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The last glacial inception was characterised by rapid changes in temperature,

atmospheric pCO2, and changes in the water mass geometry of the major ocean

basins. Although several climatic feedback mechanisms have been proposed to

explain the glacial/interglacial cycles witnessed in the Quaternary, the exact

mechanistic responses of these processes are still under constrained. In this

study we use proxies including planktonic foraminifera compositional

assemblages and oxygen stable isotopes to reconstruct past changes in sea

surface productivity, stratification, and carbonate dissolution. We use core SIS-

249 (2,091 mbsl, western South Atlantic 30°S 47°W), spanning 30–110 thousand

years ago (ka), and currently bathed by modern Northern Component Water. We

test existing hypotheses suggesting that the orbital obliquity cycle modulates the

biological pump in the study area. Spectral analysis run on our synthesised

productivity proxies recognises a ~43 kyr-cycle, related to the obliquity cycle. We

propose that the enhanced productivity is produced by two mechanisms: i) the

glacial upwelling of subsurface nutrient-rich waters and, ii) the continental

(wind-driven dust and riverine outflows) fertilisation of the photic zone, with

the latter process being obliquity-paced. We also suggest that not only the

increased organic matter export but also a change in its bioavailability (from

refractory to labile) led to calcium carbonate dissolution, as the degradation of

the more soluble organic matter decreased the pH of the glacial bottom water,

partially dissolving the calcium carbonate. Although our correlation analyses

show a strong benthic-pelagic coupling through the relation between the
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enhanced biological pump and carbonate dissolution (r<0.05, r=0.80), we

cannot reject the potential of corrosive Southern Component Water bathing

the site during the glacial. Finally, we highlight that these processes are not

mutually exclusive and that both can be modulated by the obliquity cycle.
KEYWORDS

planktonic foraminifera, primary productivity, stratification, southern Brazilian
continental margin, late Quaternary
1 Introduction

Glacial-interglacial cycles are characterised by cold stages,

witnessing decreased temperatures and carbon dioxide (CO2)

concentrations, the growth of ice sheets and the rearrangement of

water mass geometry (Lisiecki and Raymo, 2005; Ahn and Brook,

2008; Doughty et al., 2021; Shackleton et al., 2021; Menking et al.,

2022). During these cycles, multiple mechanisms contribute to CO2

drawdown, resulting in a reduction of atmospheric CO2 levels.

These mechanisms include changes in ocean carbonate chemistry

(Rickaby et al., 2010), boosted biological pump (Martin, 1990;

Sigman and Boyle, 2000), enhanced calcium carbonate

preservation (Archer and Maier-Reimer, 1994; Brovkin et al.,

2012; Doss and Marchitto, 2013) and expanded Antarctic sea ice

(Stephens and Keeling, 2000; Sigman et al., 2010), among others.

The growth of southern ice sheets during glacial stages resulted

in a reorganised Atlantic Ocean, marked by the expansion of

corrosive carbon-rich deep-water masses to shallower depths (e.g.,

Duplessy et al., 1988; Curry and Oppo, 2005; Govin et al., 2009;

Howe et al., 2016a; Howe et al., 2018) and, the redistribution of

nutrients, boosting the biological pump and enhancing the oceans’

capacity to sequestrate atmospheric CO2 during glacial periods

(Broecker, 1982; Sigman and Boyle, 2000; Skinner, 2009; Rickaby

et al., 2010; Ziegler et al., 2013). Yet, the precise way in which these

two mechanisms act and interact is still under debate.

For the western South Atlantic, several studies have

documented the impact of glacial-interglacial stages on the

carbon cycle (Gu et al., 2017; Pereira et al., 2018; Portilho-Ramos

et al., 2019; Frozza et al., 2020; Suárez-Ibarra et al., 2022) and past

bottom water mass geometry (Howe et al., 2016a; Howe et al.,

2016b; Howe et al., 2018). One important characteristic of these

climatic variations is the effect on calcium carbonate preservation,

as it plays an important role in the global carbon cycle. The

reorganised “glacial” Atlantic Ocean affects the calcium carbonate

preservation both hemispheres negatively (i.e., Chalk et al., 2019;

Petró et al., 2021). In addition, another well-known mechanism

affected by the glacial-interglacial cycles intemperate zones is the

expansion of the southwesterly winds (Toggweiler et al., 2006),

displacing the north limit of the wind belt (from 40°S to 30°S

latitude, Gili et al., 2017). The change in the wind belt position,

associated with an increasing wind strength paced by the obliquity

cycle, has been pointed to enhance the terrestrial nutrient supply
02
(Lopes et al., 2021). This enhancement is thought to increase the

productivity of the marine ecosystems.

Another critical factor that can influence calcium carbonate

preservation is the biological pump, transporting organic carbon

from the surface to the deep ocean. In the western South Atlantic,

Suárez-Ibarra et al. (2022) documented that high primary

productivity during the last glacial exported a higher amount of

organic matter to the seafloor, where it is remineralised. This

process releases CO2(aq), which increases acidity, affecting the

preservation of calcium carbonate, and raising questions about

the potential of an enhanced glacial biological pump to efficiently

sequester carbon in the sediments.

Yet, the extent of the mechanisms driving calcium carbonate

preservation and carbon cycling in the western South Atlantic

remains to be fully elucidated. It is required an integrated

approach encompassing both benthic and pelagic systems to

provide insights into the underlying dynamics during the last

interglacial-glacial interval. Thus, we use planktonic and benthic

foraminifera counts, geochemical analysis (oxygen stable isotopes,

d18O), sedimentological quantifications (size fraction) and various

statistical tools such as correlation, spectral and clustering analyses

from the western South Atlantic. By comparing our data with other

records from the southern and southeastern Brazilian continental

margin, our objectives are: i) to infer the mechanisms that modulate

the oceanic fertilisation, ii) to quantify the potential effect of sea

surface productivity on carbonate dissolution, and iii) to test the

influence of the orbital obliquity cycle on surface and

bottom conditions.
2 Oceanographic setting

The modern upper ocean circulation of the subtropical South

Atlantic is governed by the subtropical gyre (Peterson and

Stramma, 1991). The western boundary of the subtropical gyre is

impacted mainly by the Brazil Current, which transports warm,

salty, oligotrophic waters at the surface (tropical surface water,

temperature > 20°C; salinity > 36 psu; Peterson and Stramma, 1991;

Stramma and England, 1999). Below this tropical surface water

(~100 m) flow the cooler and more nutrient-rich South Atlantic

Central Water (Stramma and England, 1999), and the Antarctic

Intermediate Water with lower salinity and temperature and higher
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oxygen values (Stramma and England, 1999). To the South of our

study site (Figure 1), at about 38°S, the Brazil Current encounters

the cool, fresher, and nutrient-rich waters of the Malvinas Current

(temperature < 15°C; salinity < 34.2 psu), forming the Brazil-

Malvinas Confluence (Gordon and Greengrove, 1986; Gordon,

1989; Piola et al., 2000). Currently, the seafloor core location is

bathed by the southward movement of North Atlantic Deep Water,

(hereafter termed generally as Northern Component water, NCW)

a water mass that promotes calcium carbonate preservation due to

its oversaturation in carbonate ion (CO3
2−). Conversely, Southern

Component water (SCW, comprising the Antarctic Intermediate

Water, Circumpolar Deep Water and Antarctic Bottom Water),

which is undersaturated in CO3
2−, flows northward above and

below the NCW at this location, and its increased corrosiveness

leads to calcium carbonate dissolution (Broecker and Peng, 1982;

Frenz et al., 2003; Frenz and Henrich, 2007).

Close to the coring site (35° S), the Rıó de la Plata (RdlP), the

second largest continental water outflow in South America, reaches

the South Atlantic (Matano et al., 2014). The RdlP drains cool and

low salinity waters into the coastal region and increases the nutrient

availability, enhancing biological productivity along the continental

shelves of Uruguay and southern Brazil during austral winter.

Northward displacement of the RdlP outflow occurs in response
Frontiers in Ecology and Evolution 03
to the variability of the alongshore wind stress (e.g., Braga et al.,

2008; Möller et al., 2008). The RdlP outflows can reach 28° S along

the modern inner and mid-shelves (Piola et al., 2000; Piola et al.,

2005; Möller et al., 2008). In contrast, during austral summer, NE

winds restrict the RdlP outflows to the south (~32° S), inhibiting

fertilisation by reducing nutrient supply from continental outflows.
3 Materials and methods

3.1 Marine sediment core

The sediment samples used in this study come from the piston

core SIS-249, which measures 1.94 metres in length. This core was

retrieved from the lower continental slope of the southern Brazilian

continental margin at 2,091 metres below sea level (30°05′ S; 47°05′
W, Figure 1). Core SIS-249 was obtained during an oceanographic

campaign in the austral spring-summer of 2007 by Fugro Brasil

Ltda for the Brazilian National Agency of Petroleum, Natural Gas

and Biofuels. Due to the presence of shallower allochthonous sands

in the uppermost 48 cm of the core, this study focuses on the

carbonate-rich pelagic mud and sandy mud, which lie between 48

and 194 cm. Within this interval, we collected 45 samples with a
B

C

A

FIGURE 1

(A) Annual mean sea surface temperature and (B) annual mean sea surface salinity from the World Ocean Atlas 2013 (WOA13, Locarnini et al., 2013)
relative to core SIS-249 location (in orange). Other cores analysed in this study are indicated in grey (GeoB2107-3, Gu et al., 2017; GL1090, Santos
et al., 2017a; SAT048A, Suárez-Ibarra et al., 2022). (C) Vertical dissolved phosphate section profile through the western South Atlantic according to
the World Ocean Circulation Experiment (WOCE, Section A17; Schlitzer, 2000) and recovery depth of cores. SBCM, Southern Brazilian Continental
Margin; SEBCM, Southeastern Brazilian Continental Margin; RdlP, Rıó de la Plata; MC, Malvinas Current; BC, Brazil Current; BMC , Brazil-Malvinas
Confluence; TSW, Tropical Surface Water; SACW, South Atlantic Central Water; SCW, Southern Component Water; NCW, Northern Component
Water. Plotted using Ocean Data View (Schlitzer, 2020).
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sampling spacing of 2 to 4 cm to analyse the planktonic

foraminifera fossil assemblages and stable isotopes.
3.2 Planktonic foraminifera
compositional assemblage

To assess planktonic foraminifera assemblages, each sample (~9

cc) was sequentially weighed, washed over a 63 µm sieve, dried at

55°C, and weighed again. To avoid juvenile specimens, which would

induce taxonomic biases, planktonic foraminifera were only picked

from the >150 µm size fraction (CLIMAP Project Members, 1976;

Peeters et al., 1999). The processed samples were then divided with

a micro splitter to recover at least 300 non-fragmented planktonic

foraminifera tests per sample, as to support significant statistical

variations of around 10% for assemblage analyses (Patterson and

Fishbein, 1989). The taxonomic classification on the species level

followed Schiebel and Hemleben (2017).
3.3 Age model improvement

The chronology of core SIS-249 was first published by

Rodrigues et al. (2018) based on one single Accelerator Mass

Spectrometry (AMS) radiocarbon age combined with benthic

oxygen stable isotope (d18O) stratigraphy. The AMS radiocarbon

date from Rodrigues et al. (2018) was measured on tests of

Globigerinoides ruber at 58 cm core-depth and the age model

developed in the software AnalySeries 1.1 (Paillard et al., 1996).

In the present study, we improved the age model by using six

d18O tie-points (two points from the new d18OG.rub record and four

from d18OUvig), which are now correlated with the records from

core GL-1090 (Santos et al., 2017a), a nearby core with high-

resolution and well-calibrated age model (based on 14 AMS 14C

and 13 stable oxygen isotope correlation points to two reference

curves: Lisiecki and Raymo, 2005 and Govin et al., 2014). The new

refined age model was created in the R-package “Bacon” v. 2.5.3,

which implements Bayesian statistics (Blaauw and Christeny, 2011).

We considered a propagated error of 2.5 kyr, conservatively

estimated based on the mean accumulation rates of cores SIS-249

and GL-1090 (ca. 1.87 and 0.29 cm/kyr, respectively) and the <2 kyr

age error from the GL-1090 reference curve (Santos et al., 2017a).

The raw AMS radiocarbon age date from Rodrigues et al. (2018)

was calibrated within the R-package “bacon”, using the Marine20

curve (Heaton et al., 2020) and applying a regional reservoir effect

(DR) of −85 ± 40 years (Tables S1 and S2). This estimate follows the

Marine Reservoir Correction Database (http://calib.org/marine/),

considering the ages of Nadal De Masi (1999), Angulo et al. (2005),

and Alves et al. (2015).
3.4 Productivity proxies

We reconstruct past sea surface productivity using the ratio

between the species Globigerina bulloides and Globigerinoides ruber
Frontiers in Ecology and Evolution 04
(G.bull/G.rub), the relative abundance (%) of Globigerinita

glutinata, and the benthic foraminifera accumulation rate (BFAR).

The G.bull/G.rub ratio is used to reconstruct upwelling events

(Conan et al., 2002; Toledo et al., 2008) based on the contrasting

ecological preferences of both species. The opportunistic species G.

bulloides is associated with eutrophic waters in upwelling zones

(Sautter and Thunell, 1991; Peeters et al., 2002; Zaric et al., 2005;

Mohtadi et al., 2007; Lessa et al., 2014), while G. ruber, a symbiont-

bearing shallow water-dwelling species, is abundant in tropical/

subtropical planktonic foraminiferal provinces (Bé and Hutson,

1977; Kučera, 2007; Schiebel and Hemleben, 2017). Moreover, the

G. glutinata abundance is typically higher in phytoplankton-rich

waters and is used as a proxy for paleoproductivity (Conan and

Brummer, 2000; Souto et al., 2011; Pereira et al., 2018).

We also applied the BFAR index, calculated here as the total

number of benthic foraminifera multiplied by the sediment

accumulation rate as it has been shown to be a reliable proxy for

the organic carbon flux to the seafloor in the Brazilian margin (Dias

et al., 2021). The BFAR index represents the increments of primary

productivity export to the seafloor, in which the increases on

benthic biomass are associated to the increasing food availability

to the benthic community (Herguera and Berger, 1991; Guichard

et al., 1997; Jorissen et al., 2007). Thus, these planktonic and benthic

foraminiferal proxies together can indicate changes in the

fertilisation mechanisms affecting the photic zone (i.e., biological

pump, terrestrial nutrient input) and posterior organic

matter export.
3.5 Upper water column
stratification proxies

To assess changes in sea surface stratification, we studied both

the stable isotopic composition of selected planktonic foraminifera

species and assemblage counts. As planktonic foraminifera calcitic

tests record a mean value corresponding to that of the local water

mass properties (i.e., temperature, salinity) at the different depths

where they live, their d18O signal allows the reconstruction of the

seawater conditions at different depth layers (Emiliani, 1954; Ravelo

and Hillaire-Marcel, 2007). The species G. ruber dwells at surface-

shallow depths, while the species Globorotalia inflata is a

subsurface-thermocline dweller (Chiessi et al., 2007; Groeneveld

and Chiessi, 2011; Schiebel and Hemleben, 2017; Lessa et al., 2020).

Therefore, the gradient between the d18O values of these two species

(Dd18OG.inf-G.rub) indicates a decreased (increased) upper water

column stratification according to the lower (higher) Dd18OG.inf-

G.rub values (Santos et al., 2017b and references therein).

Around 10 specimens of G. ruber and G. inflata were collected

per sample for the d18O analyses from the size fraction >250 µm to

limit ontogenetic effects (Elderfield et al., 2002). The tests were

cleaned with distilled water using an ultrasonic bath to remove any

contamination by external particles. The isotopic measurements

were performed on a ThermoFisher Scientific MAT253 gas Isotope

Ratio Mass Spectrometer coupled to a Kiel IV automated carbonate

device at the Research Center for Geochronology and Isotopic
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Geochemistry (CPGeo) from the University of São Paulo. Isotopic

data used the Vienna Pee-Dee-Belemnite (VPDB) reference

standard. Here we report the standard deviation of the laboratory

reference material used for normalisation (SHP2L; Crivellari et al.,

2021), being 0.07‰ (n=20 standards) over the measurement period.

The standard deviation of the VPDB d18O values of the measured

samples did not exceed 0.1‰. As no replicated measurements were

carried out, we confirmed the consistency of our d18O values and

value offset between G. ruber and G. inflata with the expected values

for our study site. We verify this by comparing our records with

published Holocene (Chiessi et al., 2007) and last glacial and

interglacial stage (Santos et al., 2017b) datasets.

In addition, we use the abundances of the Globorotalia

truncatulinoides right coiling form, as it has been documented to

represent a well-mixed upper water column (reduced stratification),

since this morphotype migrates to relatively shallower depths to

complete its reproductive cycle (e.g., Lohmann and Schweitzer,

1990; Renaud and Schmidt, 2003; Feldmeijer et al., 2015; Billups

et al., 2016).
3.6 Dissolution proxies

We quantify the effect of dissolution on foraminiferal

assemblages by using: i) the ratio between the benthic and

planktonic foraminifera (B/P ratio, Arrhenius, 1952; Parker and

Berger, 1971; Kučera, 2007), ii) the number of whole planktonic

foraminifera tests per gram of dry sediment (PF/g, Le and

Shackleton, 1992; Suárez-Ibarra et al., 2021), iii) the abundance

(%) of the coarse fraction i.e. larger than 63 µm (Berger et al., 1982;

Gonzales et al., 2017; Suárez-Ibarra et al., 2021) and, iv) the CaCO3

content (%) (Berger et al., 1982; Gonzales et al., 2017; Suárez-Ibarra

et al., 2021). The CaCO3 (%) was previously calculated by Rodrigues

et al. (2018). The fraction >63 µm was estimated using a laser

diffraction particle size analyzer Horiba Partica-LA-950X, which

determined the grain size of the bulk sediment samples at the

Centro de Estudo de Geologia Costeira e Ocean̂ica (CECO) of the

Universidade Federal do Rio Grande do Sul (UFRGS).
3.7 Multivariate statistical analyses

To divide the time series record into distinct cluster intervals

(periods characterised by similar conditions) we carry out a clustering

analysis. Posteriorly, to distinguish the dependencies of the grouping

process we utilize an ordinate analysis. Both clustering and ordinate

analyses are applied on the planktonic foraminifera species with

relative abundances >1% (See Supplementary material).

Additionally, since all proxies are inevitably affected by different

environmental processes other than the targeted parameters, we

decrease the bias by also synthesising the variation through time of

i) sea surface productivity, ii) upper water column stratification, and

iii) carbonate dissolution. To do so, we run principal component

analyses (PCA) on the above proxies, based on the correlation

matrix. The data were centralised and standardised by dividing the

difference between the dataset mean and the sample value by the
Frontiers in Ecology and Evolution 05
dataset standard deviation. The synthesised productivity,

stratification and dissolution proxies were extracted from the first

axes of the PCAs as PC1P (productivity), PC1S (stratification) and

PC1D (dissolution). Correlations between (and within) the first axes

of the PCAs and other proxies were calculated using reduced major

axis regressions. All PCA and correlation analyses were conducted

using the software PAST (version 4.08; Hammer et al., 2001).
3.8 Spectral analysis

To test whether variations through time correspond to cyclic

events, paced by orbital forcings, first we run a Multi-Taper-Method

(MTM) test using the software “Acycle” (Li et al., 2019). The PC1P
curve was detrended using a locally weighted scatterplot smoothing

(LOWESS) and then analysed with the MTM. We set the smoother

with a Time-bandwidth product of “2”, and calculated the red noise

following the Classical autoregressive (AR) model AR(1) (Husson,

2014). Second, we conducted a REDFIT spectral analysis utilising

the software PAST (version 4.08; Hammer et al., 2001; Schulz and

Mudelsee, 2002). The spectral analysis used the “Welch” window, a

configuration of “4” for the oversampling and “2” as number

of segments.
4 Results

The G.bull/G.rub ratio (Figure 2A) varies from 0.18 to 0.52

(mean 0.37 ± 0.09), increasing through MIS 5 up to the boundary

with MIS 4 (90.1 to 75 ka) and again during MIS 3 (38.7 to 29.5 ka).

Relative abundances of G. glutinata (Figure 2B) range between 4.9

and 24.8% (average 15 ± 4.05%) and show an increasing trend

towards the MIS 5/4 boundary (from 91.9 to 72.7 ka). The BFAR

(Figure 2C) varies between 11 (at 90 ka) and 230 ind.cm-2.kyr-1 (at

59 ka), with three intervals: first, a low decreasing trend from 105 to

87 ka (mean 27 ind.cm-2.kyr-1), followed by an abrupt jump and

another decreasing trend from 84 to 39 ka (mean 92 ind.cm-2.kyr-1),

and a final increasing trend until 30 ka (mean 67 ind.cm-2.kyr-1).

The abundance of G. truncatulinoides right coiling (Figure 2D)

is low throughout the core (0 to 6.5%, mean 1.73). However, the 73–

51 ka interval (approximately MIS 4) is marked by increased

abundances and two abrupt peaks. The d18OG.rub values range

between -0.96 and 0.29‰ (mean -0.25 ± 0.33‰), with lower

values during MIS 5, increasing towards MIS 4 and decreasing at

the MIS 3 onset (Figure S1). The d18OG.inf values vary between 0.56

and 1.56‰ (mean 1.16 ± 0.18‰) and display a progressively

increasing trend from MIS 5 to MIS 3 (Figure S1). The d18OG.inf

record from core SIS-249 shows a good fit with the values from core

GL-1090, except at 80 ka. The Dd18O between G. inflata and G.

ruber (Figure 2E) presents values from 0.90 to 1.90‰ (mean 1.38 ±

0.24‰). Dd18OG.inf-G.rub values are higher during MIS 5 (around

1.6‰), intermediate during MIS 3 (above 1.30‰), and generally

lower during MIS 4 (mean 1.16 ± 0.18‰).

The B/P ratio (Figure 2F) ranges between 0.02 and 0.19, with low

values during MIS 5d-c, an increase through MIS 5b, a reduction

during MIS 5a (with a steep peak at 65 ka), followed by an increase at
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the end of MIS 4 and a further decrease with relatively stable values

during MIS 3. The PF/g (Figure 2G) varies between 400 and 5540

(mean 1922 ± 1141 ind./g) and presents a decreasing trend from 91.9 to

70.3 ka, remaining low throughout MIS 4 and 3. The fraction coarser

than 63 µm (Figure 2I) presents relatively high values (around 22%)

during the 107–84 ka time interval, except at 105 ka when values drop

to 8.5%. At 78 ka, values reach 3% and remain under 8% until the top

of the record (30.4 ka). All the productivity, stratification, and

dissolution proxies are shown in Figure 2.

Concerning the multivariate analyses, the first principal

components of the PCA’s analyses run on the productivity,

stratification, and dissolution proxies (PC1P, PC1S and PC1D)
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synthesise 61.9, 78.6 and 66.4% of the variance, respectively. The

results for the reduced major axis regressions within the PC1P, PC1S,

PC1D, d13CUvig, accumulation rate (Acc. rates) and accumulation rates

of total organic carbon (ARTOC) are shown in Table 1. All regression

analyses show a significant (p <0.05) correlation except between

d13CUvig and PC1D.

Finally, the MTM spectral analyses yield significant results for

the PC1P (supplementary material). The Classic AR(1) indicates the

strongest power at the frequency 0.023 (>99%), associated with a 43

kyr-cycle (period = 1/frequency). The REDFIT points the strongest

power also at the frequency 0.023 (>99%), associated with the same

43 kyr-cycle.
B

C

D

E

F

G

H

I

A

FIGURE 2

Time series records used to estimate productivity (in lilac: (A) G. bulloides/G. ruber, (B) G. glutinata abundance and (C) BFAR), stratification (in teal:
(D) abundance of G. truncatulinoides right coiling and I Dd18OG.inf-G.rub), and dissolution (in steel blue: (F) B/P ratio, (G) PF/g, (H) CaCO3 content
(Rodrigues et al., 2018) and (I) >63 µm fraction). The black vertical dotted lines divide the record into biotic clusters where: Cluster I (red) is
dominated by species characteristic of warm and oligotrophic water; cluster II (purple) by species related to eutrophic water, characterised by high
productivity and low stratification; and cluster III (blue) by species from cooler waters. Y axes in (E–I) are reversed.
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5 Discussion

5.1 Upper water column conditions

The relatively high G.bull/G.rub ratios, G. glutinata (%) and

BFAR values (Figures 2A–C) imply a period of enhanced sea surface

productivity during MIS 4 and, to a lesser extent, MIS 3. The high

glacial productivity recorded by core SIS-249 agrees with previous

studies for the southern Brazilian continental margin (SBCM), that

also document enhanced productivity during the last glacial stage

(e.g., Gu et al., 2017; Pereira et al., 2018; Portilho-Ramos et al., 2019;

Frozza et al., 2020; Suárez-Ibarra et al., 2022). The increase of

around 40% in G.bull/G.rub mean ratios from ~0.27 (110–83 ka) to

~0.39 (83–30 ka) suggests an increase in the upwelling of subsurface

more nutrient-rich South Atlantic Central Water (Venancio et al.,

2016; Lessa et al., 2017; Lessa et al., 2019; Portilho-Ramos

et al., 2019).

As the upwelling of subsurface waters necessarily implies a

break in the upper water column stratification, we should also

expect a similar behaviour in the stratification proxies. This can be

primarily confirmed by the high relative abundances of G.

truncatulinoides right coiling form, which also point to a less

stratified, well-mixed upper water column during MIS 4

(Figure 2D, Lohmann and Schweitzer, 1990; Renaud and

Schmidt, 2003; Feldmeijer et al., 2015; Billups et al., 2016; Pinho

et al., 2021). Furthermore, G. truncatulinoides types II and V (right

coiling forms) have also been associated with a shallow thermocline

and eutrophic conditions (de Vargas et al., 2001; Ujiié and Lipps,

2009; Ujiié et al., 2010; Quillévéré et al., 2013). Finally, the less

stratified upper water column during MIS 4 (and to a lesser extent

MIS 3) is also supported by the lower Dd18OG.inf-G.rubvalues

(Figure 2E), which implies a reduced stratification between the

mixed layer and the thermocline (Santos et al., 2017b).

Considering that the utilised foraminiferal proxies also depend

on other environmental parameters (for instance, changes in the

relative abundances of one species can be due to variations in the

abundances of other species), the use of the principal component

analysis helps to synthesise the variation of the proxies through

time. The PC1P (the synthesised first principal component of the

G.bull/G.rub ratios, G. glutinata (%), and BFAR proxies) from our

core SIS-249 (in the SBCM) suggests a transition, from MIS 5 to

MIS 4, to more eutrophic conditions in the upper water column

(Figure 3B). This shift in nutrient availability is also evident in the
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clustering and PCoA analyses (Figures S3 and S4), where the

dominant/significant species shift from warm and oligotrophic

conditions during MIS 5 (G. ruber albus, O. universa and G.

menardii) to species associated with high productivity during MIS

4 (G. glutinata, G. bulloides and G. truncatulinoides dextral coiling).

However, studies for the southeastern Brazilian continental margin

(SEBCM) document a shift to less eutrophic conditions during the

same time interval (e.g., Portilho-Ramos et al., 2015; Lessa et al.,

2017; Lessa et al., 2019), associated with the eccentricity cycle. Our

study suggests two different mechanisms fertilising the SBCM and

SEBCM regions i) enhanced Fe-fertilisation through dust delivery

and riverine input due to the strengthening of southwesterly winds

during glacial stadials and ii) boosted upwelling delivering

subsurface nutrient rich waters to the surface during

interstadials, respectively.

Notably, our PC1P (along with the PC1S and PC1D) varies

alongside the obliquity cycle, as shown by the spectral analyses

(Figure 3). The Classic AR(1) (Figure S5) and REDFIT (Figure S6)

give a >99% confidence for our PC1P to be orbitally paced by the

obliquity cycle (43 kyr). Our results support the hypothesis that the

obliquity cycle modulates a dust delivered Fe-fertilising mechanism

at the studied site (Lopes et al., 2021). Briefly, under low-obliquity

values, annual average insolation decreases at the poles (Paillard,

2021), which would favour the expansion of Antarctica’s ice sheets

(Doughty et al., 2021), intensifying the southwesterly winds (SWW,

Toggweiler et al., 2006) and the wind-driven dust delivery. Then,

during low-obliquity intervals, the north limit of the SWW belt

migrates north (from 40°S to 30°S latitude, Lamy et al., 2015; Gili

et al., 2017) close to our coring site. This would allow the

northward/offshore transport of more nutrient-rich, fresher, and

cooler waters of the RdlP closer to our study area, also fertilising the

photic zone (e.g., Gu et al., 2017; Pereira et al., 2018; Portilho-

Ramos et al., 2019; Bottezini et al., 2021; Bottezini et al., 2022).

In fact, a northern/offshore influence of RdlP outflows during

periods of low obliquity values would be supported by the

population collapses of the dinoflagellate species Operculodinium

centrocarpum, associated with the Brazil Current, documented by

Gu et al. (2017) (core GeoB2107-3) for the SBCM during MIS 4 and

the MIS 3/2 boundary (Figure 3D). Also, the decreased influence of

the core of the Brazil Current (which transports warm oligotrophic

water) in the study area would lead to a decrease in upper water

column stratification, evidenced by our PC1S (Figure 3B). In

addition, a northern/offshore intrusion of the nutrient-rich RdlP
TABLE 1 Reduced major axis regression results.

RMA Regression
PC1P-
PC1S

PC1P- d13CUvig
PC1P-
PC1D

d13CUvig-PC1D
PC1P-

Acc. rates
PC1S-

Acc. rates
PC1S-
ARTOC

r: 0.51 -0.32 0.80 -0.28 0.58 0.77 0.66

r2: 0.26 0.01 0.64 0.08 0.34 0.59 0.44

t: 3.90 -2.13 4.99 -1.07 4.62 7.79 3.20

p: <0.05 0.04 <0.05 0.30 <0.05 <0.05 0.01

Permutation p: <0.05 0.04 <0.05 0.31 <0.05 <0.05 0.01
fro
In bold are significant (p <0.05) values. PC1 stands for first component axes of productivity (PC1P) stratification (PC1S), and dissolution (PC1D) proxies. Accumulation rates (Acc. rates) were
calculated according to the age model presented in this study. the accumulation rates of total organic carbon (TOC*AR) used data from Rodrigues et al. (2018).
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outflows (or freshwater bodies formed along the continental shelf)

can also be inferred from the presence of freshwater diatoms during

MIS 3–2 from core SIS-188 (Bottezini et al., 2021; Bottezini

et al., 2022).

Moreover, strengthened SWW would also transport wind-

driven particles from southern South America to the study area,

increasing the Fe-fertilisation from terrestrial sources (Lopes et al.,
Frontiers in Ecology and Evolution 08
2021). During MIS 5/4 and 3/2 boundaries, the elevated pollen

concentrations (e.g., Gu et al., 2017, SBCM, core GeoB2107-3) can

be interpreted as enhanced aeolian transport (Figure 3), and thus,

terrestrial dust fertilisation. Additionally, the presence of the

Andean pollen Nothofagus, recorded by Gu et al. (2017) during

the late MIS 3 and MIS 2, corroborates the idea of enhanced

windiness, strengthened SWW and aeolian Fe-fertilisation from
B

C

D

E

A

F

FIGURE 3

Time series graph showing the close relation between (A) obliquity values (Laskar et al., 2004), Infaunal/Epifaunal benthic foraminifera ratio by
Rodrigues et al. (2018), and (B) the proxies for productivity (PC1P), stratification (PC1S) and dissolution (PC1D) from core SIS-249. On (C), synthesised
record of productivity (PC1P) and dissolution (PC1D) from core SAT-048A (Suárez-Ibarra et al., 2022) and (D) SWW strength, as inferred by terrestrial
pollen and the dinoflagellate species O. centrocarpum recorded by Gu et al. (2017, core GeoB2107-3, southern Brazilian continental margin), and
the Total Organic Carbon (values from Rodrigues et al., 2018, also in core SIS-249) times the Accumulation Rates are shown. On (E), the dust flux in
Antarctica (Dome C ice core, Lambert et al., 2008) and core SIS-249 d13CUvig values (Rodrigues et al., 2018). Finally, on (F) the 231Pa/230Th proxy by
McManus et al. (2004, light blue line, sediment core CE326-GGC5, 33°42’N, 57°35’W, 4550 mbsl) and Böhm et al. (2015, dark blue line, sediment
core ODP Site 1063, Leg 172, 33°41’N, 57°37’W, 4,584 mbsl). Y axes in (A), O. centrocarpum (%) and Uvigerina spp. d13C are reversed.
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South American sources. On top of it, Lopes et al. (2021) compiled

chemical studies analysing the provenance of glacial terrigenous

dust in the southwest Atlantic, pointing southern South America

(central-western Argentina and Patagonia) as the main source (e.g.,

Delmonte et al., 2010; Weber et al., 2012; Gili et al., 2017).

In summary, our record suggests two mechanisms to have

fertilised the study area: i) upwelling, enhanced by the interplay

of lower glacial sea level and the local bathymetry allowing the

shoaling of nutrient-rich South Atlantic Central Water (also richer

in silicic acid, Portilho-Ramos et al., 2019) to the sub-surface (e.g.,

Mahiques et al., 2007; Lessa et al., 2016) and; ii) obliquity-paced

fertilisation from southern South America (wind-driven dust and

the RdlP outflows) through enhanced aeolian transport, associated

with expanded SWW. Both processes lead to a decrease in the upper

water column stratification, first, by the ascension of cooler and less

salty subsurface South Atlantic Central Water and, second, by the

offshore displacement of the core of the Brazil Current. Ultimately,

the correlation value between PC1P and PC1S (r<0.05, r=0.51)
corroborates the synergy between the boosted biological pump and

less stratified conditions.
5.2 Organic matter export and
seafloor dynamics

Enhanced primary productivity (i.e., G.bull/G.rub and G.

glutinata %) and decreased upper water column stratification

(PC1S) are mirrored by high accumulation rates of total organic

carbon during MIS 4 (TOC*AR, Figure 3, TOC data from

Rodrigues et al., 2018, and accumulation rates from this study).

In addition, the BFAR proxy, commonly employed to reconstruct

past surface productivity by examining organic matter export to the

seafloor (Herguera and Berger, 1991), demonstrates significant co-

variation (r<0.05) with both G.bull/G.rub (r=0.5) and G. glutinata

relative abundances (r=0.55). Although the BFAR proxy has been

widely used to quantitatively estimate past productivity changes,

this relationship is not always straightforward (e.g., Naidu and

Malmgren, 1995; Den Dulk et al., 2000; Jorissen et al., 2007). This

limitation arises from the lack of calibration across various

productivity settings, among other factors (for an in-depth

discussion, please refer to Jorissen et al., 2007). However, Dias

et al. (2021) demonstrated that the BFAR can indicate variations in

the Cabo Frio Upwelling System, located in the SEBCM, where

higher BFAR values correspond to increased export of fresh marine

organic carbon.

The above-mentioned coupling suggests efficient glacial carbon

sequestration via biological pump in the study area. A schematic

representation of coupled benthic-pelagic changes observed in mid-

latitude southwest Atlantic during the 107–30 ka time interval is

presented in Figure 4.

The here evidenced increase in the export of organic matter

(OM) to the seafloor from MIS 5 to MIS 4 (and to a lesser extent in

MIS 3) aligns with the findings of Rodrigues et al. (2018). They

observe a decrease in the infaunal/epifaunal benthic foraminifera

ratio in core SIS-249, indicating a shift in the bioavailability of OM

from refractory to labile forms (Gooday, 1993; Smart et al., 1994;
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Gooday, 2003; Garcia-Chapori et al., 2014; de Almeida et al., 2022).

This change has significant implications for calcium carbonate

preservation. As highlighted in our study, during phytoplankton

blooms in glacial periods, higher amounts of OM (more labile, more

soluble, and more easily remineralised) are exported to the seafloor,

resulting in increased CO2 release, lower pH, and the dissolution of

CaCO3 (Figure 4). In addition, despite the relatively brief sinking

time of planktonic foraminifera tests (Takahashi and Bé, 1984;

Schiebel and Hemleben, 2017), they could experience minor

dissolution during transit through the CO3
2− under-saturated

intermediate SCWs (Frenz et al., 2003). These findings shed light

on the important role of sea surface productivity and water mass

properties in influencing the dynamics of carbonate preservation

during different climatic periods.

Despite the sparser sampling in PC1D compared to PC1P and

PC1S, our study found a strong correlation between PC1P and PC1D
in core SIS-249 (r<0.05, r=0.80, Table 1). This correlation supports

the idea that enhanced dissolution is triggered by glacial high

productivity, as it is also documented during the last deglaciation

(Suárez-Ibarra et al., 2022, Figure 3C), even in deeper cores under

the presence of modern non-corrosive Northern Component water.

While inferring changes in paleoproductivity based on

compositional assemblages from partially dissolved samples can

be imprecise, our study addresses this issue by complementing the

data with geochemical and sedimentological analyses. These

additional analyses, like the d18O signal from the species G.

inflata and G. ruber (both dissolution resistant according to

experimental studies from Petró et al., 2018), as well as the BFAR

and the TOC*AR, are less biased by dissolution.

Due to the OM enrichment in 12C from photosynthesis

(O 'Leary , 1988 ; Rave lo and Hi l l a i re -Marce l , 2007) ,

remineralisation at the seafloor is expected to drive negative

excursions in the endobenthic foraminiferal d13C values, as seen

in MIS 5c and 4 (Figure 3E). Nevertheless, although d13CUvig is

significantly anti correlated with our PC1P (r<0.05), the correlation
value is weak (r=-0.31) and is likely impacted by additional changes

in the dissolved inorganic carbon d13C of pore waters and/or the

local bottom water mass geometry (Ravelo and Hillaire-Marcel,

2007; Hesse et al., 2014). Lopes et al. (2021) suggested an increased

influence of more corrosive SCW at the core site during MIS 4 and

3, based on an apparent phasing between the d13CUvig record from

core SIS-249 and the dust flux record from Dome C ice core

(Lambert et al., 2008), as the dust-fertilisation in the Southern

Ocean would be recorded in the d13C of the bottom water masses

(Figure 3E). Although we do not exclude the possible influence of a

higher proportion of SCW on carbonate preservation, our data

show a relationship between the changes in the organic carbon cycle

(periods of enhanced sea surface productivity associated with higher

exportation of labile OM) and the deep-sea carbonate system. This

highlights the need for further investigations applying a

conservative or quasi-conservative water mass circulation tracer

to elucidate the water masses mixing proportions at our site during

the last glacial inception.

Furthermore, a third process that could have impacted the

calcium carbonate preservation is the intensity of the Atlantic

Meridional Overturning Circulation (AMOC). In a scenario with
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a sluggish AMOC, the reduced water flow at the seafloor leads to an

accumulation of respired CO2, resulting in decreased water pH and

subsequent corrosion of CaCO3 (McManus et al., 2004; Thornalley

et al., 2013; Howe et al., 2016b). Despite the lower temporal

resolution of our PC1D record, it is evident that the positive

excursions of 231Pa/230Th (Figure 3F), indicative of a sluggish

AMOC (McManus et al., 2004; Böhm et al., 2015), do not align

with the longer-term events of intense dissolution recorded by core

SIS-249, which also seem to follow the 43 kyr-cycle. Furthermore,

our findings are consistent with the conclusions of Suárez-Ibarra

et al. (2022), who, using a dataset with higher temporal resolution,
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found that surface productivity was the primary factor driving

calcium carbonate dissolution close to our study site.

Additionally, we would like to highlight that these processes, i)

the biological pump and ii) water mass configuration, are not

mutually exclusive and both may respond to the obliquity cycle.

Under low obliquity values and decreased insolation at high

latitudes, the (sub)polar fronts migrate equatorward: (i) displacing

the north limit of the SSW belt closer to the study site, enhancing

the wind-driven dust and continental river fertilisation, and

boosting the biological pump; (ii) expanding the southern ice

coverage, leading to an increased brine production and enhanced
FIGURE 4

Schematic representation of main changes in sea surface and seafloor conditions recorded by core SIS-249 for the 107–30 ka interval, according to
the foraminiferal assemblages and their respective three clusters. Interval I (107–74 ka) is dominated by species related to warm and oligotrophic
water; species from interval II (73–61 ka) are related to eutrophic water, with high productivity and low stratification; and interval III (60–30 ka) is
related to cooler water species. Interval II suggests higher levels of CO2 at the seafloor mainly due to larger exports of OM. Benthic epifaunal and
infaunal proportions, as well as TOC*AR.
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SCW formation (Govin et al., 2009). This would result in the

volumetric increase in the deep Atlantic of more corrosive SCWs

which also act in part as a CO2 storage reservoir.

Finally, although the enhanced remineralization causes part of

the OM and biogenic carbonate to be recirculated back in the

system instead of being exported to the sediments, we suggest an

efficient biological pump in the mixed-layer, which removes

inorganic carbon and points out the importance of the SBCM as

a glacial carbon capture and sink of atmospheric CO2 and thus part

of the puzzle of glacial-interglacial CO2 changes.
6 Conclusions

Based on our multiproxy analysis carried out in the sediments

of core SIS-249, retrieved from the lower continental slope of the

southwest Atlantic, southern Brazilian continental margin, we

can conclude:
Fron
(i) In the study area, there was an increase in sea surface

productivity from the last interglacial (MIS 5) to the

subsequent glacial (MIS 4 and, partly, MIS 3). When

compared to cores from the southeastern Brazilian

continental margin, two possible fertilising mechanisms were

identified: during glacial stadials the south was Fe-fertilised by

enhanced dust delivery and riverine input due to the

strengthening of southwesterly winds. During interstadials

the southeastern region experienced expanded upwelling

delivering subsurface nutrient rich waters to the surface.

(ii) Glacial increased continental aeolian-riverine fertilisation

and reduced upper water column stratification led to an

efficient removal of inorganic carbon via the biological

pump, as evidenced by the high accumulation rates of

total organic carbon, suggesting that the study area is

capable to efficiently capture and sink atmospheric CO2.

(iii) The degradation of the exported glacial organic matter can

lead to decreased pH in bottom water, aiding dissolution

and may play a major role in carbon sequestration

irrespective of/addition to, deep water mass conditions.
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STARS program (Prı̌ŕodovědecká Fakulta, Univerzita Karlova). JC

and MP acknowledge support from CNPq, grants 309394/2021-0

and 315684/2021-6, respectively.
Acknowledgments

The authors thank Rodrigo Portilho-Ramos, Thiago Santos,

João Ballalai, Manuel F.G. Weinkauf and three reviewers for

discussions through the development of this manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fevo.2023.1238334/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fevo.2023.1238334/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2023.1238334/full#supplementary-material
https://doi.org/10.3389/fevo.2023.1238334
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
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et al. (2021). Late Pleistocene sediment accumulation in the lower slope off the Rio
Grande terrace, southern Brazilian Continental Margin. Quaternary Int. 571, 97–116.
doi: 10.1016/j.quaint.2020.12.022

Mahiques, M. M., Fukumoto, M. M., Silveira, I. C. A., Figueira, R. C. L., Bıćego, M. C.,
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