GLR, (F) CIT, (G) eXGB,
(H) SVM, and (I) RRT, respectively. The solid lines represent the linear fitting lines between modelled and measured soil pH. RF, random-forest; GBR,
generalized-boosted; MLR, multiple-linear; ANN, artificial-neural-network; GLR, generalized-linear; CIT, conditional-inference-tree; eXGB, eXtreme-
gradient-boosting; SVM, support-vector-machine; RRT, recursive-tree.
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(determination coefficient), linear slope, RMSE (root-mean-square

error) and relative deviation values were applied to be indices of

precision evaluation. The closer R2 and slope between modelled and

measured data are to 1, the higher model accuracies are (Han et al.,

2022; Tian and Fu, 2022). The lower RMSE and absolute value of

relative deviation between modelled and measured data are, the

higher model accuracies are (Han et al., 2022; Tian and Fu, 2022).

The randomForest, stats, rpart, e1071 and gbm packages were used to

develop the RF, MLR, RRT, SVM and GBR models, respectively

(Freund and Schapire, 1997; Breiman, 2001; Cortez, 2010). The

rminer package of the R.4.1.2 software was used to develop the

ANN, GLR, CIT and eXGB models (Han et al., 2022; Tian and Fu,

2022). The R.4.1.2 software was the only statistical software.
Frontiers in Ecology and Evolution 06
3 Results

3.1 Model development of soil pHp
and pHa

The RF, MLR and RRT provided R2 (Tables 1, 2). Climate data

and NDVImax on the basis of RF explained the greatest soil pH,

while climate data and NDVImax on the basis of MLR explained the

least soil pH (Tables 1, 2). The tree numbers of developed GBR were

the greatest, but the support vector numbers of developed SVM

were the least (Table 1). The GLR, ANN, CIT and eXGB provided

error parameters that can be compared, and the error values of

eXGB were the greatest amongst the four methods (Table 2).
B C

D E F

G H I

A

FIGURE 3

Relationships between modelled and measured potential soil pH at 10–20 cm (p<0.05) for (A) RF, (B) GBR, (C) MLR, (D) ANN, (E) GLR, (F) CIT,
(G) eXGB, (H) SVM, and (I) RRT, respectively. The solid lines represent the linear fitting lines between modelled and measured soil pH. RF, random-
forest; GBR, generalized-boosted; MLR, multiple-linear; ANN, artificial-neural-network; GLR, generalized-linear; CIT, conditional-inference-tree;
eXGB, eXtreme-gradient-boosting; SVM, support-vector-machine; RRT, recursive-tree.
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3.2 Model accuracies of soil pHp and pHa

The model accuracies differed amongst the nine approaches

(Table 3, Figures 1–6). The slopes between modelled soil pH on the

basis of the eXGB approach and measured soil pH were the lowest

amongst the nine approaches (Figures 1–6). Modelled soil pH on

the basis of the RF, GBR, SVM and RRT approaches explained

nearly 100% variation of measured soil pH, but that on the basis of

the MLR, ANN, GLR and eXGB approaches explained about 99%

variation of measured soil pH (Figures 1–6). Modelled soil pH on

the basis of the CIT approach explained about 99–100% variation of

measured soil pH (Figures 1–6). The absolute values of relative

deviation between modelled soil pH on the basis of the eXGB
Frontiers in Ecology and Evolution 07
approach and measured soil pH were the highest amongst the nine

approaches (Table 3). The absolute values of relative deviation

between modelled soil pHp at 0–10 and 10–20 cm, and soil pHa at

0–10 cm on the basis of the RF approach and measured soil pHp at

0–10 and 10–20 cm, and soil pHa at 0–10 cm were the lowest

amongst the nine approaches, respectively (Table 3). The absolute

values of relative deviation between modelled soil pHa at 10–20 and

20–30 cm on the basis of the GBR approach and measured soil pHa

at 10–20 and 20–30 cm were the lowest amongst the nine

approaches, respectively (Table 3). The absolute values of relative

deviation between modelled soil pHp at 20–30 cm on the basis of the

GLR approach and measured soil pHp at 20–30 cm was the lowest

amongst the nine approaches (Table 3). The RMSE values between
B C

D E F

G H I

A

FIGURE 4

Relationships between modelled and measured actual soil pH at 10–20 cm (p<0.05) for (A) RF, (B) GBR, (C) MLR, (D) ANN, (E) GLR, (F) CIT, (G) eXGB,
(H) SVM, and (I) RRT, respectively. The solid lines represent the linear fitting lines between modelled and measured soil pH. RF, random-forest; GBR,
generalized-boosted; MLR, multiple-linear; ANN, artificial-neural-network; GLR, generalized-linear; CIT, conditional-inference-tree; eXGB, eXtreme-
gradient-boosting; SVM, support-vector-machine; RRT, recursive-tree.
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modelled soil pH on the basis of the RF approach and measured soil

pH were the lowest amongst the nine approaches, but the RMSE

values between modelled soil pH on the basis of the eXGB approach

and measured soil pH were the highest amongst the nine

approaches (Table 3).
4 Discussion

Compared to the MLR and RRT methods, meteorological data

and NDVImax on the basis of the RF method had greater

explanation abilities of soil pH. This phenomenon was similar to

some previous studies conducted in grassland areas of Tibet (Han
Frontiers in Ecology and Evolution 08
et al., 2022; Tian and Fu, 2022; Wang and Fu, 2023). Moreover, the

developed RF and RRT models had the greater explanation abilities

of soil pH than previous studies, but the developed MLR models

had nearly equal explanatory abilities of soil pH than previous

studies (Ji et al., 2014). Therefore, compared with the MLR and RRT

methods, the RF method can have greater explanation abilities of

environmental variables (at least for soil pH and moisture, plant a-
diversity, herbage nutritional quality and production) in grassland

areas of the Tibet (Han et al., 2022; Tian and Fu, 2022; Wang and

Fu, 2023).

The support vector numbers of the developed SVM models

were lower than the tree numbers of the developed RF models

(Table 1). This finding was in consistent with two earlier studies
B C

D E F

G H I

A

FIGURE 5

Relationships between modelled and measured potential soil pH at 20–30 cm (p<0.05) for (A) RF, (B) GBR, (C) MLR, (D) ANN, (E) GLR, (F) CIT,
(G) eXGB, (H) SVM, and (I) RRT, respectively. The solid lines represent the linear fitting lines between modelled and measured soil pH. RF, random-
forest; GBR, generalized-boosted; MLR, multiple-linear; ANN, artificial-neural-network; GLR, generalized-linear; CIT, conditional-inference-tree;
eXGB, eXtreme-gradient-boosting; SVM, support-vector-machine; RRT, recursive-tree.
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(Han et al., 2022; Wang and Fu, 2023), but quite contrast with

another one previous study (Tian and Fu, 2022). The tree numbers

of the developed GBR models were higher than those of the

developed RF models (Table 1), which was in line with two

earlier studies (Tian and Fu, 2022; Wang and Fu, 2023).

Moreover, the tree numbers of the developed RF and GBR

models were not equal to the default value (i.e., 500 of the

randomForest package and 100 of the gbm package in 4.2.1,

respectively). This phenomenon was similar to earlier studies

(Han et al., 2022; Tian and Fu, 2022; Wang and Fu, 2023).

Therefore, default values of tree numbers were not the best

choice, at least for soil pH and moisture, plant a-diversity,
herbage nutritional quality and production in grassland areas of
Frontiers in Ecology and Evolution 09
the Tibet (Han et al., 2022; Tian and Fu, 2022; Wang and Fu, 2023).

The computational speed and model complexity varied with

environmental variables and methods (Tian and Fu, 2022).

The developed RF models of soil pH had the highest accuracy,

but the developed eXGB models of soil pH had the lowest accuracy

amongst the nine methods (Table 3, Figures 1–6). The phenomenon

was similar to earlier studies which revealed that the developed RF

models of plant a-diversity, herbage nutritional quality and

production and soil moisture had the better performance than the

other approaches in grassland areas of Tibet (Han et al., 2022; Tian

and Fu, 2022; Wang and Fu, 2023). This finding was supported by

the following facts/causes. First, similar to earlier research (Han

et al., 2022; Tian and Fu, 2022; Wang and Fu, 2023), slopes between
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FIGURE 6

Relationships between modelled and measured actual soil pH at 20–30 cm (p<0.05) for (A) RF, (B) GBR, (C) MLR, (D) ANN, (E) GLR, (F) CIT,
(G) eXGB, (H) SVM, and (I) RRT, respectively. The solid lines represent the linear fitting lines between modelled and measured soil pH. RF, random-
forest; GBR, generalized-boosted; MLR, multiple-linear; ANN, artificial-neural-network; GLR, generalized-linear; CIT, conditional-inference-tree;
eXGB, eXtreme-gradient-boosting; SVM, support-vector-machine; RRT, recursive-tree.
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the modelled soil pH on the basis of the RF models and measured

soil pH were the nearest to 1 amongst the nine methods (Figures 1–

6). Second, similar to earlier studies (Han et al., 2022; Tian and Fu,

2022), RMSE values and absolute values of relative deviation

between modelled soil pH on the basis of RF models and

measured soil pH were generally the lowest for most cases

(Table 3). Third, similar to earlier research (Han et al., 2022; Tian

and Fu, 2022), the situation where one model value correspond to

multiple measurements was relative lower for the developed RF

models of soil pH (Figures 1–6). Fourth, similar to earlier research

(Han et al., 2022; Tian and Fu, 2022), the scatter was relatively and

closely around the 1:1 line for the developed RF models of soil pH

(Figures 1–6). Fifth, the RF models did not assume that the

relationships between soil pH and independent variables (AT, AP,

ARad, NDVImax) were linear. The relative optimum mixture of

parameters ntree and mtry, and randomness character of the RF

method may further ensure the relatively higher accuracies of the

developed RF models in estimating soil pH. Therefore, the

developed RF models can be used to estimate soil pH from AT,

AP, ARad and/or NDVImax, at least for grassland areas of the Tibet.

The predicted accuracies of soil pH based on the developed RF

models in this study were greater than those reported by earlier

studies (Shi et al., 2009; Holmberg et al., 2018; Hong et al., 2019;

Odhiambo et al., 2020; Carrillo et al., 2022). For example, the

simulated soil pH based on random forest or XGBoost can only

explain about 70–72% variation with RMSE of 0.71–0.73 in

observed soil pH in China (Chen et al., 2019). The simulated soil

pH based on artificial neural network can only explain about 92%

variation in observed soil pH in Chinese vegetable fields (Wang

et al., 2022). The simulated soil pH based on artificial neural

network, support vector machine, ridge regression and geographic

weighted regression explained about 12.04–97.33% variation in

observed soil pH in the Yinbei area of Ningxia, China (Jia et al.,

2021). Compared to this study, the numbers of model parameters in

some previous studies are much larger (Chen et al., 2019; Wang

et al., 2022). Moreover, the model accuracies of soil pH simulated

from three parameters were not always lower than those simulated

from four parameters. Therefore, more model parameters do not

always lead to higher accuracy of soil pH. It is better to elevate

simulation accuracy of soil pH by screening methods than to

increase the simulation accuracy of soil pH by introducing

more variables.
5 Conclusions

In general, this study was the first study which estimated soil

pHp and pHa at three soil depths (i.e., 0–10, 10–20, and 20–30 cm)

on the basis of nine methods in grasslands of the Tibet. Three

independent variables (i.e., AT, AP, ARad) were used to estimate

the pHp. Four independent variables (i.e., AT, AP, ARad and

NDVImax) were used to estimate the pHa. The nine methods had

different performances in estimating soil pH, and the developed RF

models had the better performance than the other eight methods.

Measured soil pH can be nearly 100% explained by modelled soil
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pH on the basis of the RF, GBR, SVM and RRT models, and about

99% explained by modelled soil pH on the basis of the MLR, ANN,

GLR and eXGB models. Modelled soil pH on the basis of the CIT

models explained about 99–100% variation of measured soil pH.

The slopes between modelled and measured soil pH were 0.96–1.03

for all the nine methods. The slopes (i.e., 0.99–1.01) between

modelled soil pH on the basis of the RF models and measured

soil pH were the nearest to 1 amongst the nine methods. The RMSE

values (i.e., ≤ 0.28) between modelled soil pH on the basis of the RF

models and measured soil pH were the lowest. In contrast, the

RMSE values (i.e., ≤ 3.94) between modelled soil pH on the basis of

the eXGB models and measured soil pH were the highest. The

absolute values of relative deviation between measured soil pH and

modelled soil pH on the basis of eXGB, GLR, RF and GBR models

were ≤ 47.87%, ≤ 3.87%, ≤ 1.26% and ≤ 1.72%, respectively, and

those on the basis of the other methods were ≤ 2.74%. Accordingly,

climate data and NDVI cannot always quantify the variation of

observed pH, which were relied on the algorithm chosen. The

suggested RF models of soil pH can be used to obtain soil pH of the

whole Qinghai-Tibet Plateau grassland in the past decades or even

the next hundred years, which can be benefit for soil pH

management. For example, soil acidification and salinization

under global change can be helped by the suggested RF models of

soil pH. The suggested RF models of potential and actual soil pH

can be also used to quantify the relative influences of climatic

change and humankind activities on soil pH.
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