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The large-scale development and utilization of shale gas is significant for

achieving the “Carbon Peak and Carbon Neutrality” goals. However, addressing

the ecological environmental challenges stemming from extensive hydraulic

fracturing is imperative. Drawing from the successful exploration and

development of shale gas in the Sichuan Basin, this paper employs a

bibliometric approach and utilizes the Web of Science database as its data

source to review the impact of shale gas development on the ecological

environment. Furthermore, effective strategies for achieving coordinated

development of shale gas benefit exploitation and ecological environmental

conservation in China are identified. The findings highlight that the ecological

impact of shale gas development has been a major focus of research over the

past decade, primarily involving concerns such as water resources consumption,

groundwater pollution, methane emissions, and waste management. These

challenges can be addressed by adopting measures such as responsible water

usage, maintaining well integrity, proper storage and disposal of fracturing

flowback fluids, and appropriate management of drilling solid waste. The key

to achieving green and efficient shale gas development in China lies in

constructing a solid theoretical framework for benefit exploitation, refining

environmental management standards and regulations, and promoting the

development of clean production technologies specific to shale gas.

Additionally, establishing a distinct exploration and development theory and

fostering technical innovation for deep shale gas (buried depth > 3500m) are

pivotal for enhancing and stabilizing production in China. Clarifying the

theoretical logic of benefit development and improving the environmental

protection law of shale gas development are of great significance for realizing

the scale benefit development of shale gas and the harmonious development of

ecological environment in China.

KEYWORDS

ecological environment, hydraulic fracturing, fracturing flowback fluid, shale gas,
benefit development, cleaner production, coordinated development
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1 Introduction

Shale gas is a green, low-carbon, clean, unconventional natural gas

resource. Its development meets the demand for energy consumption

and optimizes the energy consumption structure (He et al., 2022; Li,

2022; Liu, 2023). By utilizing shale gas, carbon emissions can be

reduced, effectively mitigating climate warming (Wang, 2022; Cai,

2023; Hu et al., 2023; Liu and Guo, 2023). China possesses the

world’s largest reserves of technologically recoverable shale gas,

accounting for 15% of the global total (Li et al., 2022a; Zhang K.

et al., 2022; Li H. et al., 2023). Currently, China has established four

national shale gas demonstration zones, namely Fuling, Changning-

Weiyuan, and Zhaotong (Zhu et al., 2023). In 2022, China witnessed a

remarkable surge in shale gas production, reaching 230 × 108 m3,

indicating a rapid growth trajectory. However, shale formations in

China present distinctive characteristics such as an ancient formation

age, heterogeneous distribution across stratigraphic layers (primarily

including the Cambrian Qiongzhusi Formation, Ordovician Wufeng

Formation, and Silurian Longmaxi Formation), considerable burial

depth (> 3000 m), active tectonic activity, and intricate surface

conditions and thermal evolution history (Li et al., 2019; Fan et al.,

2020; Fan et al., 2022; Li et al., 2022b). During shale gas development,

leading technologies such as horizontal and cluster wells, and hydraulic

fracturing are employed (Jabbari et al., 2017; Dou et al., 2022).

Although shale gas belongs to clean energy, and the amount of

greenhouse gas emitted by combustion is lower than that of coal and

oil, the economic development can only be obtained through fracking

and horizontal drilling technology, which has different degrees of

impact on the ecological environment (Kargbo et al., 2010; Howarth

et al., 2011a; Howarth et al., 2011b; Schnoor, 2012). In recent years, the

following studies have been carried out: (1) The impact of the use of

fracking fluid and fracturing flowback fluid on local water quality

(Jiang et al., 2014; Kondash et al., 2017; Zhang Y. et al., 2022); (2)

Evaluate water consumption and greenhouse gas emissions by life cycle

assessment methods (Laurenzi and Jersey, 2013; Kondash et al., 2018);

(3) Compare the greenhouse gas emissions of shale gas and other

energy sources to assess whether it can improve air quality (Qin et al.,

2017; Xie et al., 2019). They have provided important ideas for the

development of shale gas in the United States, Canada and other

countries, and has formed sound environmental protection laws and

regulations. However, if we only copy their experience and methods, it

is difficult to promote the sustainable high-quality development of shale

gas in China, and clarify the ecological environment protection ideas is

of guiding significance to realize green development of shale gas.
2 A bibliometric review of the
environmental impacts on shale
gas development

2.1 Literature analysis

Water usage in shale gas exploration and development is

predominantly concentrated in several stages, including pre-

drilling preparation, drilling, fracturing, and testing (Figure 1A).
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The fracturing stage alone accounts for over 95% of water

consumption, with potential environmental impacts extending to

water resources, surface water, groundwater, the atmospheric

environment, noise, and road traffic, among other factors (Shi

et al., 2020). The most significant environmental concerns

associated with shale gas development revolve around water

resource consumption and pollution. Critical sources of water

contamination include drilling operations, hydraulic fracturing

processes, flowback fluids, and methane gas leakage. These

pollution sources are prevalent throughout various stages,

encompassing drilling, hydraulic fracturing, flowback, and

treatment procedures. Addressing these issues is crucial for

sustainable and responsible shale gas operations, ensuring the

protection of water resources.

In this paper, we employed bibliometric methods to analyze

relevant literature from the Science Citation Index Expanded (SCI-

E) database and the Chinese National Knowledge Infrastructure

(CNKI). The search query was as follows (on May 28, 2023): Title is

“Shale Gas” or “Hydraulic Fracturing” and the subject is

“Environment”. The findings demonstrate a significant increase in

research on shale gas development and its environmental

implications since 2010, both domestically and internationally, as

depicted in Figure 1B. However, it is evident that domestic research

in this field lags behind that of international counterparts. CNKI

data show that since Li et al. analyzed the formation conditions of

shale gas resources in North America in 2009 (Li et al., 2009), the

number of research papers reached the most of 96 in 2016

(Figure 1C). It does not imply a shift in the focus of discussion

but rather indicates that domestic scholars have published more

papers in SCI-E database source journals, with a rapid increase

observed since 2012 (Figure 1D). From 2018 onwards, the number

of related papers published by Chinese scholars, both domestically

and internationally, has remained consistently high (Figure 1E), and

it is also a stage of rapid development of shale gas development in

China. Moreover, China contributes to 75% of the research papers,

surpassing other countries, with the United States ranking second

(Figure 1F). This further confirms the sustained attention of our

government and scholars to this research field.
2.2 Overview of the impact of
shale gas development on the
ecological environment

Shale gas hydraulic fracturing extraction may pose the following

potential hazards to the environment, including contamination of

groundwater resources, pollution of surface water, gas leaks,

geological hazards associated with hydraulic fracturing, and land

occupation and landscape destruction (Vengosh et al., 2014). Among

these, scholars’ research on water resource contamination (surface

water and groundwater) and gas leaks has received more attention

(Yang et al., 2013; Xu and Gao, 2020). In recent years, many

researchers have also started to focus on the possibility of seismic

activities induced by hydraulic fracturing (Skoumal et al., 2018).

The United States was the first country to conduct research on

the environmental impacts of shale gas development, with a
frontiersin.org
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particular focus on issues such as methane contamination of

groundwater, flowback fluids from hydraulic fracturing, drilling

solid waste, water resource concerns, and greenhouse gas emissions

(Gregory et al., 2011; Osborn et al., 2011). Alongside these research

efforts, there have been corresponding technological advancements

and innovations. Due to different attitudes towards ecological

pollution, hydraulic fracturing or shale gas production has been

prohibited in many parts of the United States (such as New York,

Maryland, Washington, and California). In addition, France,

Bulgaria, Denmark, the Netherlands, Germany, the United

Kingdom, and other countries have also banned and restricted

shale gas production (Liu et al., 2023a).

Shale gas development in China is later than in the United States and

Canada. At first, it mainly refers to foreign exploration and development

experience to conduct shale gas resources evaluation and exploration. In

China, the impact of shale gas exploitation on the ecological environment

has been discussed for many years, and it is clear that shale gas plays a

positive role in reducing carbon and improving the ecological

environment. However, some environmental problems exist, such as

water consumption, groundwater pollution, methane escape, waste

disposal, etc. In terms of understanding the impact on water resources,

a statistical analysis of the water consumption during hydraulic

fracturing in areas such as Changning and Weiyuan reveals relatively

low water usage. However, it is crucial to prioritize preventing and
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controlling water pollution as an important task (Wu et al., 2019). On the

premise of ensuring wellbore integrity and proper storage and disposal of

waste, shale gas development will not affect groundwater quality.

Greenhouse gas emissions from the shale gas industry chain are

relatively low relative to the national level (Wang et al., 2017). The

disposal method of fracturing backflow fluid with a “large amount of

reuse, a small amount of reinjection” and “the new technology, the new

method” can effectively reduce groundwater pollution. Shale gas is

generally recognized as a low-carbon and clean energy source in line

with the “carbon peak and neutralization”. Most greenhouse gas

emissions occur during hydraulic fracturing and production testing

stages. However, the development of shale gas also carries

environmental risks. To prevent pollution risks, it is essential to adopt

measures such as responsible water extraction, ensuring the integrity of

wellbores, and implementing proper storage and disposal methods for

flowback fluids and drilling solid waste (Liu et al., 2023a).
3 Progress in the clean production
of shale gas

Avner Vengosh and his colleagues studied the risks of hydraulic

fracturing on water resources. They identified four main potential

risks associated with shale gas development. These risks cover
A B

D

E F

C

FIGURE 1

Research papers of the environmental impacts on shale gas development at home and abroad (as of May 28, 2023). (A) Main links of water
consumption in shale gas exploration and development (Shi et al., 2020); (B) The number of research papers worldwide; (C) The number of papers
in domestic CNKI; (D) The number of SCI papers published by domestic scholars; (E) The number of papers published by Chinese scholars; (F) The
main areas for the number of global papers.
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various aspects (Figure 2A). Firstly, hydraulic fracturing may lead to

the release of hydrocarbons from shale into shallow aquifers,

impacting water quality. Secondly, shale formations may contain

toxic and radioactive elements, and during the hydraulic fracturing

process, leaks or spills could allow these elements to enter water

resources, posing potential hazards to water quality and the

environment. Thirdly, proper treatment and handling of the

wastewater generated by hydraulic fracturing are necessary to

prevent leaks or spills that could result in pollution risks to water

quality and the environment. Finally, the significant water demand

of hydraulic fracturing may create pressures on local water
Frontiers in Ecology and Evolution 04
resources, especially in regions facing drought or water scarcity

(Vengosh et al., 2014). In general, scholars focused on three aspects

of the impact of shale gas development on the environment,

namely, methane will cause pollution of underground water

sources, greenhouse gas footprint during shale gas fracking, and

the impact of waste disposal (especially fracturing flowback fluid)

on the environment (Entrekin et al., 2011; Howarth et al., 2011b;

Osborn et al., 2011; Yao and Sui, 2020). Especially they used

combined processes such as solid-liquid separation, chemical

flocculation, oxidation, and thermal distillation to the treatment

of fracturing flowback fluid. Then it is used for preparing water
A

B

FIGURE 2

Effect of shale gas hydraulic fracturing on water resources (A) (Vengosh et al., 2014) and typical fracturing backflow treatment process in China
(B) (Liu et al., 2023a).
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fordrilling mud, water-based fracturing fluid, cementing

cement slurry, etc., further improving the reuse efficiency of the

fracturing flowback fluid. After intense discussion, it was clear that

shale gas development has different impact on the ecological

environment. However, it can be effectively solved by formulating

a strict environmental protection legal system, an effective

monitoring system and a government support system (Liu et al.,

2023a; Ye et al., 2023).

In view of the regional geological situation, ecological environment,

and water pollution of shale gas in China, we have formulated relevant

standards, technical norms, laws, and regulations on environmental

protection, wastewater discharge, underground reinjection, waste

discharge, solid waste pollution, noise discharge, contaminated site

restoration, ecological protection, etc., to protect further and reduce the

impact of shale gas exploitation on the environment. The main target

pollutants of shale pressure fracturing backflow treatment are chloride,

organic matter, ammonia nitrogen, total ammonia, and so on. The

treatment efflux process should include solid-liquid separation,

softening, organic matter removal, desalination, and other main

modules (Figure 2B). A relatively perfect treatment technology for

fracturing backflow fluid has been formed in China’s main shale gas

development areas. Generally, the basic process route of pre-treatment

+ membrane concentration + evaporation crystallization can be

adopted, but the specific treatment process should be tested and

verified according to the quality of raw water (Zhang K. et al., 2022).

The treatment technology mainly includes physical sewage treatment

technology (membrane separation, centrifugation, etc.), chemical

sewage treatment technology (neutralization, flocculation,

sonochemical oxidation, and pre-chemical treatment of sand settling

tank, etc.), biological treatment technology (activated sludge method,

biological filter, etc.).
4 Discussions and recommendations

Shale gas is indeed widely acknowledged as a clean energy source.

While there are concerns regarding its environmental impact during

the development process, it is possible to achieve the benefits of shale

gas development while meeting the “dual carbon” goals through

appropriate policies, advanced technologies, stringent regulations,

and proper guidance. In China, achieving the clean development of

low-carbon energy and ensuring strict adherence to the ecological

environment’s bottom line amidst high-intensity development pose

significant technical challenges. Transforming ecological environment

constraints into a driving force for green innovation represents a

world-class endeavor.
4.1 Establishing the theoretical logic for
the efficient development of shale gas and
promoting its large-scale benefits

Shale gas development holds great significance in ensuring

national energy security, optimizing the energy structure, and

promoting economic and social development. It involves multiple

stakeholders, including the government, companies, and the general
Frontiers in Ecology and Evolution 05
public, who are all invested in the efficient development of shale gas.

From a national perspective, the development of shale gas has

positive effects on energy structure and supply optimization,

contributing to increased energy self-sufficiency and bolstering

national energy security. From the companies’ perspective,

efficient shale gas development becomes the dominant strategy for

investment decisions as it aims to increase production and control

costs. From the perspective of resource regions, shale gas

development plays a significant role in promoting economic and

social development (Liu et al., 2023b). Therefore, shale gas

development has obvious economic, safety, environmental, and

social benefits and is a collection of multiple benefits. Clarifying

the theoretical logic of shale gas benefit development is helpful in

promoting the benefits development of shale gas in China.
4.2 Establishing refined environmental
management standards, regulations, and
laws to ensure ecological and
environmental safety in high-intensity
shale gas development

Shale gas development in the United States and Canada has

implemented the whole process fine management and control

measures such as the prohibition of wastewater discharge,

underground reinjection control, hydraulic fracturing operation risk

control, fracturing fluid information disclosure, green completion

technology, differential management of on-site waste, diversified

utilization, and disposal of oily cuttings (Feng et al., 2020). However,

the construction of China’s fine environmental management system is

still incomplete. It is suggested to establish environmental protection

control standards and technical specifications, environmental

supervision system, and an environmental risk control system for

shale gas development in China to form a series of standards and

norms for eco-environmental protection.
4.3 Vigorously developing clean
development technologies for shale gas
and promoting high-quality development
of the shale gas industry

The pollution of shale gas development to the ecological

environment mainly manifests in greenhouse gas emissions,

fracturing backflow treatment, and hazardous waste disposal. The

most direct way to reduce carbon emissions is to introduce diesel

engine exhaust treatment technology, but only by electrifying the

drilling power system can we fundamentally solve the problem (Liu

et al., 2023a). Fracturing flowback fluid is the most significant

source of water pollution in shale gas development. Although

current flowback fluid treatment technologies are relatively

advanced, they still have some shortcomings. Therefore, it is

necessary to vigorously develop and promote technologies such as

low-water or waterless fracturing, clean fracturing fluid processes,

novel microbial treatment techniques, energy-saving treatment

technologies for flowback fluid, new energy substitution
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technologies, and intelligent equipment energy-saving technologies

(Dong et al., 2023). These efforts are crucial to ensure the rational

development and sustainable growth of shale gas while addressing

the concerns associated with flowback fluid management.
4.4 Deepening exploration and
development theories and technological
innovations to achieve efficient
development of deep shale gas in China

The favorable areas of marine shale gas in China are mainly

located in the Upper Ordovician Wufeng -Lower Silurian Longmaxi

formation in Sichuan Basin. At present, shale gas mainly comes

from shallow strata less than 3500m, while deep shale gas (buried

depth of 3500 m-4500 m) has more resources, accounting for more

than 80%, which is the resource basis for upper and stable

production of shale gas (Li J. et al., 2022; Wu et al., 2022; Xie

et al., 2022; Li J. et al., 2023). However, deep shale gas has the

characteristics of deep buried depth, high temperature, pressure,

and crustal stress, and there are difficult construction problems of

drillability and compressibility, so the current exploration and

development theory and technology cannot meet the needs of

deep shale gas development. Therefore, based on summarizing

and drawing lessons from both foreign and domestic shallow

shale gas exploration theories and development technologies, it is

crucial to establish theories of enrichment for deep shale gas,

develop classification evaluation criteria, create geological “sweet

spot” prediction techniques, optimize horizontal well drilling,

environmentally friendly drilling fluids, and complex fracture

network technologies suitable for high-stress environments. These

efforts can provide support for the efficient development of deep

shale gas in terms of scale and benefits.
5 Conclusions
Fron
(1) Shale gas is recognized as a green, low-carbon, clean

unconventional natural gas resource, but its exploitation

often has an impact on the ecological environment.

Copying the ecological environment protection methods

and technologies of shale gas development in developed

countries such as the United States, it is difficult to realize

the scale benefit development of shale gas in China.
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(2) The harmonious development of shale gas development

and ecological environment has been a research hotspot in

the past decade, but the ecological environment protection

under the high intensity development is still a serious

problem facing China at present. Clarifying the economic,

safety, environmental and social benefits and connotation

characteristics of efficient development of shale gas will

help promote the synergy of pollution and carbon

reduction, and realize the green upgrading of shale gas

development.
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