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Due to global climate change and the intensification of human activities, the

ecological function of Wuliangsu Lake Basin has been seriously degraded.

Obtaining accurate spatial–temporal dynamics of regional ecological

environment quality is essential for the evaluation of ecological management

and restoration effects. This study assessed the trend changes and drivers of the

Remote Sensing Ecological Index (RSEI) in the Wuliangsu Lake Basin from 2000

−2020. Firstly, the trend analysis method and hurst index were used to analyze

the temporal and spatial variation of RSEI. Then the main factors of RSEI variation

were analyzed using meteorological data, integrated nighttime lighting data, and

population density data. Overall, the RSEI shows an increasing trend from the

west to the east with a rate of 0.0034 year−1 over the last 21 years. The area

change of RSEI was 54.22%, 63.80% and 52.43% for 2000−2006, 2007−2013 and

2014−2020, respectively, which indicates that most areas have a stable

ecological environment. However, the overall Future Improvement Trend (FIT)

area of RSEI is 42.21%, mainly in Dengkou area, Urad Qianqi and central area. This

indicates that the RSEI remains stable locally and shows an overall improving

trend. The results of the correlation analysis showed that the areas influenced by

meteorological and human factors were highly coincident, mainly in Dengkou

and northern Linhe areas and Urad Qianqi. Considering the lagging effect of

ecological engineering, the sustainable development status of RSEI in the

western and eastern regions will maintain an improving trend in the future.

Our study confirms the complex relationship between RSEI and meteorological

and human activities, which is crucial for the scientificmanagement of watershed

ecosystems under the influence of anthropogenic factors.

KEYWORDS

CNLI, ecological environment quality, Google Earth Engine, RSEI, spatial–temporal
variation, Wuliangsu Lake Basin
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1 Introduction

Eco-environmental quality assessment is essential for

quantitatively measuring the strengths, weaknesses and impacts of

regional ecological environments (Balsamo et al., 2015). It is a

significant basis for formulating regional socio-economic

sustainable development plans and eco-environmental protection

measures, and also a crucial assessment for the stability of

ecosystems in desertification areas (Sun et al., 2015). The

vegetation in desertification areas has the function of conserving

water sources preventing wind and fixing sand. However, due to the

lack of water resources and the impacts human activities, most of

the vegetation has been degraded in the arid and semi-arid regions

of northwest China, leading to environmental problems such as

land exposure, soil erosion and sandstorm. In order to solve these

environmental problems, the Chinese government launched the

“Return the Grain plots to Forestry” program (Zhang et al., 2012).

The rapid development of China’s economy has brought challenges

to ecological and environmental management. Subsequently, the

government has carried out a series of ecological restoration and

treatment projects. The ecological protection red line was set in

forests, lakes and wetlands in accordance with the concept of

“mountains, water, forests, fields, lakes and grasses are a

community of life”. In recent years, ecological restoration projects

have been implemented in desertification areas based on this

concept, aiming to improve the local ecological environment.

Therefore, ecological monitoring has become an important

element of environmental protection and management, and large-

scale, long time series dynamic monitoring is conducive to timely

adjustment of policies and directions. With China’s rapid economic

development and increased awareness of environmental protection,

China has launched a series of ecological restoration and

conservation programs aimed at improving the ecological

environment in ecologically fragile desert areas. However, arid

and semi-arid areas are restricted by natural conditions, and

traditional “greening” monitoring indices are limited by region,

scale, and time. As a result, it is often impossible to obtain complete

data for achieving long-term prediction and environmental

dynamic monitoring in desert areas.

Remote sensing data has been applied to ecological

environment monitoring due to its advantages of easy access to

long-time series data and repeated observation at regional scale

(Yang et al., 2002). Ecological monitoring not only includes land,

but changes in the oceans are also an important element of dynamic

monitoring. (Chen et al, 2022). used remote sensing images from

2000 to 2018 to extract coastline information, and the results

showed that remote sensing images help to extract coastline

information, which plays an important role in marine ecological

protection. Chen et al. (2023). analyzed the spatial and temporal

characteristics of Harmful algal blooms (HABs) using remotely

sensed data from 1990 to 2019 and explored correlations with

chlorophyll concentration, salinity, and temperature. (Liang et al,

2023). analyzed the characteristics of land use and land cover

(LUCC) and coastline changes in Hangzhou Bay from 1985 to

2020 based on the GEE platform and remote sensing

technical methods.
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The single vegetation indices commonly used to characterize

the ecological changes of vegetation in the early days were

Normalized Vegetation Index (NDVI) (Rouse et al., 1974; Myneni

and Williams, 1994), Enhanced Vegetation Index (EVI) (Nemani

et al., 2003; Panigrahi et al., 2021) and Leaf Area Index (LAI)

(Pettorelli et al., 2005; Nanzad et al., 2019). However, relying on a

single ecological index to describe the change state of the entire

ecological environment has limitations, because it is a highly

complex system. Therefore, the ecological environmental status

index (EI) (Zhi et al., 2009) evaluates the ecological environment

status by weighting different indicators. Nevertheless, how to

determine the weights of different indicators and reduce the

subjective human influence are the difficulties in the application

of EI. In addition, obtaining long-term series of socioeconomic

data is also one of the challenges. In order to characterize the

environmental conditions of complex ecosystems, Remote Sensing

Ecological Index (RSEI) (Xu, 2013) has been applied to the

monitoring of vegetation dynamic changes and urban ecological

environment since it was proposed. RSEI can reflect the responses

of urbanization to changes in the vegetation cover and the climate

change (Jiang et al., 2009; Zheng et al., 2021). Besides, it can avoid

the uncertainty or errors in the definition of weights caused by

subjective factors and is useful for quantitative evaluation of

changes in the eco-environment (Xin et al., 2008a; Wang

et al., 2016).

Climate change and the intensification of human activities

will alter the quality of the ecological environment in arid and

semi-arid zones (Chen et al., 2023). Distinguishing between the

impacts of climate change and human activities on ecological and

environmental quality can help to reflect changes in regional

vegetation, and provide scientific guidance for regional

environmental management and sustainable development (Fan

et al., 2023). Studies have shown that precipitation is an

important factor in improving ecological quality. The ecological

environment in arid and semi-arid regions of Northwest China is

showing a trend of improvement (Geng et al., 2022). In the 21st

century, the challenge is to quantify the impact of human activities

under the dual influence of climate change and human activities.

Commonly used methods for studying the factors influencing

ecological changes include partial derivative analysis (An et al.,

2022), multivariate analysis (Bartkowiak et al., 2019), and principal

component analysis (Cao et al., 2022). Methods used to quantify

human activities include the difference-in-difference method and

correlation analysis, among others (Gorelick et al., 2017). Although

the difference-in-difference method can quantitatively distinguish

the effects of climate change and human activities, it relies on actual

measurement data and has linear limitations when studying large-

scale ecological and environmental changes (Zhang et al., 2022).

The residual analysis method can quantify anthropogenic factors

and, to some extent, eliminate the linear error between ecological

quality and meteorological factors in traditional methods, thereby

distinguishing anthropogenic factors (Kumar and Mutanga, 2018).

The special geographical location of the Wuliangsu Lake Basin

(WLB) determines the different functions roles of the region. It

serves as a green barrier against the wind and sand of the Ulan Buh

Desert to the west (Jia et al., 2023). It serves as a reservoir of water,
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and the grasslands of the Yinshan Mountains to the east and the

Urad Qianqi to the north have been able to grow rapidly. The WLB

is a typical representative of an ecological management and

restoration area in China that plays a crucial role in protecting

the local ecological environment. The local ecological environment

is improved by planting Haloxylon ammodendron and establishing

grass squares in desert areas. The mine was built by leveling the

hills, laying down soil and planting drought tolerant Hippophae

rhamnoides Linn and other vegetation. There are differences in the

processes and effects of different restoration projects in ecological

quality enhancement. valuating the effect of ecological environment

restoration projects is an important core content of the current

ecological restoration area. However, there is still a lack of

monitoring research on long-term environmental dynamic

changes in ecological governance areas.

This study uses MODIS data to build a RSEI index on GEE

platform to evaluate the ecological environment quality of WLB

area from 2000 to 2020. With the liner regression methods and

Hurst index, we can analyze the overall trend of RSEI and predict

future change trends in ecological quality. The residual analysis was

used to analyze the influencing factors of RSEI. We assessed the

relationships between the RSEI, climate variables, and variables

characterizing human activity using meteorological data,

Comprehensive Nighttime Light Index (CNLI) data and

population density statistics. The main research questions are:

(1) What are the spatial and temporal trends of RSEI?

(2) What are the areas of sustainable improvement or

degradation in the future?

(3) What are the main drivers influencing the changes in RSEI?

This study uses multi‐source remote sensing data to evaluate

the regional effects of similar ecological restoration, which is an

important complement to the study cases of ecological special zones

and has a good demonstration effect. This can not only provide an

objective perspective for the ecological quality assessment of

watershed systems but also allow for long‐term dynamic

monitoring of the effects of ecological restoration projects.
2 Materials and methodology

2.1 Study area

The study area is located in the central part of Inner Mongolia

Autonomous Region, China (106°30′ E~109°30′ E, 40°10′N~41°20′N),
which is an important geographical area, as shown in Figure 1. The

area is situated between the Daxinganling vein system and the Taihang

Mountains, including mountains, plateaus, plains, and lakes. The

region has a temperate continental climate characterized by high

temperature variations, low annual precipitation, and high

evaporation rates. Additionally, the area has a significant natural

ecological landscape of grasslands, forests, and wetlands, making it

one of the important biodiversity reserves. The species of zonal

vegetation in the basin include Stipa gobica desert steppe, Festuca

pratensis Huds, Tamarix chinensis Lour, PopulusL and other

cultivated vegetation.
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2.2 Data and preprocessing

2.2.1 Remote sensing data
The construction of RSEI requires greenness, heat, wetness and

dryness data (https://code.earthengine.google.com/). Among them,

the greenness component is expressed using the vegetation index

(NDVI), which is derived from MOD13Q1 product with a spatial

and temporal resolution of 500 m and 16 d, respectively. Heat

component is extracted from the daytime land surface temperature

(DLST), which provides 8d average land surface temperatures at

1km spatial resolution (Wan, 2008). The wetness and dryness

components were calculated from MOD09A1 with a spatial and

temporal resolution of 500m and 8d, respectively. All the data are

processed through the GEE platform, covering 2000 to 2020.

We used the GEE platform to process MOIDS data, and the

detailed steps are shown below.
(1) Preprocessing of remote sensing data based on GEE

platform. The GEE cloud masking algorithm was used to

remove abnormal cloud pixels and cloud shadows.

(2) Calculating the component indicators. The NDVI and LST

were used to express greenness and heat respectively. The

Wet and NDBSI (Normalized Difference Bare Soil Index)

were used to indicate wetness and dryness respectively,

where NDBSI is composed of IBI (Index-based Built-up

Index) and SI (Soil Index) (Xu, 2008). It is suitable for the

calculation of arid and semi-arid regions and MODIS data

in Northwest China (Zhang et al., 2002). The calculation

equation of Wet and NDBSI are shown in equations (1)

to (4).
Wet¼ 010839r1+0:0912r2+0 :5065r3 + 0:4040r4

− 0:2410r5 − 0:4658r6 − 0:5306r7 (1)

NDBSI =
SI+IBI

2
(2)

SI ¼ (r6 + r1)� (r2 + r3)
(r6 + r1) + (r2 + r3)

(3)

IBI =

2r6
r6+r2

� r2
r2+r1

+ r4
r4+r6

� �
2r6

r6+r2
+ r2

r2+r1
+ r4

r4+r6

� � (4)

Where r1, r2, r3, r4, r5, r6 and r7represents Band 1 (620 to

670nm), Band 2 (841 to 876nm), Band 3 (459 to 479nm), Band

4 (545 to 565nm), Band 5 (1230 to 1250nm), Band 6 (1628 to

1652nm) and Band 7 (2105 to 2155nm), respectively.
(3) Calculating normalized data. The NDVI, LST, Wet, and

NDBSI are normalized so that the data dimensions are the

same, where the equation are as follows:
NI =
M�Mmin

Mmax �Mmin
(5)

WhereM is the original index,NI is the normalized index,Mmax

and Mmin are the maximum and minimum values of the

indicator, respectively.
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We used Defense Meteorological Satellite Program (DMSP)/

Operational Linescan System (OLS) stable light (STL) data to depict

the influences of human activities and socioeconomic factors

(https://www.ngdc.noaa.gov/eog/dmsp/) with from the period

1992 to 2013 (Xiong et al., 2016; Li et al., 2019c). To ensure

continuity in the lighting data, we used the NPP/VIIRS cloud

mask (VCM) dataset (https://www.ngdc.noaa.gov/eog/viirs/) for

the period between 2014 and 2020 (Lee et al., 2014; Zheng et al.,

2020). The detailed parameters used are presented in Table 1.

The land use data were used to analyze changes in the WLB

before and after ecological restoration (http://www.resd.cn) (Liu

et al., 2005; Liu et al., 2018).

2.2.2 Climate data
We obtained temperature and precipitation data from the ERA5

dataset published by the European Centre for Medium-Range

Weather Forecasts (ECMWF) for the period between 2000 and

2020 to assess the impact of meteorological factors on the

distribution of the RSEI index. The ERA5 dataset has a spatial

resolution of 0.1° and temporal resolution is a month scale. To

match the spatial resolution of the RSEI data, we resampled the

meteorological data using ArcGIS software.

2.2.3 Statistical data
Population distribution and its spatial–temporal variations are

a direct representation of urbanization, and were used to

characterize the ecological impact of urbanization. The

population density dataset used was provided by WorldPop

(https://www.worldpop.org/) with a spatial resolution of 30 arc

second (around 1km at equator) and the time series from 2000 to
Frontiers in Ecology and Evolution 04
2020, based on the WGS-84 geographical reference system. In

addition, the publicly available set of population numbers for

2000 to 2020 was obtained through the official website of the

government of Inner Mongolia, China. We resampled the

population density data using ArcGIS10.5 software to ensure

consistency with the accuracy of RSEI.
2.3 Methods

Figure 2 shows the various steps involved in the study, which

are as follows: (1) Construction of RSEI and preparation of data and

pre-processing. (2) The process of spatial analysis. (3) The results of

spatial and correlation analysis.
2.3.1 Construction of RSEI
The PCA method has been proved that the information is

concentrated on the first principal component (Yu et al., 2006). In

our analysis, we used the first principal component (PC1) to

synthesize multiple indicators using the GEE platform. The

calculation equation is as follows (Xu, 2013).

RSEI  = PC1 (NDVI,  Wet,  LST ,  NDBSI) (6)
2.3.2 Time trend analysis
We conducted a time trend analysis of RSEI using linear

propensity estimation and a statistical test of correlation coefficient.

To quantitatively analyze the interannual change trend of RSEI, we

used the least squares linear regression equation to calculate the
TABLE 1 Data parameters of nighttime light data.

NTL data Temporal resolution Spatial resolution Data available interval

Stable Light (STL) 30 arc second Annual 1992–2013

Day/Night Band (DNB) 15 arc second Monthly April 2012–Present
B

C

A

FIGURE 1

The location of the WLB. Chinese province (A), BayanNur, Inner Mongolia Autonomous Region (B), Study area (C).
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slope of its interannual variation. The calculation equation for the

slope is as follows.

Xslope =

n�o
n

i=1
i� RSEIi − (o

n

i=1
i)(o

n

i=1
RSEIi)

n�o
n

i=1
i2 − (o

n

i=1
i)2

(7)

Where Xslope is the slope of RSEI, indicating the changing trend

of RSEI, n is the monitoring year, RSEIi is the maximum RSEI in the

i year. When Xslope is positive, it indicates that RSEI shows a upward

trend; when Xslope is negative, indicating that RSEI shows a

downward trend; when Xslope is zero, it indicates that RSEI has

hardly changed.
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In order to more visually compare and analyze the changes in

the WLB area over the 21 years from 2000–2020. We used the time

trend analysis method to obtain the spatial trend change maps of

the RSEI of the WLB for three time periods 2000 to 2006, 2007 to

2013 and 2014 to 2020, respectively. There is variability in China’s

conservation measures in response to the ecological problems faced

at different times. China implemented measures to remain “Green”

in 1990. With rapid economic development, China continued to

increase its efforts to protect the ecological environment and raise

human awareness of environmental protection in 2010. The WLB

area was designated as a protected area for ecological restoration for

China in 2017. We quantify the Chinese government’s efforts to

protect the ecological environment by dividing these three
FIGURE 2

Research flow chart.
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representative time periods and comparing the trends in the

three phases, in order to make the results of the analysis more

convincing. As well as the spatial trend change maps of the

population density and nighttime light data of the WLB from

2000 to 2020, respectively.

2.3.3 Hurst index
The Hurst Exponent is an analytical method that measures

whether a time series has long-term memory (Cao et al., 2014).

Defining a time series, for any positive integer u, the mean,

cumulative difference, extreme difference, and standard deviation

of RSEI were calculated as shown in (8) to (11).

RSEIu =
1
uo

u

t=1
RSEI(t), t = 1, 2, 3…, n (8)

X(t, u) =o
u

t=1
(RSEI(t) − RSEI(u)) (9)

Ru = maxX(t,u) −minX(t,u), 1 ≤ t ≤ u, u = 1, 2,⋯, n (10)

S(u) =

ffiffiffiffi
1
u

r
o
u

t=1
(RSEIt − RSEIu)

2 (11)

RSEIu and X(t,u) is represents the mean series and the mean

cumulative deviation, respectively. Ru represents the range and S(u)

represents the standard deviation. When it appears R=S ∝ uH,

which shows that there is a hurst phenomenon at this time series,

and the Hurst index is represented by the value of H. Based on the H

value, we can determine whether the RSEI changes are completely

random or there is a continuous. If 0<H<0.5, it shows consistent

changes in the time series before and after. If H=0.5, it represents

that it is random or irrelevant and does not affect the future now.

When H>0.5, it indicates that there is long-term correlation and has

a certain continuity. When H=1, it indicates that the future can be

predicted with the present status.

2.3.4 Residual analysis
Residual analysis is a statistical technique used to assess the

goodness of fit of a model or to evaluate the assumptions of a

regression or predictive model (Evans and Geerken, 2004; Wessels

et al., 2012). The residual analysis method can separate the effects of

climatic elements and human activities on RSEI changes (Chu et al.,

2019). Based on the correlation between climate factors and RSEI, the

contribution of climate change to RSEI was extracted, followed by a

regression model of climate factors and RSEI to predict the RSEI

values. The residual difference between the actual RSEI values and the

climate change-based projections, without considering other non-

deterministic factors, represents the fraction contributed by human

activities. In the absence of anthropogenic impacts, the inter-annual

variation of the residuals is characterized by random variation around

the zero value, and if the inter–annual variation of the residuals shows

a significant downward trend, it indicates that anthropogenic

activities have caused vegetation degradation. Conversely, a positive

trend shows that human activities have improved the ecosystem

(Jiang et al., 2017; Liu et al., 2022). Based on this, we use the climate
Frontiers in Ecology and Evolution 06
data to calculate the predicted values of RSEI by applying the

regression model calculation equation shown in (12). Secondly, we

used the real values of RSEI and the predicted values of RSEI from

2000 to 2020 for the residual calculation, and the calculation formula

is shown in (13). Finally, we completed the experiments of residual

analysis by MATLAB (R2017b) software.

RSEIp = a0 + a1 � P+a2 � T+ϵ (12)

RSEIr = RSEI − RSEIp (13)

Where the RESI, RSEIp and RSEIr represents the true,

predicted and residual values of RSEI from 2000 to 2020,

respectively. where the residual value (RSEIr) is used as a

parameter to characterize human activity. P is precipitation

(mm). T is temperature (°C). a0 is regression intercept. is the

random error. a1,a2,a3 is the coefficient.

2.3.5 Construction of the comprehensive
nighttime light index

The Comprehensive Nighttime Light Index (CNLI) is widely

used to quantify the impact of human activities on different regions

(Jeong et al., 2011; Hao et al., 2012). The CNLI index for WLB 2000

to 2020 was constructed by using MATLAB (R2017b) software.
2.3.6 Correlation analysis
We correlated the RSEI values of WLB from 2000 to 2020 with

precipitation, temperature, CNLI data, and population density data,

respectively, using MATLAB (R2017b) software. The calculation

formula is shown in (14).

r =
o
n

i=1
(RSEIi − RSEI)(yi − y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
n

i=1
(RSEIi − RSEI)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(yi − y

s
)2

vuut
(14)

Where y is the precipitation factor, temperature factor, CNLI

factor, population density factor, y and RSEIi are the means of the

variables during the research period, RSEIi is the variables of i th

month of the year.
3 Results

3.1 Characteristic analysis of ecological
quality levels

Figure 3 and Table 2 illustrates the distribution of percent

eigenvalue in twenty-one historical images from 2000 to 2020 in the

WLB. As seem from Table 3 of the RSEI results in 2000 to 2020, the

characteristic percent eigenvalue ranges from 61.80% to 76.00%,

showing a fluctuating trend of change. The years 2000, 2006, 2012,

and 2018 are low eigenvalue areas, which are influenced by NDVI,

LST, Wet, and NDBSI. The results show that the 2000 to 2003, 2006

to 2011, 2012 to 2016 and 2018 to 2020 show a fluctuating

upward trend
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We classified the RSEI into five levels: Poor (0–0.2), Fair (0.2–

0.4), Moderate (0.4–0.6), Good (0.6–0.8), and Excellent (0.8–1).

Figure 4A shows that the overall improvement of eco-environment

quality in WLB was not obvious, and it was at fair level during the

2000 to 2006. It mainly distributed in Dengkou, Hanggin, Linhe,
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Wuyuan and Urad Qianqi. Those areas with a level of moderate or

higher were mainly in Urad Qianqi and around the WLB, and most

of the improvement areas were concentrated in the northwestern

region. The project includes reforestation and grazing ban protection

to improve the vegetation growth and reduce soil erosion in the area,

which is the main reason for vegetation restoration.

Compared with 2000 to 2006, the most notable feature of the

spatial variation of RSEI showed a decreasing trend in the overall

ecology, especially in Urad Qianqi in 2010 (Figure 4B). In recent

years, the ecological environment had changed unstably, both for

policy reasons and human activities. The economy was in a rapid

development stage, and all regions took the development of

urbanization as the top priority in 2010. In addition, the

unreasonable exploitation of the mining area in Urad Qianqi has

caused long-term damage to the ecological environment.

Compared with 2007 to 2013, the obvious features of the spatial

variation of the RSEI in 2014 to 2020 showed significant

improvement (Figure 4C). It was at a poor level from 2014 to

2017, and remained at a moderate level after 2017, mainly in the

central region. Since 2018, the Chinese government has taken the

ecological civilization construction as a major national strategic

policy, and ecological restoration is an important part of ecological
TABLE 2 PC1 results of RSEI in 2000 to 2020.

Year
eigenvalue

Percent eigenvalue (%)
NDVI LST Wet NDBSI

2000 0.652 0.011 0.004 0.001 61.80

2001 1.696 0.066 0.004 0.001 73.17

2002 3.636 0.172 0.009 0.001 75.79

2003 21.506 0.018 0.005 0.001 76.00

2004 0.688 0.179 0.010 0.002 75.33

2005 0.738 0.012 0.004 0.001 73.37

2006 1.108 0.057 0.005 0.002 63.34

2007 1.451 0.019 0.004 0.002 66.73

2008 1.206 0.023 0.002 0.001 68.21

2009 6.175 0.112 0.005 0.001 72.68

2010 0.961 0.026 0.006 0.002 71.13

2011 0.074 0.015 0.004 0.001 75.07

2012 0.000 0.068 0.004 0.001 67.38

2013 1.169 0.017 0.004 0.001 70.95

2014 0.159 0.023 0.005 0.002 74.38

2015 0.141 0.032 0.004 0.002 72.76

2016 0.324 0.028 0.004 0.002 75.60

2017 0.287 0.021 0.004 0.002 71.60

2018 5.109 0.020 0.003 0.002 67.33

2019 1.348 0.109 0.002 0.001 73.78

2020 0.191 0.047 0.005 0.002 75.56
* The eigenvalues and the proportion of each component for each year are derived from equation (1).
FIGURE 3

Percent eigenvalue percentage curve for 2000 to 2020.
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TABLE 3 Change detection of RSEI level from 2000 to 2020.

Year IO IS IN DS DO

2000−2006

Change level +4 +3 +2 +1 0 −1 −2 −3 −4

Area/km2 0.00 5.47 86.22 5542.81 8824.94 1355.58 337.11 109.81 14.36

Change area/km2 5.47 5629.02 8824.94 1692.69 124.17

Percentage/% 0.03% 34.58% 54.22% 10.40% 0.76%

2007−2013

Change level +4 +3 +2 +1 0 −1 −2 −3 −4

Area/km2 5.42 42.24 542.58 2386.44 10368.86 2835.93 65.22 5.35 0.00

Change area/km2 47.66 2929.03 10368.86 2901.15 5.35

Percentage/% 0.29% 18.02% 63.80% 17.85% 0.03%

2014−2020

Change level +4 +3 +2 +1 0 −1 −2 −3 −4

Area/km2 0.00 0.00 129.64 5283.51 8527.37 2235.75 1.48 80.80 7.07

Change area/km2 0 5413.16 8527.37 2237.23 87.87

Percentage/% 0.00% 33.28% 52.43% 13.75% 0.54%
F
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*Change level includes+ 4, + 3, +2, +1, 0, −1, −2, −3, and −4; the positive value represents ecological improvement level; 0 represents that there is no change of ecological level; the negative value
represents ecological deterioration level. The DO, DS, IN, IO and IS represents the Deterioration Obvious, Deterioration Slight, Invariability, Improvement Obvious and Improvement Slight,
respectively.
A B

C

FIGURE 4

The spatial distribution of RSEI levels in WLB from 2000 to 2020, the spatial distribution of RSEI levels in WLB from 2000 to 2006 (A), the spatial
distribution of RSEI levels in WLB from 2007 to 2013 (B), and the spatial distribution of RSEI levels in WLB from 2014 to 2020 (C).
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construction. The artificial afforestation and other measures in the

western mining ecological restoration area have brought a positive

impact, which is the main reason for the overall good ecological

environment quality in 2020

The percentage of each level shows a fluctuating trend

(Figure 5). From 2000 to 2010, the poor levels show a fluctuate

upward, reaching a maximum of 31.79% in 2010 and a minimum of

0.12% in 2011, with a fluctuating decreasing trend from 2012 to

2020. The fair levels increased from 2000 to 2018, reaching a

maximum of 66.66% in 2017 and a minimum of 17.18% in 2018,

with a gradual decrease from 2019 to 2020. The moderate level in

general shows a fluctuating upward trend, with a minimum

proportion of 11.10% in 2000 and a maximum proportion of

52.57% in 2020. The good levels increase from 2000 to 2004,

reaching a maximum of 16.00% in 2004, decreasing from 2005 to

2011, with a minimum of 1.36% in 2010, and then gradually

increasing from 2012 to 2020. The excellent level reached a

maximum of 2.91% in 2001 and decreased from 2001 to 2017,

with a statistical percentage of 0 in 2017. The mine was over-

exploited and the ecological environment’s preservation received

little attention before 2010. Therefore, the local government started

working on a large number of ecological restoration projects such as

afforestation in 2017. Then increase from 2018 to 2020.
3.2 Spatial distribution and trend
variation of RSEI

Figures 6, 7 indicates that the spatial distribution of annual RSEI

in the three periods of 2000 to 2006, 2007 to 2013 and 2014 to 2020

showed an increasing trend from west to east. The RSEI below 0.3

covered Dengkou, Hanggin and Linhe in the southeast, and

Wuyuan. The RSEI above 0.6 mainly increased from the middle

to the northwest of Urad Qianqi, located in the WLB natural reserve

and ecological restoration project area, which means that the

ecological restoration measures in WLB improved the ecological

quality during the last 20 years.
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The trend curves of 2000 to 2006, 2007 to 2013 and 2014 to

2020 and the spatial distribution of the trends were obtained by

using the time trend analysis. The trends of RSEI in the WLB from

2000 to 2020 shows a fluctuating upward trend. The annual RSEI

over the whole region has increased by 0.0034 year−1 in the last 21

years. The RSEI of the WLB decreased by −0.0021 year−1 and

−0.0016 year−1 respectively in 2000 to 2006 and 2007 to 2013.

Besides, The RSEI of the WLB shows an increasing trend at 0.0083

year−1 from 2014 to 2020. Compared with 2000 to 2006 and 2007 to

2013, the rising trend is more obvious in 2014 to 2020.

The annual RSEI values declined from 2007 to 2013, as shown

in Figure 8. Compared with 2007 to 2013, the most distinctive of the

annual dynamics of RSEI in 2000 to 2006 were influenced by the

“Grain to Green” project. Compared with 2000 to 2006 and 2007 to

2013, the annual dynamics of the RSEI in 2014 to 2020 were

influenced by the ecological restoration project, such as artificial

afforestation and fly-sown afforestation, and these measures

brought a positive impact on vegetation growth in the WLB. The

positive change rate of RSEI value in these areas is more than 0.05

year−1, and the negative change rate is less than 0.01 year−1. RSEI

values increased in most of the Northwest region from 2000 to 2006,

decreased partially in the Dengkou region from 2007 to 2013.
3.3 Dynamic changes in the eco-
environment quality

The results of WLB 2000 to 2006, 2007 to 2013 and 2014 to

2020 were obtained by dynamic change subtraction method

(Table 3, Figure 9). The levels of Invariability (IN) change for

the three periods were 54.22%, 63.80% and 52.43%, respectively.

It is mainly in the central region, indicating that the ecological

environment quality remains relatively stable in most regions. The

proportions of Improvement Obvious (IO) and Deterioration

Obvious (DO) in the ecological environment quality change

levels were both less than 1%, which indicates that there were

almost no areas significant changes in the WLB from 2000 to 2006.
FIGURE 5

Area distribution of RSEI level in the WLB from 2000 to 2020.
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The proportion of Improvement Slight (IS) in the three periods

from high to low was 34.58% (2000 to 2006), 33.28% (2014 to

2020) and 18.02% (2007 to 2013), of which the overall

improvement was obvious in 2000 to 2006 and 2014 to 2020,

and it shifted from the central to the eastern. The proportion of

Deterioration Slight (DS) was 10.40% (2000 to 2006), 17.85%

(2007 to 2013), and 13.75% (2014 to 2020) in the three periods,

showing a gradually decreasing from the northwest to the

southeast. The Dengkou showed an improvement trend during

the period 2000 to 2006, which benefited from the implementation

of vegetation restoration project called “Grain to Green”.
3.4 Sustainable analysis of RSEI

The Hurst index is used to reflect the correlation intensity of

sequence autocorrelation and sequence development. The results of

sustainability trend of RSEI change were superimposed with Hurst

index and change trend (Figure 10, Table 4). It is divided into six

levels according to the results, which were Future Improvement

Trend (FIT), Uncertain Future Trend (UFT), Future Degradation
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Trend (FDT), Persistent Degeneration (PD), Persistent Invariance

(PI) and Continuous Improvement (CI).

The FIT area mainly distributed in Dengkou and Hanggin,

accounting for 33.14% and 4.40% respectively. There was a large

area of desert in Dengkou area and was the key county of

desertification control project. According to the report from the

National Forest and Grass Administration, the desert areas were

treated with 47983.34km2, and grass squares carried out an area of

20400.67km2 in Inner Mongolia, China. The UFT decreased from

the northwest to southeast, followed by Hanggin (9.56%), Dengkou

(9.47%), Linhe (6.13%), and Urad Qianqi (1.72%). The FDT showed

the distribution characteristics of “high in the West and low in the

East”, with Wuyuan accounting for 10.80%, Linhe 7.26%, Urad

Qianqi 12.06%, and the proportion of Dengkou and Hanggin not

exceeding 10%, which is mainly due to the scarcity of vegetation.

The PD level mainly distributed in the Urad Qianqi and Wuyuan

areas, accounting for 12.43% and 4.20% respectively, and the rest of

the areas are less than 5%, due to urban expansion and frequent

human activities. CI areas mainly distributed in the Urad Qianqi

andWuyuan, accounting for 3.84% and 0.83% respectively, with 0%

in the rest of the region. Overall, the RSEI in the western section of
FIGURE 7

The trends in the RSEI values over the WLB from 2000 to 2006, 2007 to 2013 and 2014 to 2020.
FIGURE 6

The spatial distribution of annual RSEI values in the WLB from 2000 to 2006, 2007 to 2013 and 2014 to 2020.
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the WLB shows a trend of improvement in the future, while the

RSEI in the eastern area shows degradation and uncertainty in the

future, which requires sustained attention.
3.5 The relationships between RSEI
dynamics and climatic factors

The WLB is located in an ecologically fragile area in

northwestern China, with an annual average temperature of close

to 7.3° and an annual precipitation of close to 300mm. We used

raster data of precipitation and temperature from 2000 to 2020 to

generate annual average precipitation and temperature data using

the image-by-image method (Figures 11A, B). The spatial

distribution characteristics of precipitation and temperature

gradually increase from west to east, and the main reason is that

the region has a large desert area and dry temperatures. The Urad

Qianqi area belongs to the ecological restoration area of the mining

area. The region had implemented ecological management

measures like afforestation since China began ecological

management and restoration.

We used raster data of precipitation and temperature from 2000

to 2020 and RSEI data for correlation analysis. As shown in

Figure 11C, the negative correlation area between RSEI and
Frontiers in Ecology and Evolution 11
precipitation is mainly in the northeastern around the WLB, and

the positive correlation area is distributed in the central to western

region. Particularly, the positive correlation in the Dengkou area

reaches 0.70, indicating that precipitation is one of the important

factors limiting the growth of vegetation in this area. As shown in

Figure 11D, the positive correlation areas between RSEI and

temperature are distributed in the western and eastern regions,

and the negative correlation regions are distributed in the

southeastern and central regions of Urad Qianqi. The greater the

extent of urbanization in the central region, the more obvious the

heat island effect, that results in higher land surface temperatures,

thereby inhibiting vegetation growth and ecological restoration.
3.6 The relationships between RSEI
dynamics and anthropogenic factors

3.6.1 Analysis of residual results
Figure 12 shows the positive values represent a continued

increase in the impact of human activities, while negative values

represent a decrease in the impact of human activities. The WLB

area showed an increasing trend with 0.029/a, indicating that

human activities continued to strengthen. The north of Dengkou

is significantly affected by human activities. The decrease area is
FIGURE 9

The level changes of RSEI during 2000 to 2006, 2007 to 2013, and 2014 to 2020 (the positive level is unified as Improvement, 0 is level Invariability,
the negative level is unified as Deterioration).
FIGURE 8

The spatial distribution of RSEI trends in the WLB from 2000 to 2006, 2007 to 2013 and 2014 to 2020.
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located near the north of Linhe, Wuyuan and around the watershed,

and the annual rate of change was as low as −0.039/a. It shows that

the variation of RSEI residual is spatially different.

3.6.2 Correlation of RSEI and population density
Figure 13 showed the trend of population density changes and

the correlation between population density and RSEI, respectively.

As shown in Figure 13A, the impact trend of population density is

increasing at a rate of 191.01 year−1 which shows human activities

is continuing to intensify. The regions with more pronounced

changes, which locates in urban economic development areas. As

shown in Figure 13B, the positive value mainly distributed around

the WLB. The negative value regions mainly located in the

Dengkou, Linhe and around the Urad Qianqi, with a scattered

distribution trend from northwest to southeast. The human

activities to RSEI in Dengkou area are positive, but some areas

are negative. The ecology of the Dengkou area has been significantly

improved through human activities.
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As shown in Figure 14, we also complement 21 years of changes

in farmland, forest, and grassland to deeply explore the impact of

human activities on regional RSEI. The farmland peaked in 2018 and

then gradually decreased, while grassland, in contrast to farmland, fell

to a trough in 2018 and then gradually increased. The increasing

trend in population density indicates the force is positive, and the

decreasing trend indicates that the force is negative.

3.6.3 Correlation of RSEI and CNLI data
The urbanization can affect the impervious surface construction

which can influence the radiation of surface temperature. The CNLI

can monitor the relationship between urbanization and the regional

environment conditions. The CNLI trend from 2000 to 2020 is

shown in Figure 15A. The average annual rate of change was 0.15

year−1, and the areas distributed in the central metropolitan areas of

Linhe and Hanggin, Wuyuan and Urad Qianqi.

As shown in Figure 15B, the correlation coefficients between

CNLI data and WLB is more than 0.42, which is mainly in the Urad
TABLE 4 Superposition analysis of change and sustainability in WLB.

Dengkou Hanggin Wuyuan Urad Qianqi Linhe

Hurst index Future trend Area (km2) Pct. (%) Area (km2) Pct. (%) Area (km2) Pct. (%) Area (km2) Pct. (%) Area (km2) Pct. (%)

>0~<0.5 FIT 964.74 5.95 81.84 0.50 0.13 0.00 0.15 0.00 2.1 0.01

>0~<0.5 UFT 1550.04 9.56 1534.29 9.47 351.88 2.17 278.44 1.72 994.13 6.13

>0~<0.5 FDT 393.74 2.43 243.17 1.50 1750.72 10.80 1955.09 12.06 1175.24 7.25

>0.5~<1 PD 2.98 0.02 2.41 0.01 681.2 4.20 2014.2 12.43 37.21 0.23

>0.5~<1 PI 0 0.00 0 0.00 31.14 0.19 1360.88 8.40 45.03 0.28

>0.5~<1 CI 0 0.00 0 0.00 135.32 0.83 622.91 3.84 0 0.00
front
* The area proportion is the ecological level area divided by the total area, and the sum of all proportions is 100%.
FIGURE 10

Future trend of RSEI in different regions of WLB.
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Qianqi, Linhe, Wuyuan, and the other value was 0. The positive

values in all these areas indicate that CNLI is an unnatural factor

affecting RSEI changes in the Dengkou region. The negative value is

distributed in the center Linhe, which is an economic development

area that focuses on urbanization progress and neglects the

ecological environment protection. This was significantly and

positively correlation with the influence of human activities. The

anthropogenic drivers of RSEI change in the region include

ecological restoration projects on the improvement of vegetation

cover. For example, forest restoration, natural forest protection and

other ecological protection projects have contributed to the

improvement of ecological habitat.

3.6.4 Impacts of human activities on land use
From 2000 to 2020, the overall ecological environment of the

WLB has shown a gradual and steady improvement. The

proportion of moderate, good, and excellent RSEI averaged at

29.95%, 7.46%, and 0.91%, respectively. In contrast, the

proportion of poor and fair RSEI showed a fluctuating downward

trend. As shown in Table 5, the forest increased greatly from 1.14

km2 in 2000 to 109.49 km2 in 2020, and the grassland decreased

from 3620.84 km2 to 1745.35km2. Besides, the areas of cropland and

building increased by 5.89%, 35.34%, respectively. Compared with

the large-scale improvement of vegetation quality in the WLB area,

the human destructive activities belong to a small scope, but it also

needs attention. It is feasible for us to quantify the human factors

affecting the RSEI in theWLB through the residual analysis method.
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The CNLI data and population density data have a high correlation

with the RSEI of the WLB. Anthropogenic factors are highly

sensitive to changes in the WLB area.
4 Discussion

4.1 Availability of remote sensing data
sources for ecological monitoring

We used MODIS products, night lighting data, land cover data,

population density data, and combined with spatial analysis

methods to achieve dynamic monitoring of ecological and

environmental quality in the WLB area from 2000−2020. The

fusion of low spatial resolution (LR) hyperspectral (HS) data and

high spatial resolution (HR) multispectral data can increase the

possibility of using remote sensing data sources (Zou et al., 2022).

The datasets formed by web-based deep learning models based on

remotely sensed images also have a high potential for characterizing

changes in ecosystem quality (Sun et al., 2022). Therefore, the

diversification of remote sensing data provides important basic data

for large scale and long time series earth observation (Mahyari and

Yazdi, 2011; Tuia et al., 2017). Currently, there are limitations in the

collection of complete multi-time series and multi-scale socio‐

economic statistics. The availability and completeness of data are

the key factors limiting the dynamic monitoring of regional

ecological environment (Ryu et al., 2019; Cao et al., 2020).
FIGURE 12

Spatial distribution of trend changes in residual analysis results in the WLB.
B

C D

A

FIGURE 11

The spatial distributions of precipitation (A), temperature (B), and spatial distribution of correlation coefficients between RSEI and precipitation (C)
and temperature (D) in the 2000 to 2020.
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Although this study reduces the effect of absolute error by using the

RSEI trend and Hurst trend, the “scale shift” derived from the

inconsistent resolution in multi-source remote sensing data is still a

problem that needs to be solved in greater depth (Wang et al., 2020).
4.2 Factors affecting the change of RSEI

The ecological and environmental quality of the WLB area

shows a fluctuating upward trend and tends to improve in general,

but some parts are not effective. Among them, the RSEI shows an

increasing trend in the eastern changes, but the changes are not

particularly significant, which is most likely influenced by the

topography, the land cover types are grass and shrubs, and the

influence of human activities has a certain positive effect, so the

RSEI remains relatively stable. Changes in RSEI in the central
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region occur mainly in towns, watersheds and wetlands, where

human activity is high.

This study uses a residual model to analyze the trend of human

activities by combining nighttime lighting data, population density

data and land use change data. The trend changes results of the

residual analysis and the correlations indicate that the combination

of natural vegetation growth and plantation is effective. In the past

two decades, a series of measures such as carrying out reforestation

and afforestation ecological projects have played a role in the

recovery of vegetation in the area (Xiong et al., 2021; Fan et al.,

2023). Climatic factors (precipitation and temperature) are

important factors for vegetation growth and recovery, and their

influence is especially pronounced at long time series scales (Chen

et al., 2022; Chakraborti and Bays, 2023). However, the effects of

fire, drought and storms can inhibit vegetation growth, especially in

areas with poor ecological stability.
FIGURE 14

Dynamics of the different land covers and population in WLB.
A B

FIGURE 13

The Spatial distribution of population density trends in the WLB from 2000 to 2020 (A), and the spatial correlation between population density and
RSEI from 2000 to 2020 (B).
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In this study, the RSEI changes were explored from two

perspectives: climatic factors and human activities, using multi-

source remote sensing data. Although there is a lag in the ecological

impacts of climate change and inconsistencies in the quantification

of human activities, this is an important basis for moving to the next

step of the study. The contributions of other vegetation indices,

such as Enhanced Vegetation Index (EVI), Gross Primary

Productivity (GPP), and important government-led factors, need

to be considered in future studies to explore more deeply the factors

and influencing mechanisms of inconsistent RSEI changes.
4.3 Impact of ecological engineering
on RSEI

Currently, there is a general trend of “greening” of the global

environment, with China and India making the largest contributions

(Chen et al., 2019). Ecological restoration projects have become an

important measure in the “greening” of China. The Chinese Ant Forest

project is spread across the arid areas, there is a need to plant vegetation

with well-developed root systems and strong adaptability, which will

improve the survival rate of the vegetation. The RSEI in the WLB area

shows an increasing trend from the west to the east (Zarei et al., 2019).

In 2018, the local government actively responded to the call of “green

water and green mountains are golden mountains” by implementing

projects such as comprehensive management of Ulanbh Desert,

comprehensive improvement of mining geological environment,

desert ecological environment restoration and water pollution

treatment. Among them, the water diversion project between the

government and social enterprises has solved the difficulties of

lacking water resources in arid and desert areas, and provided

important conditions for vegetation growth. Arid and semi-arid areas

are seeded by artificial afforestation and fly‐seeded afforestation, and

this form can improve the survival rate of vegetation. However, in the
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face of ecologically fragile areas, increasing the construction works

while reducing the involvement of human activities to maintain the

stability of the ecosystem (Xu and Zhou, 2003; Zheng et al., 2022).

Therefore, how to keep “green” for a long time is an important topic for

future research in ecological engineering.
4.4 The importance of applying research
results

Remote sensing technology plays a role in the timely correction and

management of monitoring changes in ecological restoration projects,

such as plantations and reforestation. Our research at the watershed

scale cannot be based on a single “greening” indicator, but needs to

combine social, economic, and hydrological data. Ecological

engineering requires long-term fixed systematic monitoring sites to

provide physiological verification of vegetation on the one hand, and to

improve the accuracy of monitoring models for accurate assessment of

ecological engineering on the other. In the face of vulnerability, arid and

semi-arid areas, etc., the type of planting, seeding method, irrigation

method and other measures need to be developed according to local

conditions to improve the probability of forest success (Doelman et al.,

2020; Gao et al., 2020). Vegetation management uses an intensive

approach to select appropriate tree species types or change land use

types to maximize economic benefits (Su et al., 2016; Cai et al., 2022).

How to balance economic management and ecological benefits is the

focus of future research to increase the scale of watershed studies and

provide data support for future ecological and environmental quality

assessment in watershed system demonstration areas.
5 Conclusions

This study uses MODIS data to assess the spatial–temporal

changes of eco-environment quality in the WLB from 2000 to 2020
TABLE 5 Land use types and changes in WLB from 2000 to 2020.

Land use change Cropland Forest Grassland Shrubbery Wetland Building Bare land

Area in 2000 (km2) 8814.54 1.14 3620.84 155.00 405.44 592.25 2349.71

Area in 2020 (km2) 9365.90 110.63 1745.35 1648.32 316.35 915.99 1749.09

Increase/Decrease area (km2) 551.37 109.49 −1875.49 1493.31 −89.10 323.74 −600.62

Rate of increase (%) 5.89 98.97 −107.46 90.60 −28.16 35.34 −34.34
A B

FIGURE 15

Spatial distribution of nighttime lighting data trends in the WLB from 2000 to 2020 (A), and the spatial correlation between CNLI and RSEI from
2000 to 2020 in the WLB (B).
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supported by GEE cloud service platform, and explored the driving

forces of RSEI dynamics based on meteorological data,

anthropogenic activities related data and CNLI data. The

ecological environment of WLB areas have slowly and gradually

improved from 2000 to 2020. The northern Dengkou, Linhe and

Wuyuan regions are still degraded. The ecological status of the

Dengkou desert management area and the mining area of Urad

Qianqi has been significantly improved. There are positive and

negative feedbacks for the long-term effects of different restoration

measures of the WLB. Anthropogenic factors are the main drivers

of changes in the ecological quality of the WLB. Evaluation of the

ecological status of typical restoration and treatment areas provides

a reference for the application of the same type of areas.
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