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Editorial on the Research Topic

Integrating models into practice: the role of modelling in biocontrol and
integrated pest management
Motivation

Theoretical models have historically benefitted several applied fields, for example the

use of matrix models in conservation management (Benton and Grant, 1999; Ezard et al.,

2010; Hunter et al., 2010), the use of individual based models in fisheries (Baskett et al.,

2005; Bastardie et al., 2010; van Kooten et al., 2010; Irigoien and de Roos, 2011; Persson

et al., 2014), and the use of disease models in management of contagious diseases such as

COVID, SARS and HIPV (Yusuf and Benyah, 2012; Rodrigues, 2016; Mokhtari et al.,

2021). As such, applications of theoretical models in biocontrol can aid in implementing

new control measures and highlight its economic value in Integrated Pest Management

(IPM) systems. For example, they can contribute to cost-benefit analyses, highlight long-

term efficacy of potential measures and predict areas of climactic compatibility for potential

biocontrol agents (Furlong and Zalucki, 2017; Li et al., 2019; Janssen and van Rijn, 2021;

Minuti et al., 2022). The formulation of models to describe the dynamics of pests and

natural enemies in a biocontrol and IPM setting have a long history (Bernstein, 1985;

Nachman, 1987; Bancroft and Margolies, 1999; Barlow et al., 1999; van Rijn et al., 2002;

Janssen and van Rijn, 2021; Kotula et al., 2021; Cacho and Hester, 2022). However, IPM

models have largely been predator-prey population models (e.g., van Rijn et al., 2002;

Janssen and van Rijn, 2021) and so the full potential and benefit of existing models has

rarely been realised (but see Li et al., 2019). Moreover, once created, models are often not

utilized by researchers in determining effective biocontrol or IPM in a field setting (Barratt
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et al., 2018) and this gap between theoreticians and researchers has

remained largely unchanged. Another challenge to bridging this gap

is making mathematical arguments more verbal and explaining

counterintuitive results. Attempts have been made to construct

simplified models that would avoid some of the concerns raised,

with some studies showing simplified models to be successful

(Moerkens et al., 2021).

Given this, we identify two challenges. First, improve the

collaboration and engagement between theoretical ecologists and

applied researchers and stakeholders that actively promote IPM

adoption. Second, when these groups are engaged, there is a need to

demonstrate the potential contribution of theory to effective

application and adoption within the context of an IPM program.

As such, this Research Topic contains a set of theoretical and

perspective contributions that aim to highlight the use of novel

modelling approaches that can contribute to addressing

these challenges.
Novel modelling approaches

Being poikilotherms, the behaviour and life-histories of

arthropod pests and their natural enemies and their interactions

are strongly affected by temperature. Climate change may therefore

result in changes in predation of pests and predation among natural

enemies (intraguild predation). In their contribution, Laubmeier

et al. study this, using a model with allometric scaling and

temperature dependence based on body size. They based their

model on the aphid Rhopalosiphum padi and their predators,

consisting of several species of spiders and ground beetles in

barley fields in Sweden. Their model includes growth and decline

of aphids, but of their much slower population growth rate, the

authors only model decreases in predator densities due to lack of

food or intraguild predation. The model predicts optimal predator

communities for aphid control, which consists primarily of Lycosid

spiders but often include ground beetles. This is not only because

this combination of predators attack aphids over a larger

temperature range, but also because intraguild predation is

reduced since the predators are active at different temperature

ranges. The authors recommend that farmers should preserve

resident spider populations and promote larger species of ground

beetles, which are active at lower temperatures. This could be done

by releasing them through reduced tilling or the installation of

beetle banks.

Adoption of conservation biological control strategies in

agriculture has been compromised by the failure of researchers to

consider the economic implications of this technology (Johnson

et al., 2021). Parry reports the development of a spatially explicit

bioeconomic simulation model to demonstrate that conservation of

appropriate non-crop vegetation can have better long-term

outcomes for reducing yield loss than pesticide-based regimes in

intensively cropped landscapes. Currently, most decisions that

determine pest management practice are based on cost and ease

of adoption, risk aversion and evidence of short-term economic or
Frontiers in Ecology and Evolution 02
yield gains (e.g., Lagerkvist et al., 2012; Gong et al., 2016). Although

the longer-term detrimental environmental and economic impacts

of excessive pesticide use are often considered, farmers face

numerous barriers to the behavioural changes required to reduce

reliance on these chemicals (Andersson and Isgren, 2021) and

legislation can be required to break these down. Consequently,

studies such as this are key to achieving wider adoption of

conservation biological control in agriculture as they can

incentivise abandonment of counterproductive practices such as

reliance on pesticides and the destruction of non-crop habitat in

agricultural landscapes.

The perspective piece by Wyckhuys et al. highlights how the use

of key natural laboratories (i.e., islands and altitudinal ranges of

mountains) have yet to be adopted in the field of biological control

research (but see Guzmán et al., 2016). The authors utilise existing

published datasets to determine how biological control outcomes

are impacted by island size and altitudinal range. Several

components such as species’ functional traits and anthropogenic

forces, in addition to island size explain biological control

outcomes. So too with altitudinal range, successful biological

control is species- and context- dependent with changing altitude.

Wyckhuys et al. emphasise that field-level data from these under-

utilised natural laboratories are required to parametrise

mechanistically based simulation models to highlight the impact

of biocontrol under global climate change.
Future considerations

Successful biocontrol requires close collaboration and

information sharing with stakeholders (Barratt et al., 2018; van

Lenteren et al., 2018). Regardless of the modelling approach,

implemented iterative improvements to biological control and

integrated pest management (IPM) programs can only be made if

follow-up assessments are conducted to identify impacts and model

effectiveness (Seastedt, 2015). Importantly, assessments must

include quantitative indications of the effectiveness of biocontrol

or IPM measures which have been sorely lacking in the field

(Clewley et al., 2012). This would not only provide a useful

indicator for the end user but also allow researchers to build long

term, useable data sets that can be used to improve their models. In

turn, additional discussions can be had with stakeholders regarding

improved/adjusted models, potentially benefiting the stakeholder in

the long term. As for the economic implications of biocontrol, the

application of models and ultimately the costs involved will differ

when considering greenhouse or open field systems, as the

challenges and obstacles faced by growers differ between these

systems (Tracy, 2014). Currently there are fewer models for open

field systems than for greenhouses, hindering efficient assessment of

economic implications of biocontrol in open field systems. The

question then arises, how can future economy-based models be

utilised to identify the difference, and scale, in economic

implications between the two systems? Finally, pest control is the

strategic application of interventions to modify the population
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dynamics of the target pest, and agricultural systems are ideally

suited to test basic population-dynamical theory. The rich tradition

of mathematical models inspired by pests and natural enemies (e.g.,

Murdoch et al., 1985; May and Hassell, 1988) shows that biocontrol

has found its way into theoretical population biology decades ago. It

is high time that the reverse path is shaped into a highway, to do so

requires the adoption and effective application of theoretical

insights by end users and stakeholders who drive the use of

biocontrol measures.
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