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For many conifer species in dry conifer forests of North America, seeds must be

present for postfire regeneration to occur, suggesting that seed dispersal from

surviving trees plays a critical role in postfire forest recovery. However, the

application of tree fecundity and spatial arrangement to postfire conifer recovery

predictions have only recently become more common, and is often included at

relatively coarse scales (i.e., 30 meters). In this study, we mapped surviving trees

using lidar and created a spatially explicit estimate of seed density (seed shadows)

with 10 m, 50 m, and 100 m median dispersal distances. We estimated the

number of seeds produced by each tree using allometric relationships between

tree size and fecundity. Along with the seed shadows, we used a suite of

topographic variables as inputs to negative binomial hurdle models to predict

conifer seedling abundance in 131 plots following the 2018 Carr Fire in northern

California, USA. We compared models using each of the seed shadows to each

other as well as to a model using the distance to the nearest surviving tree, which

served as a baseline. All model formulations indicated that estimated seed

availability was positively associated with conifer regeneration. Despite the

importance of seed availability plays in regeneration and the substantial

differences in seed availability represented by the different seed shadows in

our analysis, we found surprisingly little difference in model performance

regardless of which seed shadow was used. However, the models employing

seed shadows outperformed the models with distance to the nearest live tree.

Although we have demonstrated a modest improvement in predicting postfire

conifer regeneration, the uncertainty in our results highlights the importance of

tree detection and classification in future studies of this kind. Future studies may

find it useful to consider other factors such as predation, site suitability, and seed

mortality as potential drivers of discrepancies between total and realized

dispersal kernels.
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1 Introduction

In recent years, wildfires in the western region of the U.S. have

become more frequent, larger, and more severe (Stevens et al., 2017;

Williams et al., 2019; Goss et al., 2020), and long-term warming and

prolonged droughts due to climate change are projected to increase

wildfire severity and length of season over the coming decades

(Wehner et al., 2017). As fire size and severity has increased, so has

the scale of tree mortality, with large, high severity patches

becoming increasingly common (Collins et al., 2017; Williams

et al., 2023). Therefore, there is an urgent need to understand the

mechanisms of forest regeneration. Nearly all conifers in the

western U.S. are obligate seeders, implying that natural

reforestation following fire requires a locally available seed source,

either from surviving trees or via adaptations such as serotinous

cones or soil seed banks (Turner et al., 1998; Stevens-Rumann and

Morgan, 2019). Many of the dominant species in the mixed conifer

forests of northern California are wind dispersed and lack either

serotinous cones or soil seed banks (Burns and Honkala, 1990),

though serotinous knobcone pine Pinus attenuata (Lemmon) is

found in the region (Reilly et al., 2019). In species lacking these

adaptations, the probability of postfire seedling establishment for

non-serotinous species typically declines with increasing distance

from the nearest surviving tree because wind dispersed seeds are less

likely to fall further from the source (Chambers et al., 2016; Coop

et al., 2019). Most conifer seed dispersal occurs over relatively short

distances, with most wind dispersed seeds falling within 100 m of

the parent tree, though distances may vary by tree height (Greene

and Johnson, 1989; Katul et al., 2005; Bullock et al., 2017). If seeds

rarely travel more than 100m, this suggests that the time required

for forests to naturally regenerate in the interior of large patches of

high tree mortality may be substantially more than areas closer to

the patch edge, as seed dispersal into areas further from the edge

relies on infrequent long-distance dispersal or the maturation and

subsequent reproduction from initial colonizers (Turner et al.,

1998). This timeline may be extended further by competition

from shrubs and hardwoods, which can more rapidly recolonize

severely burned areas via resprouting or persistent soil seed banks

(Knapp et al., 2012; Welch et al., 2016) and may compete with

regenerating conifers (Collins and Roller, 2013; Crotteau et al.,

2013; Tepley et al., 2017).

Seed availability is a critical component of the postfire recovery

process (Gill et al., 2022). One common approach is to approximate

seed availability with simple metrics such as distance to the nearest

surviving tree or unburned forest edge, which are easy to measure

and have a proven utility in predicting conifer regeneration

(Chambers et al., 2016; Korb et al., 2019). However, these

methods do not capture fine scale variation in seed availability,

which may be especially important in areas that experienced high

tree mortality but where there are multiple locations with surviving

trees within the range of most seed dispersal. For example, the

center of a circular patch of high tree mortality may receive

substantially more seed than would be suggested by simply

determining the nearest surviving tree, since the area would be

receiving seed from all trees within dispersal range (Peeler and

Smithwick, 2020). Simple distance models may also be less optimal
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when seed production capability varies across the landscape due to

variations in tree size, density, or both. While recent efforts have

been made to incorporate the fecundity and spatial arrangement of

trees into predictions of postfire regeneration (Tepley et al., 2017;

Shive et al., 2018; Downing et al., 2019; Peeler and Smithwick, 2020;

Stewart et al., 2021), few studies have attempted to do so at the scale

of individual trees (but see Landesmann and Morales, 2018).

Seed availability can be modeled using estimates for fecundity

and dispersal. Dispersal functions (kernels) use the distance from

the parent tree to create a spatially uniform (i.e., isotropic)

distribution describing the probability a seed will fall to the

ground a given distance from the source (Greene et al., 2004;

Nathan et al., 2008; Bullock et al., 2017). When combined with

allometrically derived estimates of annual seed production

(fecundity) (Greene and Johnson, 1994), these distributions can

be used to estimate seed availability at a given distance from a

surviving tree or group of trees for a given time after a fire event.

The combination of dispersal probability and fecundity is known as

a seed shadow (Clark et al., 1999a). Seed shadows have been used to

approximate seed availability across geographic space when

modeling the probability of postfire conifer regeneration (Shive

et al., 2018; Stewart et al., 2021). However, these recent modeling

efforts have relied on moderate resolution data such as 30 m burn

severity maps from Monitoring Trends in Burn Severity (MTBS,

https://www.mtbs.gov/), which may obscure fine-scale variation in

seed availability. Fine scale maps of surviving trees, such as those

created using fine scale imagery or lidar data, may more accurately

reflect the variation in seed source availability on the landscape, and

thus more closely represent true seed availability (Barber

et al., 2022).

In this study, we used data from one to three years after a severe

wildlife event (the 2018 Carr Fire) at Whiskeytown National

Recreation Area (WHIS) to assess the ability of seed shadows

derived from high-resolution maps of individual trees to predict

short-term postfire conifer regeneration. We also tested whether the

models using seed shadows outperformed models using distance to

the nearest live tree, assuming that the high performance and

simplicity of the distance models makes them an appropriate

baseline. In addition to estimates of seed availability, our models

also included variables for topography and shrub cover to assess the

influence of site characteristics on postfire conifer regeneration.
2 Materials and methods

2.1 Study area

Whiskeytown National Recreation Area is located at the

southeastern edge of the Klamath bioregion (Skinner et al., 2006)

in Shasta and Trinity Counties, just west of the city of Redding in

northern California. WHIS is over 17,000 hectares in size, and is

characterized by steep topography and high biodiversity, with a

wide variety of forest types including oak woodlands, knobcone pine

woodlands, mixed conifer and yellow pine forests, with true fir (red

and white) at high elevations (Fry and Stephens, 2006). Elevation in

WHIS ranges from 250 to 1,890 meters above sea level. The park
frontiersin.org
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also includes large areas of shrubland and sparsely-treed

woodlands, especially on the south-facing slopes north of

Whiskeytown Lake.

Common conifer species include ponderosa pine (Pinus

ponderosa), Jeffrey pine (Pinus jeffreyi), incense cedar (Calocedrus

decurrens (Torr.) Floren.), Douglas fir, sugar pine (Pinus

lambertiana Dougl.), and white fir (Abies concolor (Gord. &

Glend.) Lindl.). Knobcone and gray pine (Pinus sabiniana) are

common at low elevations, and some red fir (Abies magnifica var.

shastensis) is found in the high elevations of the park. A variety of

hardwood species are also found throughout the park, including

California black oak (Quercus kelloggii Newb.), canyon live oak

(Quercus chrysolepis Liebm.), tanoak (Notholithocarpus densiflorus),

golden chinquapin (Chrysolepis chrysophylla), and dogwood

(Cornus nuttallii Audubon). See Smith et al. (2021) for a detailed

description of vegetation found in the park.

Fires were historically common in the area but decreased in

frequency after 1850, with an almost complete absence of fire in the

latter half of the 20th century following the widespread adoption of

fire suppression (Fry and Stephens, 2006). However, fire has not

been completely absent in the last few decades. Starting in the mid-

1990s, the National Park Service introduced fuels reduction and

other restoration projects, often involving the use of prescribed fire.

In addition to these treatments, wildfire has also occurred within the

park boundary. Most notably, the Shasta-Trinity Unit Lightning

Complex Fire burned through the park in 2008, which burned 4% of

the park area at high severity (MTBS, 2018).

The Carr Fire started on July 23rd, 2018, and actively burned for

38 days before containment on August 30th the same year (https://

www.fire.ca.gov/incidents/2018/7/23/carr-fire). The fire burned

nearly 93,000 hectares, including nearly the entire area of WHIS,

destroyed over 1,000 homes in nearby communities, resulted in 8

human deaths, and had an estimated damage cost of >$1.6 billion

(USD). The fire occurred under abnormally hot, dry, and windy

conditions, and made significant runs when terrain and wind

aligned, burning a large portion of WHIS in a single 24-hour period.
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Our study focused on the yellow pine and mixed conifer forests

of WHIS, which covered over 5,200 ha within the park prior to the

Carr Fire (Figure 1). According to data produced by MTBS, over

65% of the conifer forests (3,450 ha) burned at high severity

(Figure 1, MTBS, 2020). High severity patches were extensive,

especially on the steep slopes of the Brandy, Boulder, and Mill

Creek drainages.
2.2 Field data

We leveraged field data from two separate sources for this

analysis. We used data from a preexisting network of 0.1 ha fire

monitoring (FMH) plots in WHIS, which are designed to monitor

changes in fuels and forest structure at random locations following

fire (USDI National Park Service, 2003). We selected all plots where

seedling density and overstory trees (>15 cm diameter at breast

height or 1.37 m, hereafter DBH) were sampled after the Carr Fire,

for a total of 23 plots. The FMH plot data captured species, DBH,

and status for all overstory trees in the plot based on a 15 cm DBH

threshold. The same information was collected for pole size trees

(stems ≤ 15 cm DBH) in 0.025 ha subplots. The FMH plots also

captured seedling tallies (stems ≤ 2.5 cm DBH) by size class,

species, and status in a 50 m2 subplot (0.005 ha). The FMH plots

also captured vegetation cover using two 50 m point intercept

transects, where species and height of vegetation was recorded at

30 cm intervals for a total of 166 points per transect. We averaged

the shrub cover estimates from both transects to get a plot level

estimate of shrub cover.

In addition to the FMH plots, we established a total of 108

0.1 ha plots in the summers of 2020 and 2021 (Figure 1). We

sampled plots over most of the elevation range of the park, with plot

elevations ranging from 330 to 1,870 m. For most of these plots (n =

76) we used GIS to randomly select sampling locations within

conifer forests according to the following criteria: no slopes > 50%,

> 50 m and < 500 m from a road, 100 m from non-vegetated areas
BA

FIGURE 1

(A) Location of forest plots, old growth, and conifer forests at Whiskeytown National Recreation Area. Forest types and old growth polygons were
derived from park data products circa 2006. (B) Monitoring Trends in Burn Severity (MTBS) burn severity map with previous fire perimeters (pattern
fill) overlayed. The inset shows the location of WHIS and the Klamath bioregion (in green). Klamath bioregion data downloaded from https://
databasin.org/datasets/4996c7e61a0e48f2bef646903f51b82b.
frontiersin.org
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(e.g., Whiskeytown Lake), and at least 50 m from one another. The

sampling locations were stratified across burn severity and

predicted regeneration. Regeneration was predicted using the

models developed in (Stewart et al., 2021) using the poscrptR R

package (Wright et al., 2020). We used vegetation alliance polygons

created for the National Park Service (Fox et al., 2006) to identify

conifer forests by selecting polygons with Douglas fir, mixed

conifer, ponderosa pine, or red fir forest alliance types. We

established 12 of the plots specifically in random locations within

unoccupied aerial survey (UAS) sampling areas to assist with future

vegetation mapping projects using the same criteria described

above, with the exception that plot locations were stratified by

burn severity and whether the forest alliance was conifer (described

above) or oak, including black oak, blue oak, canyon live oak,

interior live oak, Oregon white oak, and tanoak forest and

woodland alliances. We established an additional 20 plots to

match earlier randomly sampled plot surveys of old-growth

conifer forests (Leonzo and Keyes, 2010). Three of the original

plots from Leonzo and Keyes (2010) could not be reached due to

unsafe conditions, so we sampled three replacement plots using the

same random sampling criteria outlined in Leonzo and

Keyes (2010).

At each plot, we recorded DBH, species identity, and live and

dead status for all standing trees > 15 cm DBH over a 0.1 ha circular

plot. We measured sapling (stems 0.1 to 15.0 cm DBH) stem

diameter, species location and status in a 0.011 ha subplot at the

plot center. We also collected tallies of live seedlings (stems < 1.37 m

in height) in the subplot, recording species and height class (0.1–5,

5–10, 11–25, 26–50, 51–75, 76–100, and 100–136 cm). On nine

occasions the seedling subplot was reduced in size to 0.001 ha or

0.005 ha because the large numbers of seedlings present made larger

subplot sizes impractical. We also visually estimated the cover of

shrubs, forbs, and grasses within the plot area. Cover estimates were

binned into the following classes: 0–1%, 2–5%, 6–25%, 26–50%, 51–

75%, 76–95%, and 96–100%.

We normalized the data for each plot type (FMH and 0.1 ha

field plots) by putting basal area and seedlings on a common per

hectare scale and binning shrub cover into 25% class bins. Seedlings

were not always identifiable beyond the genus level, and we could

not determine the species of the lidar mapped trees from aerial

imagery. Therefore, we report results for our analyses on seedling

density for all conifers combined. We initially performed the

analysis at the genus level, with broadly similar results. Plot sizes

were similar between plot types, so we expected that any difference

in seedling detection probability between plot types due to sampled

area is likely to be small.
2.3 Seed availability

2.3.1 Individual tree delineation and classification
We mapped surviving tree locations using a combination of

lidar and high-resolution imagery. The detection of individual trees

from lidar works best on dominant trees whose crowns are clearly

visible from above (Maltamo et al., 2004). WHIS is structurally

diverse, with a substantial understory component (Leonzo and
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Keyes, 2010). Therefore, we assumed that trees detected using the

lidar data are in reality “tree approximate objects” (North et al.,

2017; Jeronimo et al., 2018) and may represent more than one

individual tree, though we refer to them as individual trees for

simplicity. Given the forest structure at WHIS, we likely

underestimated surviving trees and their associated seed

production. However, larger trees are of local interest (Leonzo

and Keyes, 2010) and generally produce more seed (Greene and

Johnson, 1994), so we expect that we have captured the overall

spatial trends in tree survival and seed production, even where the

absolute values deviate.

We developed a model for mapping individual tree mortality

status across the park. We used the lidR R package (Roussel et al.,

2020; Roussel and Auty, 2021) to create a 0.5 m resolution canopy

height model for the Whiskeytown footprint (grid_canopy and

p2r functions) from lidar collected in 2019 (8 points/m2, U.S.

Geological Survey, 2021). We further processed the lidar to find

individual tree points (locate_trees and lmf functions, 5 m moving

window and 7 m height threshold) and crowns (dalponte2016

function, Dalponte and Coomes, 2016). We derived point cloud-

based metrics for each crown following methods outlined in Marrs

and Ni-Meister (2019). We resampled high resolution (12 inch)

multispectral orthomosaic imagery (collected November 2018 for

the National Park Service by Eagle Digital Imaging, Inc.) to 1 m

resolution, which we then used to calculate the green normalized

difference vegetation index (GNDVI; [NIR-green]/[NIR+green]).

GNDVI was less sensitive to shadows than NDVI in our

exploration of potential model predictors. We then extracted

summary statistics of GNDVI for each crown. We generated

points for live (n=609) and dead (n=758) trees from manual

interpretation of the color infrared imagery and 2020 NAIP

imagery (https://www.usgs.gov/centers/eros/science/usgs-eros-

archive-aerial-photography-national-agriculture-imagery-

program-naip). We used a parameter selection algorithm model

(rf.modelSel from the rfUtilities package, parsimony=0.025,

Murphy et al., 2010) to reduce the number of predictor variables

for the final random forest model (randomForest R package,

Breiman, 2001; Liaw et al., 2002). Seven GNDVI metrics and

four lidar metrics were included in the final model (Table 1). We

partitioned the data into 80/20% training/testing data sets to

assess model performance. We used a random forest model with

default parameters to classify trees by their mortality status.

The tree mortality status model performed well, with 93.4%

overall accuracy, a Cohens’s Kappa of 0.87, sensitivity of 0.96, and

specificity of 0.91. The model correctly identified live trees with an

accuracy of 90.3% when we compared it to a separate validation

data set of live and dead trees generated using UAS imagery

(Thorne et al., 2023). Of the 2.23 million individual trees detected

across WHIS, 77.1% were classified as dead. However, we noticed

that there were occasional trees incorrectly classified as live within

large high severity patches, likely due to the presence of shrubs or

herbaceous vegetation within the tree crown footprint. Though

these trees were likely to have little to no influence on many of our

analyses, they would have a strong influence on calculating metrics

such as distance to the nearest surviving tree. Based on this

assumption, we used 2020 NAIP aerial imagery to manually
frontiersin.org
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check the mortality classification on all trees classified as alive that

were greater than 70 m from the nearest other surviving tree

(n=374); of these, 186 were manually reclassified as dead for

further analyses, often because of the presence of resprouting

shrubs underneath the dead tree. Of course, manually correcting

these trees did not address incorrectly classified dead trees in these

areas or any incorrectly classified trees in areas of greater tree

density. Regardless, due to the outsize influence an isolated tree can

have on the availability of seed, we felt that correcting the

misclassified isolated trees was the more conservative approach.

Rather than misclassification, we assumed that the omission of

smaller surviving trees would be the most likely error in areas of

high tree density and stand complexity because tree detection is

more difficult under these conditions (Jeronimo et al., 2018).

Omitting small trees likely lead to a subsequent underestimation

of available seed in these locations. However, large trees account for

the most basal area and produce the most seed (Greene and

Johnson, 1994), so we assume that the overall pattern of seed

dispersal is maintained.

We estimated diameter for each mapped tree using a height-

diameter allometric equation from (Parker and Evans, 2004), which

we parameterized using data from the Klamath Inventory and

Monitoring Network plots in WHIS (I&M, Odion et al., 2011).

Some sampling variability has been observed in the I&M tree height

measurements, so we averaged heights and diameters by tree from

the 2012 and 2015 sample dates. We fit the models using the brms

package (Bürkner, 2017) in R using a gamma likelihood with a log

link. It has been shown that including other predictors such as

crown diameter improves the predictive accuracy of height-

diameter equations (Jucker et al., 2017). However, since we did

not have access to field measurements of crown diameter, we elected

to use the univariate model. Model predictions are shown in

Supplementary Figure 1.
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2.3.2 Dispersal kernels
We produced isotropic kernels at 1m resolution for each of the

mapped surviving trees (described above) using a lognormal

dispersal function (Greene et al., 2004), shown below.

f (x) = (
1

(2p)1:5Sx2
)exp( −

ln(x=L)2

2S2
)

The values from the lognormal dispersal function represent an

estimate of the probability of seed dispersal at a given distance (x in

the equation above) from the parent tree on a two-dimensional

plane. The parameters L and S determine the median dispersal

distance and the standard deviation of the log distances, respectively

(Greene et al., 2004).

We were unable to estimate the parameters in the kernel

functions directly from our field data. Therefore, we calculated

seed dispersal probability for three parameterizations for each

kernel: short, medium, and long-distance, with the shape

parameter held constant at one following recommendations in

Greene et al. (2004) and scale parameter (median dispersal

distance) at 10, 50, and 100m respectively (Figure 2). During

preliminary analysis, we tried several other dispersal functions

including the WALD, log-hyperbolic secant, exponential power,

and inverse Gaussian, all of which had similar performance to the

lognormal function. We selected these functions because they

received good support in the literature (Katul et al., 2005; Bullock

et al., 2017; but see Cousens et al., 2018).

2.3.3 Fecundity and seed shadows
Larger trees are likely to produce more seeds (Greene and

Johnson, 1994; Krannitz and Duralia, 2004), so we calculated the

expected annual seed production of each tree using equations from

Greene and Johnson (1994). We estimated the individual seed mass

using average seeds per kilogram by species from Bonner and

Karrfalt (2008), using regionally specific values where possible.

Since we did not know the species for the lidar mapped trees, we

created a weighted seed weight coefficient for each field plot based

on the proportion of each species by basal area in the plot. We then

used the median of the plot-level values as the seed coefficient for

the fire. The equations in Greene and Johnson (1994) derive leaf

mass from basal area, which we estimated from the modeled tree

diameters described above. We converted the annual seed estimates

for each tree location to a raster surface with 1m resolution and

applied the lognormal dispersal function using a moving window

function from the terra package in R (Hijmans, 2022) to create the

seed shadows for each of the different kernel parameterizations.

Finally, we extracted the estimated seed rain for each seedling

subplot and converted it to the estimated total expected seed

availability at the plot in seedlings per hectare by multiplying the

predicted seed rain by the number of seed-producing seasons

between when the fire was contained and when the plot was

sampled. We assumed that the seed producing season was from

September to December.

To visually demonstrate the variation in different kernel

parameterizations, we plotted the seed shadows for the area
frontiersin.o
TABLE 1 Final predictor variables and model importance for tree
mortality random forest model.

Predictors Source Importance

GNDVI Median Orthoimagery 346.0

GNDVI Mean Orthoimagery 286.7

GNDVI 90th percentile Orthoimagery 217.2

GNDVI Sum Orthoimagery 187.9

GNDVI Min Orthoimagery 81.7

Lidar Intensity SD Lidar 65.7

Proportion of 1st returns Lidar 43.4

GNDVI Max Orthoimagery 34.8

Proportion of 3rd returns Lidar 34.7

GNDVI SD Orthoimagery 16.4

Proportion of 2nd returns Lidar 15.5
Metrics were extracted from each tree approximate object crown. GNDVI, green normalized
difference vegetation index; SD, standard deviation. We sourced the orthoimagery from the
National Park Service and the lidar data from the USGS National Map Lidar Explorer.
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200 m surrounding a plot that burned at high severity with

complete basal area mortality (Figure 3). The plot is >70 m from

the nearest surviving tree, but with many surviving trees in the

surrounding area, especially to the north and west. We subjectively

selected the area surrounding this plot because there were few

surviving trees in the area immediately surrounding the plot but

many surviving trees nearby. This image shows the potential effect

of different kernel parameterizations on estimated seed availability.
2.3.4 Distance to live tree
We calculated the distance to the nearest surviving tree to use as

a comparison with expected seed availability at each plot. This

estimate is not a seed shadow, though we assumed that it functioned

as a proxy for the amount of seed available at the plot location.
2.4 Topography

We used whitebox tools (Wu, 2021) to estimate topographic

wetness index from a 1 m-resolution lidar digital elevation model

(DEM). First, we breached depressions to remove sinks. We then

calculated D-infinity flow direction and flow accumulation for each

cell, which we used to calculate topographic wetness index:

wetness index = Ln(flow accumulation=tan(slope)))

We calculated heat load index following methods outlined in

McCune and Keon (2002) using the spatialEco package (Evans,

2021). We extracted the average heat load index, topographic

wetness index, slope, and elevation from the 1 m DEM for the

area of each seedling subplot.
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2.5 Analysis

We used the brms package (Bürkner, 2017) in R (R Core Team,

2021) to fit Bayesian generalized linear models estimating the

influence of estimated seed availability, shrub cover, topographic

wetness index, elevation, and heat load index on postfire conifer

regeneration. There were several plots without seedlings, so we used

negative binomial hurdle models to estimate both the influence of

covariates on the probability of encountering no conifer seedlings as

well as the effects on conifer seedling abundance, conditional on

their being present (Steel et al., 2013). The model takes the following

form:

P(Yi = yi) =
pi = logit(b0 + bxi xi) yi = 0

(1 − pi)
NB(m,f)

1−NB(m,f) yi > 0

(

Where NB is the negative binomial distribution, b0 is the

intercept, and bxi are the regression coefficients for the ith

predictor. The count portion of the model is a zero truncated

negative binomial with a log link and shape parameter f:

NB(m = exp(b0 + bxi xi), f)

We used the same predictors in the hurdle and count portions

of the model.

We fit separate models with different seed availability variables:

three models with seed shadows derived using each of the three

dispersal function parameterizations, and an additional model that

used the distance to the nearest surviving tree. We standardized all

continuous predictors by subtracting the mean and dividing by two

standard deviations, which puts continuous and binary predictors

on a common scale (Gelman, 2008). We used weakly informative
FIGURE 2

Estimated seed density for each of the kernel function parameterizations for a hypothetical tree producing 10,000 seeds.
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priors in all models, where b0 is the intercept, bx are the regression
coefficients, and f is the shape parameter of the negative binomial

distribution:

b0 ∼ N (0, 10)

bx ∼ N (0, 5)

f ∼ G(0:2, 0:2)

We ran all models for 2,000 iterations and ensured that all R̂

values did not exceed 1.01. We checked the model fit using posterior

predictive checks and leave-one-out cross-validation (LOO, Vehtari

et al., 2017). We compared models using the expected log pointwise

predictive density ( ^elpd ), which estimates the predictive accuracy of

the model for each data point held out during LOO (Vehtari et al.,

2017). Models can be compared by differencing ^elpd estimates

(D ^elpd ), and the standard error of D ^elpd can characterize the

uncertainty in the model comparison. Generally, models with D
Frontiers in Ecology and Evolution 07
^elpd of less than four have similar predictive performance (Sivula

et al., 2020). Here, we report the on the parameters for the model

with the highest ^elpd . We calculated mean absolute error (MAE) for

each model as an additional measure of model performance. Along

with conditional effects for the hurdle and count portions of the

model, we report the probability of direction, which describes

the probability that the parameter is the same sign as the median

of the posterior distribution (Makowski et al., 2019).

Several plots were located in areas that burned multiple times,

including 26 in the 2008 Shasta-Trinity Unit Lightning Complex

fire. Reburned areas may have lower conifer regeneration than

similar areas that have not experienced recent burns if surviving

seed trees are killed (Tepley et al., 2017; McCord et al., 2020). We

assumed that multiple burns would largely effect any regeneration

we observed by removing potential parent trees. We modeled seed

availability from the mapped surviving trees, so we elected not to

include whether a plot was reburned in any of the models as this

was unlikely to add additional information. The data can be found

at Wright et al. (2023).
B

C D

A

FIGURE 3

Orthophoto and maps of seed shadows for a 200 m area surrounding a plot in a high severity patch with extensive tree mortality. The plot area is
shown as a white circle, plot area is to scale. Orthophoto shown in false color infrared. (A) 10 m median dispersal distance. (B) 50 m median
dispersal distance. (C) 100 m median dispersal distance. (D) False color infrared orthophoto (National Park Service, unpublished data).
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3 Results

Conifer recruitment was found at most plots throughout the

park. Out of the 131 plots, 35 (27%) did not have any conifer

seedlings. Average seedling density for all conifers combined was

2,265 stems per hectare (Figure 4). Abies, Pinus and Calocedrus had

the similar average seedling densities, with 703, 635, and 737 stems

per hectare, respectively. Pseudotsuga seedlings were rare, found in

only 29 plots, with the lowest average seedling density of 189 stems

per hectare.

Oak regeneration was also widespread throughout the fire; 101

plots had either Quercus or Notholithocarpus regenerating in the

plot, usually resprouting from topkilled trees.

There were considerable differences in the seed shadows we

produced, depending on parameterizations (Figure 3).

Unsurprisingly, seed shadows parameterized with short distance

kernels (10m median dispersal distance) were much more

concentrated around the source trees, with no predicted seed

presence in the plot. In contrast, the estimates created with

medium and long-distance parameterizations (50 and 100 m

median dispersal distance, respectively) showed more widespread

seed availability but at relatively low densities, especially for the

long-distance parameterization.

All plots were within 321 meters of at least one surviving tree

(Figure 5), with a median distance of 21 meters and 119 plots within

100 meters of a surviving tree.
3.1 Model results

LOO suggested that the models using seed availability extracted

from seed shadows modestly outperformed the model using simple

distance to live trees (Supplementary Table 1, Figure 6), with ^elpd

greater than four at least one standard error from zero. The medium

distance model had the highest ^elpd , though there was little
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evidence for major differences between the models using seed

availability extracted from seed shadows with ^elpd less than four

in all cases. The short distance dispersal model had the lowest MAE,

but MAE was similar across the seed shadow models. As with LOO,

MAE suggested that the distance to live tree model had the worst

performance, with D MAE of 186 then the next best model. As with

LOO, MAE for the models using dispersal kernels were very similar,

although the model using the short-distance dispersal had lower

MAE than the medium-distance model.

The medium distance model selected by LOO suggested that

increased seed availability was associated with increased conifer

seedling presence and density (Figures 7, 8), with probability of

direction approaching 1 for both the hurdle and count components

of the model. The effects of elevation were more uncertain. The best

performing model indicated that increasing elevation resulted in

fewer seedling observations (probability of direction 0.96), though

there was little strength of evidence for a similar effect on seedling

abundance (probability of direction 0.58). There was also little

evidence for a consistent effect of topographic wetness index on

either seedling presence or abundance, with probability of direction

0.78 and 0.56, respectively). There was some evidence that conifer

seedlings were less likely to be found in areas with a high heat load

index (probability of direction 0.95). The effect of heat load index on

seedling density was more uncertain, but also suggested a positive

relationship (probability of direction 0.87).

The effects of shrub cover were mixed. The model suggested that

conifer seedlings were more likely to be observed (hurdle portion of

the model) with shrub cover in the 26–50% range than in 0–25%

(probability of direction 0.91), though the model also suggested that

seedling abundance (density portion of the model) was lower in the

26–50% shrub cover class than in lower shrub densities (probability

of direction 0.94). Evidence was much weaker for effects in the higher

shrub cover classes (probability of direction below 85% in all cases),

though it should be noted that the highest two shrub cover classes had

very few observations (five and six plots, respectively).
FIGURE 4

Empirical cumulative distribution function of conifer seedling density by genus.
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4 Discussion

For the bulk of obligate seeding conifers lacking serotinous

cones, spatial variability in fire-related tree mortality will determine

the availability of seeds and thus the spatial variability in

regeneration following the fire event (Gill et al., 2022). There is a

vast literature demonstrating this using a variety of methodologies

at a variety of scales (Korb et al., 2019; Peeler and Smithwick, 2020;

Gill et al., 2022). However, relatively few studies have incorporated

variation in the spatial arrangement and fecundity of surviving trees

at fine spatial scales. Our results suggest that incorporating fine scale

estimates of seed availability can improve estimates of variability in

postfire conifer regeneration.

Though the models with seed availability derived from seed

shadows generally outperformed the models using the distance to

the nearest surviving tree, the performance gain from the simple

distance model was less than expected. This may be explained in

part by species-specific variation in postfire dispersal capability. For

example, the presence of serotinous knobcone pine in 15 of the low-

elevation plots might have muted the effects of any dispersal model
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since the parent tree does not need to survive the fire for seeds to

disperse. In addition to species-level differences, we were unable to

precisely determine the species of the lidar mapped trees, including

whether each mapped tree was indeed a conifer. Though our study

was largely performed in conifer dominated areas and all but two

plots had conifers present, tree misclassification as either conifer or

live almost certainly drove a large part of the uncertainty in

our results.

As expected, seed availability was associated with increased

seedling presence and density. However, we did not observe the

highest seedling densities in the places with the greatest estimated

seed availability. Instead, the highest seedling densities were

observed in plots with estimates of between 50 and 100 seeds per

square meter (Supplementary Figure 2). High seed availability was

most often observed in areas with a high density of surviving trees.

This may be due to competition and shading from surviving trees,

which can inhibit seed germination (Kroiss and HilleRisLambers,

2015). This pattern is also reminiscent of the Janzen-Connel effect

(Janzen, 1970; Connell, 1971), which suggests that seeds and

seedlings face higher predation levels where they are most
FIGURE 6

D ^elpd and mean absolute error (MAE, ± SE) for all models. D ^elpd is a relative measure against the model with the best ^elpd in the set, so the models

with the greatest predictive power have D ^elpd estimates of zero.
FIGURE 5

Histogram of the distance to the nearest surviving tree to each plot in meters.
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abundant, that is near the parent tree. These effects have been

demonstrated in some forest types (Steinitz et al., 2011; but see

Hyatt et al., 2003). While an investigation of the Janzen-Connel

effect is beyond the scope of this work, we mention it here as

another possible mechanism contributing the uncertainty in

our results.

Elevation had the most influence on conifer regeneration of all

the topographic variables in the hurdle portions of the model. This is

likely due in part to the prefire distribution of conifer trees

throughout the park. Conifers are more prevalent with increasing

elevation and are typically only dominant above ~1,500 m at WHIS

(Smith et al., 2021). The effect of elevation may also be attributed to

increased moisture availability and lower temperatures (Dodson and

Root, 2013). The lack of a notable effect of elevation on seedling

abundance may have been affected by the distribution of species

along the elevation gradient, especially due to the presence of

serotinous knobcone pine at lower elevations which reproduce in

great numbers following fire events (Keeley et al., 1999). However,

without reliable species identification for the potential parent trees,

we were unable to disentangle the effects of species distribution from

other potential mechanisms.

Our model indicated that the probability of seedling

establishment was lower in areas with higher heat load index,
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though the strength of evidence for this effect was relatively low.

This is similar to the findings of Boag et al. (2020), who found that

greater heat load index resulted in a reduced probability of conifer

regeneration, though the strength of the effect varied by species. As

with elevation, species distributions may explain some of the

uncertainty in our results. There was also little evidence for a

consistent effect of topographic wetness index. We expected that

conifers would be more likely to regenerate in more mesic areas, so

the reason for the uncertainty in our results is unclear. Harvey et al.

(2016) did not find a substantial relationship between Pseudotsuga

regeneration and drought severity, noting that it is relatively drought

tolerant. However, the variation in drought tolerant species in our

study area suggests that this explanation may be insufficient at WHIS.

We found considerable uncertainty in the relationship between

shrub cover and conifer regeneration, though there was some

evidence for a facilitative effect for up to 50% shrub cover on

seedling establishment but not density. These results are consistent

with previous work. Observations from the nearby Sierra Nevada

have shown shrub cover to have a complex association with postfire

conifer recruitment, with both facilitative and competitive effects

(Gray et al., 2005; Collins and Roller, 2013). Within the Klamath

bioregion, the prevalence of shade tolerant conifers (Donato et al.,

2009) and the facilitative effects of shrubs on local microsite
FIGURE 7

Model predictions of probability of observing zero conifer seedlings (± 95% credible intervals) for each predictor in the model with the highest ^elpd:
Predictions are made holding all other variables constant. Note the different axes scales.
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conditions (Irvine et al., 2009) may enhance postfire recruitment.

Shatford et al. (2007) found that while shrubs did seem to influence

seedling density, the effect varied by species and competition from

shrub cover did not seem to meaningfully affect the presence of

conifer regeneration. We suspect the uncertainty in our results was

likely influenced at least in part by relatively few observations we

had in high (i.e., >50%) shrub cover. Additionally, our study

occurred relatively soon after the fire, when the initial pulse of

regenerating conifers established at a similar time to the shrubs,

giving these conifers a competitive advantage relative to conifers

that may establish later (Tepley et al., 2017).

Approaches such as we have presented here can be used to help

improve postfire conifer regeneration tools such as poscrptR

(Wright et al., 2020), particularly by incorporating fine scale seed

dispersal and tree mortality information. Incorporating finer scale

(i.e., less than 30 m resolution) mortality and regeneration data into

future modeling efforts may be particularly important given the

projections of a warmer and dryer climate in dry conifer forest

regions, which is linked to more severe and frequent wildfires

(Abatzoglou et al., 2017; Williams et al., 2019). Furthering the

understanding of fine-scale variation in regeneration potential will

help inform management intervention and future modeling efforts.
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4.1 Limitations

We were unable to directly parameterize the dispersal kernels

we used to create the seed shadows, so we chose to limit our analysis

to isotropic kernels, even though anisotropic kernels generally

outperform simple isotropic kernels where they have been applied

(Savage et al., 2011). Because we selected the parameterizations a

priori, we were necessarily limited in the possible number of

parameterizations that could reasonably be assessed, as well as the

number of potential variables that may influence the seed shadows.

For example, we elected to ignore the influence of terrain and wind.

The effect of wind on seed dispersal is well documented (Greene and

Johnson, 1996; Sánchez et al., 2011; van Putten et al., 2012), though

the results for the influence of terrain have been more mixed and are

likely scale- and species-dependent (Donato et al., 2009; Katul and

Poggi, 2012; Peeler and Smithwick, 2020). There is little doubt the

rugged, steep terrain inWHIS had some influence on seed dispersal,

not the least of which is the effect terrain would have on local wind

patterns. We also ignored the effect neighboring trees and other

obstacles might have had on seed dispersal, which likely contributed

to model error because seeds can disperse further when the parent

tree is in or near an open area than when it is surrounded by
frontiersin.o
FIGURE 8

Model predictions of conifer seedling density in stems per hectare (± 95% credible intervals) for each predictor in the model with the highest ^elpd:
Predictions are made holding all other variables constant. Note the different axes scales.
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neighbors (Greene and Johnson, 1996). Our models also attempted

to associate established seedlings with seed shadows that were

modeled assuming a single dispersal agent (i.e., wind), ignoring

any potential additional dispersal agents that may have changed the

distribution of seeds, such as the movement of cones or seeds by

animals (Rogers et al., 2019).

Additionally, seed availability does not necessarily directly

translate to seed establishment and survival. Millerón et al. (2013)

found large disparities between seed dispersal kernels and kernels

from established saplings, suggesting that dispersal alone is

insufficient to capture patterns in recruitment and survival.

Although we attempted to include variables that might

distinguish between site quality and thus the probability of

seedling establishment, we simply could not precisely determine

the effects of site quality (i.e., soil moisture or temperature, see

Wooten et al., 2022) with our data. For example, the presence of

downed logs and shrubs can provide protection and increase soil

moisture for regenerating seedlings (Tappeiner and Helms, 1971;

Landesmann and Morales, 2018; Marcolin et al., 2019).

Furthermore, many conifer seeds are consumed by small

mammals and birds before germination (Gashwiler, 1970; Zwolak

et al., 2010), which would change the distribution of available seed if

the predation pressure was not spatially uniform (Janzen, 1970;

Connell, 1971). Beyond predation, the factors influencing seed

germination and seedling survival are complex, and include

climate, competition, and abiotic factors (Irvine et al., 2009;

Tepley et al., 2017; Stewart et al., 2021). We expect that the

influence of climatic variables on postfire recruitment will become

more apparent in coming years, especially since temperature has

been unusually high in the postfire years (data not shown).

We tried to account for variation in fecundity with tree size when

calculating estimates of seed availability, and to consider the amount of

time available for seeds to disperse by including the number of seasons

between the fire and when the plot was sampled. However, there is

temporal variation in seed production in most conifer species (Clark

et al., 1999b). Masting, the synchronization of periodic seed production

between plants (Kelly, 1994), may also have influenced conifer

regeneration after the Carr Fire. Masting has been demonstrated in

many conifer species, including many of the species included in this

study (Wright et al., 2021). Whether or not we sampled following a

mast year undoubtedly influenced the total number of seedlings

available, and thus the error between real and estimated seed

availability. Finally, there was likely substantial model error arising

from our inability to identify the species or even survival status of trees

using aerial imagery or lidar, which may have obscured the advantages

of modeling seed dispersal using individual tree locations.
5 Implications

Understanding the spatial variation in tree survival and seed

availability is fundamental to understanding variability in postfire

conifer regeneration, and therefore ecosystem recovery. However,

simple metrics such as distance to surviving tree may not adequately
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capture the potential variation in seed dispersal or establishment.

Indeed, our analysis demonstrates that models of dispersal at the

tree level may also be inadequate to fully describe regeneration if

they do not accurately capture variation in fecundity and dispersal

(i.e., masting and anisotropy) or in establishment and survival

(i.e., variation in microsite and predation). Spatial variation in

conifer regeneration will drive forest recovery and structure in the

years to come, including determining future fires through their

effects on fuel availability (Tepley et al., 2018).

Our analysis suggest that successful postfire conifer

regeneration is most likely to occur in areas where seed sources

are available within a relatively short distance, at least in the years

immediately after fire. These results highlight the importance of

isolated surviving trees, which may serve as the only locally available

seed source in areas of extensive tree mortality. The spatial

arrangement, seed production, and seed dispersal characteristics

of these surviving trees control both the rate and the possibility of

forest recovery at WHIS. These results also highlight the

importance of future disturbances such as drought and wildfire to

forest recovery trajectories, since the death of isolated trees and

those in small refugia may have an outsize influence on forest

structure for years to come.
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