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Introduction: Accurate assessments of vector occurrence and abundance,

particularly in widespread vector-borne diseases such as malaria, are crucial

for the efficient deployment of disease survei l lance and control

interventions. Although previous studies have explored the benefits of

adaptive sampling for identifying disease hotspots (mostly through

simulations), limited research has been conducted on field surveillance of

malaria vectors.

Methods: We developed and implemented an adaptive spatial sampling

design in southwestern Benin, specifically targeting potential and uncertain

Anopheles gambiae hotspots, a major malaria vector in sub-Saharan Africa.

The first phase of our proposed design involved delineating ecological zones

and employing a proportional lattice with close pairs sampling design to

maximize spatial coverage, representativeness of ecological zones, and

account for spatial dependence in mosquito counts. In the second phase,

we employed a spatial adaptive sampling design focusing on high-risk areas

with the greatest uncertainty.

Results: The adaptive spatial sampling design resulted in a reduced

sample size from the first phase, leading to improved predictions for

both out-of-sample and training data. Collections of Anopheles gambiae

in high-risk and low-uncertainty areas were nearly tripled compared to

those in high-risk and high-uncertainty areas. However, the overall

model uncertainty increased.

Discussion: While the adaptive sampling design allowed for increased

collections of Anopheles gambiae mosquitoes with a reduced sample size,
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it also led to a general increase in uncertainty, highlighting the potential trade-

offs in multi-criteria adaptive sampling designs. It is imperative that future

research focuses on understanding these trade-offs to expedite effective

malaria control and elimination efforts.
KEYWORDS
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Introduction

The Global Vector Control Response (GVCR) was

unanimously adopted by the World Health Assembly in May

2017 to tackle the stall in malaria elimination progresses (World

Health Organization and UNICEF, 2017). Since then, the WHO

has engaged in a program to roll out the GVCR in all regions.

GVCR is based on four pillars of vector-borne disease control:

intersectoral collaboration, community engagement, monitoring,

surveillance and evaluation, and integration of tools and

approaches, supported by novel and innovative research.

The four pillars for malaria control and elimination are reliant

on disease risk estimated in time and space, which must be routinely

reviewed to inform tailored malaria control strategies (Thawer et al.,

2022) and to evaluate the impacts of these interventions (Shrestha

et al., 2022). A key component for the accurate definition of disease

risk distribution is the deployment of optimal entomological

surveillance frameworks, where optimal can be defined as the

strategy providing the maximum accuracy in the investigated

mosquito process (presence/absence, abundance, associations with

environment etc...) given the constraints of limited resources (Sedda

et al., 2019). An Entomological Adaptive Sampling Framework

(EASF) adjusts the entomological sampling strategy across time

and space based on a pre-defined criteria or combinations of criteria

(e.g., maximizing mosquito catches, minimizing model or

predictive distribution errors, etc.), enables the capture of spatially

heterogeneous changes in entomological and disease transmission

dynamics, and guide programmatic and strategic decisions

(Obsomer et al., 2013). Within this framework, cost-effectiveness

cannot only be dependent on the accessibility of the survey

locations but also on the robustness, quality (or uncertainty), and

quantity of information in the collected (Koenraadt et al., 2021),

which is the priority for any EASF.

To provide unbiased information on species occurrence and

abundance while detecting the spatiotemporal relationships
02
between the targeted species and their environment during an

entomological survey. It is necessary for the sampling locations to

encompass areas with varying strength of these relationships.

Malaria and other vector-borne disease systems are complex

owing to spatial and temporal heterogeneity (Kabaghe et al., 2017b);

therefore, flexible spatial sampling designs are required to represent

the full dynamicity of the disease system components. In the

absence of prior knowledge (expert opinion, historical data) of

the process under investigation, a spatially balanced design that

spreads the survey locations as evenly as possible in the study area

according to a specific sampling method or criteria, provides more

uniform coverage over the study area than random sampling, and

decreases uncertainty in spatial interpolation (Gelfand et al., 2012).

Spatially balanced designs can be obtained by employing quasi-

random methods (Sobol and Halton sequences) or distance-based

designs, commonly known as space-filling designs (Liu and

Vanhatalo, 2020). The major drawback of these designs, in the

presence of prior information, is that the locations are selected with

identical or roughly equal probabilities. However, when previous

data are available, the sampling can be based on a target function

(often model-based). Unequal probability survey designs or

adaptive designs allow the selection of locations based on specific

criteria, with sample locations chosen according to varying

probabilities of inclusion in the sample (Brown et al., 2013).

With spatially correlated data, adaptive and sequential

sampling, often associated with stratified sampling, can increase

the information content, and provide a more efficient estimation of

the vector or disease processes (Lazaro et al., 2021). The methods

often target locations with high spatial uncertainty or disease

hotspots (Case et al., 2022). However, field quantification of the

gains obtained using these approaches has not been provided for

mosquito surveillance.

In the field study reported here, a spatially balanced design

coupled with adaptive sampling was employed for entomological

surveillance in the southwestern region of Benin (West Africa).

We evaluated the efficacy of spatial adaptive sampling designs for

vector surveillance in terms of the reduction of model uncertainty

and increased accuracy in mosquito spatial pattern description.

Spatial sampling strategy and model performances for the primary

malaria vector Anopheles gambiae s.l. (hereafter An. gambiae)

are presented.
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Methods

Study area

The study site encompassed the provinces of Athiémé, Bopa,

Comè, Grand Popo, Houeyogbé, Kpomassè, Ouidah, and Sè in the

Atlantique region of Southwest Benin. This region extends from the

southwest coast to 30 km inland and from 0 m to 70 m above sea

level. The average temperature is 28.9°C, the average relative

humidity is 76%, and the average annual rainfall is 190 mm. The

wet season is characterized by abundant rain between April and

July, with a lower amount of rain from September to October

(Boton et al., 2019). Malaria transmission is perennial in this region

where malaria is mesoendemic or hyperendemic (malaria

prevalence between 40% and 60%) (Damien et al., 2010).
Spatial sampling design

Entomological surveillance was performed in two phases. The

first phase (Phase I) was carried out in 2018 and was based on a

spatially balanced sampling design (lattice with close pairs), as

described in Sedda et al. (2019). This design was selected because

of the absence of previous entomological information in the area. In

brief, the sample size was obtained from a simulation analysis of a

similar study from Kenya. Stratification of the area in ecological

zones was performed by spatially adjusted quadratic discriminant

analysis. Finally, allocation of the surveillance points in each stratum

followed a proportionality approach, with more surveillance

locations in strata with larger size and with a 7:3 ratio (70%

location in lattice design and 30% locations in close random pair

distribution), a ratio obtained from previous studies as described by

Sedda et al. (2019). This design was aimed at maximizing spatial

coverage (lattice) and improving model inference (close pairs) while

accounting for different ecological conditions (sampling locations

are allocated to strata proportionally to the strata total area). The

entomological surveillance in 2021 (Phase II), in the similar calendar

period of Phase I (October–November), was based on a spatial

adaptive sampling design (Chipeta et al., 2016), targeting areas with

An. gambiae having the highest risk of detection, with the highest

uncertainties, based on the prediction results from Phase I

(see below).

An adaptive spatial sampling scheme involves selecting older

and/or new sampling locations over a sequence of sampling times

through probabilistic models. The inherent spatial autocorrelation

is explicitly considered to improve the prediction and 'parameters'

inference. The implementation of the adaptive sampling design

required four preliminary decisions: a) an initial model to fit the

data from Phase I; b) a batch size as the number of new locations to

add to the first-phase sampling design; c) a utility function to rank

unobserved locations to the target; and d) removal of low-

information locations from Phase I to satisfy the limited

availability of resources.

Phase I An. gambiae counts per week (w) and household (h),

Yw,h, were fitted by employing a Poisson generalized linear

mixed model with independent and identically distributed
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spatiotemporal random fields (Equations 1, 3):

Yw,h = Poisson(mw,h) (1)

log(mw,h) = av + bXw,h + ew,h

av
e

N(0,s 2
a )

ew,h
e

MVNormal(0,Se)

where a is a group-level random effect normally distributed

with a mean equal to 0 and variance s2, with the group identified by

the location id, v; b is a vector of coefficients for each explanatory

variable contained in the matrix X, and e is the spatiotemporal

random Gaussian field with covariance matrix Se constrained by a

Matern covariance function. This model was implemented using

the sdmTMB package in the R software (Anderson et al., 2022). The

spatiotemporal random field is approximated using a triangulated

mesh with a minimum gap of 1 km. In this modeling context, a risk

map is equivalent to mapping the detection probabilities of An.

gambiae (Aarts et al., 2012).

The adaptive batch comprised 15 new locations (half of those

used in Phase I) constrained by available resources. The utility

function U is maximized according to the median predicted risk of

An. gambiae detection, A, and its uncertainty, E, over the study

period and can be mathematically represented by Equations 2:

U(q) = R(A(q)) + E(q) (2)

where R(•) is a ranking function that orderA(x) from the largest

to the smallest, and q are the locations at the nodes of the predictive

spatial grid (see theModel and prediction performance section). This

strategy can lead to high sampling bias and fail to prioritize

locations with new information because it does not explore areas

with low risk at the prediction locations (Case et al., 2022).

However, the focus of this study was to delineate An. gambiae

hotspots in known and unknown locations. The uncertainty in the

linear predictors for each location and week at the predictive grid

was obtained by calculating the standard deviation of the model

predictions from 999 simulations of the joint precision matrix

(Anderson et al., 2022).

Finally, a jackknife approach was implemented to discard

locations from Phase I that contained limited information, i.e.,

limited impact on the uncertainty in predictions when dropped

(Wang et al., 2020).
Model and prediction performance

The model parameters' uncertainties were provided by 95%

credible intervals (a more robust measure than confidence intervals

when comparing models with different sample sizes) and compared

between Phase I and Phase II and Phases I and II combined. A

comparison was made by estimating the credible interval

probability of overlapping (Kruschke, 2013).

Predictions for both Phase I and Phase II and for the overall

Phase I and II were obtained on a prediction grid with 5 km spatial
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resolution covering the study area (longitude from 1.5 E degrees to

2.1 E degrees and latitude from 6 N degrees to 7 N degrees).

Leave-One-Out Cross-Validation (Fuhg et al., 2020) was

employed to evaluate out-of-sample prediction errors by by

removing one randomly selected record from the training set and

predicting the value of An. gambiae in the removed record (a record

is one of the house-location-week An. gambiae catch). The

procedure was repeated 100 times and the average squared error

was measured.

Finally, model-explained variance and training data prediction

error were calculated from R-squared (Gelman et al., 2019) and root

mean squared error (RMSE) (Rocha et al., 2021) statistics,

respectively. A lower RMSE value indicates that the predicted

values are closer to the actual values, whereas a higher RMSE

value indicates that the predicted values are further away from the

actual values.
Environmental variables

An. gambiae counts were inferred and predicted based on co-

collected Anopheles. funestus s.l. (An. funestus hereafter), and the

eco-strata created by Sedda et al. (2019). The use of An. funestus as a

predictor can provide information about the co-occurrence of the

two mosquito species, and therefore, a more precise quantification

of malaria risk (Djènontin et al., 2010). No other ecological variables

were used because the employed eco-strata is a construct of several

environmental satellite data obtained from open sources: land cover

classification at 30 m resolution obtained from GlobeLand30 for the

year 2010 and containing 10 classes (Jun et al., 2014); elevation from

the NASA Shuttle Radar Topographic Mission (SRTM) at 90 m and

released in 2008 (Jarvis et al., 2008); bioclim precipitation as average

annual precipitation from 1970 to 2000 at 30 arcseconds (1 km ca.)

(Fick and Hijmans, 2017); soil information at 30 arcseconds from

the FAO harmonized world soil database V1.2 (Fischer et al., 2008);

and fina l ly , month ly MODera te - re so lu t ion Imag ing

Spectroradiometer (MODIS) satellite products for temperature,

enhanced vegetation index (EVI) and the ratio of Actual to

Potential Evapotranspiration (ET) were obtained from Oxford

University Research Archive at 0.05° (5 km ca.) (Seddon et al.,

2016). For eachMODIS variable, the mean, amplitude, and variance

for the entire 2000–2013 period were calculated. We identified four

eco-strata: 1) cultivated land/grassland; 2) forest/shrubland; 3)

wetland and water bodies; and 4) urban. The same eco-strata

covariate was used for Phase I and Phase II to simplify the

modeling integration between the two phases and under the

assumption of similarity in the multivariate ecological conditions

between the two phases.

Given these environmental variables the glmmmodel above can

be detailed as (Equation 1):

log(mw,h) = av + b0 + b1An : funw,h + b2ERh + ew,h (3)

where An. fun are the counts of An. funestus, ER is the eco-

strata id, and the b are the intercept (0), and coefficients for An.

funestus (1) and each eco-strata (2).
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Entomological collection

The design of the first entomological survey of 30 locations

based on a spatially balanced design was described by Sedda

et al. (2019).

After employing the adaptive sampling design, entomological

collections were carried out from October to November 2021 at 17

locations (see Results) for a total of 68 houses (four houses per

location). This time period coincides with the time period of Phase I

and usually has the highest density of mosquitoes (dry/rainy

season) (Djouaka et al., 2016). The houses were randomly

selected for mosquito collection. Mosquitoes were collected

during four consecutive nights every week for 4 weeks, using

CDC light traps (Model 512, John W. Hock Company,

Gainesville, FL). At each location, a member of the community

was trained using traps and deploying the sampling protocol. The

order of house collection was randomized before each collection to

remove any systematic biases. Traps were positioned at a height of

1.5 m in sleeping rooms and operated on 12 V battery power from 8

p.m. to 6 a.m. Each morning, mosquitoes were collected, stored in

ziplock bags containing silica gel and transported immediately to

the laboratory of the Tropical Infectious Diseases Research Center

of the University of Abomey-Calavi located at the Institut Regional

de Santé Publique of Ouidah for identification and analyses.
Ethical approval

Secondary data analyses were approved by the Faculty of Health

and Medicine Research Ethics Committee at Lancaster University

(UK), with reference number FHMREC20173.
Results

The An. gambiae counts obtained during Phase I were used to

produce an An. gambiae risk map (Figure 1A).

Spatial adaptive sampling allocated 15 locations with high An.

gambiae risk and high uncertainty, eight in new locations, and seven

overlapping with Phase I locations. The jackknife loss of

information criteria method removed 21 locations from Phase I.

This led to Phase II with 17 locations (eight new and nine from

Phase I) (Figure 1B).

Overall, a larger number of An. gambiae were caught in Phase I

than in Phase II. In contrast, on average, a larger amount of An.

funestus was caught in Phase II than in Phase I (Table 1), although

catches of An. gambiae were the majority in both cases. The two

species showed a significant positive association (Table 2).

When comparing Phase I and Phase I + II, all significant

predictors for An. gambiae (An. funestus and forest/shrubland-

type) had narrower credible intervals in Phase I + II than in Phase I

(probability of overlap lower than 0.5) (Table 2). In both Phase I

and Phase I + II, increased An. funestus catches and the presence of

mixed forest/shrubland eco-strata increased the likelihood of

catching An. gambiae, with mixed forest/shrubland ecosystems
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exerting a stronger effect than An. funestus (Table 2, OR values).

However, in Phase II, forest/shrubland was not significantly

associated with the catch of An. gambiae; instead, the classes

wetland and urban areas were associated with higher catches of

An. gambiae, although urban areas became insignificant in Phase I

+ II. This is not due to the different proportions of eco-strata used

between the two phases, since the largest difference was 10% less

cultivated land and grassland in Phase II than in Phase I.

The model with Phase I + II data produced a lower variance of

the spatiotemporal effect (i.e., a larger amount of variance explained

by the predictors than in the model of Phase I) and, in terms of An.

gambiae estimation, a lower error during cross-validation, a lower

root mean squared error, and a higher explained variance (R-

squared), although not large in absolute terms. However, the
Frontiers in Ecology and Evolution 05
general uncertainty in the study area increased by approximately

21%. (Table 3)

Finally, Figure 2 shows the relative risk of An. gambiae in Phase

I and Phase I + II, the latter with a general increased risk in most of

the region, but not in the northeast.
Discussion

To provide scientifically grounded guidance to decision makers

for effective targeted malaria control and elimination, an accurate

assessment of the spatiotemporal malaria transmission intensity

that can consider the spatiotemporal heterogeneities in both vectors

and parasites is essential. This will allow for the design of tailored
FIGURE 1

(A) An. gambiae risk map (darker colors higher risk) with white dots in the background showing sampling locations in Phase (I) (B) Based on the An.
gambiae risk, Phase II surveillance used a mixture of previous locations (white dots) and new locations (yellow dots). Background: Google Earth
Image@2021 (Image Landsat/Copernicus, CNES/Airbus, Maxar Technologies. Data: SIO, NOAA, U.S. Navy, NCA, GEBCO).
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intervention strategies at different locations and time periods.

Model-based sampling strategies, such as spatial adaptive

sampling designs, are the best-equipped tools for undercovering

these heterogeneities.

The present study aimed to improve the definition of the most

uncertain An. gambiae hotspots by targeting its largest and most

uncertain risk. The research was carried out in two phases: the first

phase, where zone delineation (eco-strata) and a proportional lattice

with close pairs sampling design were implemented [fully described

in Sedda et al. (2019)], and a second phase that combined a spatial

adaptive sampling design targeting high risk with the highest

uncertainty, with the information loss criteria method to add new

locations and remove obsolete ones. The Phase II sample size was

56% of the sample size in Phase I. While out-of-sample and training

data predictions improved with additional adaptive locations, the

general uncertainty increased by a fifth of the initial one. In other
Frontiers in Ecology and Evolution 06
words, the presented framework has an accurate expectation of An.

gambiae spatiotemporal heterogeneity (i.e., an accurate description of

the average risk in the sampled area), although with larger margins of

uncertainty when compared to the initial sampling. The R-squared

value is relatively low, however, this element considers the linear

predictor only while accounting for the total variance of the model.

Since, the majority of the risk is explained by the spatiotemporal

random Gaussian field, the R-squared values are low (Sterba and

Rights, 2022). Changes that have occurred in the last three years in

the area, the different goals of Phase I and Phase II, and the used

adaptive target criteria have certainly contributed to a general

increase in the uncertainty, including the utility function not based

on global uncertainty. It is well known that uncertainty maps can

indicate where additional data would reduce the overall prediction

error, and although other authors (Shrestha et al., 2022) suggest

similar strategies as the one adopted in this work, we have shown that
TABLE 1 Summary statistics for catches of An. gambiae and An. funestus by sampling phase.

Species/Phase Mean Median Min Max SD Sampling
Effort

An. gambiae I 4.80 1 0 213 12.45 720

An. gambiae II 1.77 0 0 34 4.86 272

An. gambiae I + II 3.97 0 0 213 10.98 992

An. funestus I 0.21 0 0 23 1.28 720

An. funestus II 0.56 0 0 13 1.55 272

An. funestus I + II 0.31 0 0 23 1.37 992
Sampling effort is defined by the product of the number of houses in each location, the number of locations and the number of weeks of trapping (720 from four houses, 30 locations and 6 weeks;
272 from four houses, 17 locations and 4 weeks).
TABLE 2 Poisson generalised linear model coefficients for fixed effects by modeling An. gambiae counts per week and household.

Phase Parameter OR Low CrI Up CrI CrIs P-CrI

I An. funestus 1.23 1.18 1.28 0.1 Ref

ER = 1 0.95 0.62 1.46 0.84 Ref

ER = 2 1.43 1.14 1.79 0.65 Ref

ER = 3 8.37 0.99 18.29 17.3 Ref

ER = 4 0.96 0.23 3.99 3.76 Ref

II An. funestus 1.11 1.04 1.19 0.15 0.12

ER = 1 2.16 0.73 6.36 5.63 0.88

ER = 2 2.06 0.94 4.49 3.55 0.79

ER = 3 3.33 1.30 8.54 7.24 0.94

ER = 4 3.33 1.53 7.27 5.74 0.94

I+II An. funestus 1.12 1.10 1.15 0.05 0.07

ER = 1 1.48 1.00 2.18 1.18 0.57

ER = 2 1.38 1.11 1.71 0.6 0.36

ER = 3 3.28 1.93 5.61 3.68 0.94

ER = 4 1.82 0.92 3.62 2.7 0.94
OR, odd ratios; Low CrI, lower 95% credible interval; Up CrI, upper 95% credible interval; CrIs, credible interval size; P-CrI probability of overlap between the credible intervals of Phase II vs
Phase I and Phase I + II vs Phase I. ER ids: 1) cultivated land/grassland type; 2) forest/shrubland-type; 3) wetland and water bodies; and 4) urban.
Grey shaded rows indicate predictors with 95% credible intervals not including the OR value of 1.
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short-term targets (where the short term is defined as a low number

of repeated sampling) are likely to improve only some characteristics

of the model while potentially worsening others, especially in the

context of a limited and/or static number of predictors. Additional

work on the effective capacity of multicriteria adaptive sampling

design is required with relation to the linear term of the model [a

machine learning approach could be a solution for this component of

the framework (Yu and Liu, 2003)], length, and frequency of

the surveillance.

Previous work has concentrated on the benefits of spatial

adaptive sampling strategies on the disease, not the vector, and
Frontiers in Ecology and Evolution 07
often by simulation of artificial data (Case et al., 2022). For example,

Andrade-Pacheco et al. (2020) showed that a spatially adaptive

sampling approach produced consistently superior accuracy for

generic disease hotspot classification over a random sampling

approach, and could dramatically lower the resource

requirements to conduct surveys with the goal of detecting

disease hotspots. The only study found on field surveillance of

malaria was the work of Kabaghe et al. (2017a), who applied

adaptive sampling for malaria prevalence in an area in Malawi

and identified areas where increased sampling effort increased the

overall predictive accuracy of the hotspot area. However, their
FIGURE 2

An. gambiae relative risk and relative uncertainty in Phase I (top) and Phase I + II (bottom).
TABLE 3 Model performance.

Model Variance spatiotemporal
random effect
(95% confidence intervals)

Leave-one-out cross
validation error

Overall uncertainty RMSE R-squared

Phase I 5.84 (3.19–10.07) 0.16 0.19 1.27 0.16

Phase I + II 4.51 (3.30–6.16) 0.12 0.23 1.11 0.27
RMSE, root mean squared error.
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survey design 'only targeted predictive high-intensity areas of

malaria prevalence.

The use of An. funestus is justified by the significant and direct

association with An. gambiae (Table 2), as shown in Benin (Djouaka

et al., 2016) and elsewhere in West Africa (Adja et al., 2013). As

shown by previous Benin entomological surveys (Djouaka et al.,

2016), An. gambiae and An. funestus are the two major malaria

vectors, and other Anopheles species are rarely found. The two

vectors were the only ones found in this study as well as in Djouaka

et al. (2016). Other mosquito genera are commonly collected,

including Culex, Aedes, and Mansonia, but they are not relevant

for malaria or as sympatric species.

The larger densities of An. funestus found in Phase II than in

Phase I do not seem to depend on the unintentional targeting of this

species by the model, since locations with high risk and high

uncertainty 'for An. gambiae caught a lower average number of

An. funestus than the average number caught in high-risk and low-

uncertainty areas (0.087 and 0.930, respectively). Similarly, areas

associated with low uncertainty 'for An. gambiae and high risk

almost tripled the catches of An. gambiae compared to those with

high uncertainty (3.055 versus 1.087, respectively), confirming the

capacity of the model to effectively and accurately target An.

gambiae risk in areas with low uncertainty.

While the model presented herein shows good robustness (RMSE

around 1, which fits the common assumption of residual errors with

one standard deviation), it is limited by the time passed from Phase I

to Phase II (almost 3 years due to the COVID epidemic), which may

have contributed to the lower number of An. gambiae catches,

increased uncertainty in Phase I + II, and the effects of malaria

control interventions. However, the present work is a typical example

of designing a new mosquito surveillance campaign using existing

available data (Coulibaly et al., 2023) as commonly applied. In

addition, this work does not compare with a control, e.g., a

surveillance in the same region involving a random sample,

although the scientific community agrees on the superiority of

adaptive or other model-based designs compared to random

sampling. Finally, 21 locations from Phase I were removed because

of minimal contribution to the overall information under the

condition of limited available resources. However, this should be

done carefully, and future studies should evaluate the effect of removal

sequentially, instead of in batches, to account for intra-location

variation and seasonality effects at location candidates for removal.

Future work will need to address the limitations of the present

study and answer other important questions for optimal

interventions, such as the operational unit for treatment that will

require the integration of the epidemiological component into the

entomological component (Rebollo et al., 2018), and the

epidemiological and entomological indicators that can consider

the heterogeneity of parasites and vectors in different

environments (Liu et al., 2023). For any malaria elimination

strategy, it will be necessary to balance the targeting of

interventions to disease hotspots, with the need to correctly

identify the vector and infestation status in the larger

neighborhood area to ascertain the risk of potential re-

introduction (Huestis et al., 2019; Stolk et al., 2021; Case et al.,

2022), as well as logistical constraints (e.g., human resources and
Frontiers in Ecology and Evolution 08
cost) (Wang et al., 2020). Therefore, it is essential to integrate local

malaria incidence data throughout the study to optimize

intervention prioritization. To enhance the system’s performance

in identifying disease vector hotspots, a methodological framework

should be established for jointly modeling vector densities and

malaria incidence. This approach ensures that interventions are

strategically deployed based on the dynamic relationship between

vector abundance and malaria cases, thereby leading to more

effective and targeted control measures.

We have shown that adaptive sampling can reduce the sample

size without affecting the statistical expectations of An. gambiae

distribution patterns, although it increases uncertainty. However, it

also demonstrated the efficacy of the design in detecting larger

densities of An. gambiae in areas with high An. gambiae risk and

low uncertainty, an essential element for hotspot detection.

In conclusion, for malaria and many other infectious diseases,

two conditions need to be met for the disease to be categorized as

susceptible to eradication/elimination: first, there must be accurate

diagnostic(s); and second, there must be effective intervention tools

able to remove the infection from the area. The latter will only

succeed if appropriate sampling strategies are available. These results

provide new insights into the development of place-based strategies.
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