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Mining activities, while providing a huge material base for human society, have

also caused great damage to the ecosystem. A large amount of mine waste is in

urgent need of treatment and remediation. Phytoremediation, as a green and

low-cost way of mine site restoration, has been researched by a large number of

scholars. Ecological restoration, as a suitable alternative to phytoremediation,

has also received extensive attention from scholars too. Field survey revealed

that a native plant, Coriaria nepalensis, adapted to the abandoned sites of Pb-Zn

mines for its adaptability to pollution and extreme habitats and its improvement

of the surrounding microenvironment, with its formation of plant communities

may contribute to the natural recovery of the abandoned sites of mines. For this

reason, the present study was conducted on the nurse plant, C. nepalensis,

which was naturally colonized in the abandoned land of the Pb-Zn mine in Mine

Town, Huize County. The specific results of the study are as follows: Coriaria

nepalensis promotes the stabilization of the soil structure under the canopy, and

the local resources of the soil increase and the “fertilizer island” effect appears:

(1) Improvement of physical properties: Compared with the herbaceous sample,

the soil bulk density of the Coriaria nepalensis is significantly lower than that of

the herbaceous sample. (2) Improve soil nutrition: the organic matter, total

nitrogen and total phosphorus contents of the inter-root soil of the Coriaria

nepalensis in large multi-diversity sites were higher than those of the herbaceous

sample sites. (3) Reducing the toxicity of soil heavy metals to plants: although the

total amount of heavy metals and the effective state of the Coriaria nepalensis

were significantly higher than that of the herbaceous samples, the diversity and

biomass of the plants under the Coriaria nepalensis were not affected, but were

higher instead, which indicated that the Coriaria nepalensis mitigated the stress

and toxicity of the heavy metals to the plants under the canopy, and allowed the

plants to colonize and grow under the canopy. (4) Coriaria nepalensis in Pb-Zn

mine abandoned sites can regulating soil microbial community structure, thus

enabling plant community succession in degraded environments. Ascomycetes,

Mycobacteriophages, Ascomycetes, and Stramenophages with higher

abundance. (5) Coriaria nepalensis microbial community structure and

increases the abundance of functions associated with nitrogen cycling and

stress tolerance. There were higher abundances of bacterial functions related

to nitrogen fixation, nitrate reduction, nitrogen respiration, nitrate

respiration; and higher abundances of stress-tolerant, parthenogenetic
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anaerobic, biofilm-forming, aerobic, mobile protozoa-containing, and Gram-

negative bacteria in the Coriaria nepalensis. In sum: C. nepalensis can have a

nurse effect on its sub-canopy plants by improving microhabitat soil

properties and regulating soil microbial community structure in abandoned

sites of Pb-Zn mines, thus enabling plant community succession in

degraded environments.
KEYWORDS
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Highlight
• Coriaria nepalensis has a good nurse effect on plants and

can help other plant species to colonize under its canopy.

• Coriaria nepalensis promotes the stabilization of the soil

structure under the canopy, and the local resources of the

soil increase and the “fertilizer island” effect appears.

• Coriaria nepalensis in Pb-Zn mine abandoned sites can

regulating soil microbial community structure, thus

enabling plant community succession in degraded

environments.
1 Introduction

Mining activities provide basic physical energy security for

humans and are one of the key sources of global economic

growth (Zhu et al., 2018). Globally, approximately 350 × 109 tons

of mining waste will be generated annually (Adiansyah et al., 2016).

The country has maintained a dominant position in global mineral

resource production and consumption (Pokhrel and Dubey, 2013).

Mineral resources as an important material basis for economic

development, the development and utilization of mining areas is

extremely important for the modernization of China (Pan et al.,

2014). Yunnan is known as the “kingdom of non-ferrous metals”,

and 143 kinds of minerals have been discovered in Yunnan,

accounting for 83% of the discovered minerals in China,

including lead and zinc, which are among the most abundant in

China and the world (Li, 2006). Among them, the Pb-Zn mining

area in Huize County, which has the richest Pb-Zn ore taste in

China, has a history of zinc refining for hundreds of years (Lei and

Duan, 2008). As a famous collection and distribution area for clay-

based Zn refining in China, most of the mining processes of Pb-Zn

mines in Huize are characterized by large-scale mining of metal

deposits with high grade and associated useful elements; long

mining history; and low metal recovery and comprehensive

utilization, so many mining abandoned sites leave a large amount

of tailings and abandoned low-grade ores, which make the release of

toxic and harmful heavy metal elements in them (Li et al., 2014;
02
Chen et al., 2022), thus causing non-negligible secondary pollution

to the local ecological environment.

Mining activities in Pb-Zn mines have led to the accumulation

and gradual diffusion of large amounts of toxic and hazardous

substances into the environment, making mine waste sites a source

of toxic and hazardous heavy metal elements, thus causing different

levels of pollution (Rieuwerts et al., 2014). Soil acidification due to

the massive export of potentially toxic elements and the oxidation of

sulfides in mine spoils has resulted in reduced turnover of organic

matter, increased soil toxicity, and loss of biodiversity in mine soils

(Rodriguez-Seijo et al., 2020), and has caused soil degradation, lack

of vegetation cover, soil structural damage, poor soil and water

conservation, high soil heavy metal content, and soil nutrient

depletion in mine waste sites (Mi et al., 2019). and soil nutrient

depletion (Mi et al., 2019). Heavy metal contamination of

abandoned sites in Pb-Zn mines is a serious hazard to plants,

animals, microorganisms and humans (Cui et al., 2020).

Meanwhile, these extreme environments can also prevent natural

plant recolonization, which can lead to ecological damage

(Stylianou et al., 2020; Li et al., 2022). Therefore, heavy metal

contamination of abandoned sites in Pb-Zn mines has caused

serious harm to flora and fauna, ecosystems and human health,

and the treatment and remediation of abandoned sites should be

carried out without delay.

In recent years, in order to improve the ecological environment

of mining areas, a large number of research on mine remediation

technologies have been carried out, and the main common methods

of heavy metal remediation of mine waste sites are physical

remediation, chemical remediation, waste site reuse and

bioremediation (Mahar et al., 2016; Wei et al., 2021). However,

most of the above restoration methods are costly, and a low-cost

restoration method becomes the key to mine restoration at this time

due to the large number of mine abandoned sites in China, the

remote location of mine abandoned sites, and their low economic

value. Phytoremediation method is widely suggested by many as a

low cost method suitable for general promotion (Mahar et al., 2016;

Khalid et al., 2017). Ecological restoration, as a suitable alternative

to phytoremediation, has also received extensive attention from

scholars too. Plant species selection is the key to the success of

ecological restoration in mine waste sites (Chen et al., 2020).

Conventional ecological restoration methods are to screen
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hyperaccumulator plants for large-scale planting, but

hyperaccumulator plants generally have problems such as being

confined to their native habitat, shallow roots, slow growth, small

biomass, and metal selectivity (van der Ent et al., 2013; Sheoran

et al., 2016), and are difficult to colonize mine waste sites. Even if it

is colonized, its ability to form a long-term stable community and to

continue succession has not been demonstrated (Saxena et al.,

2020). In the past few years, the selection of ecological

remediation plants has evolved from hyperaccumulation plants to

native plant screening, but more studies have focused only on the

uptake, transfer and accumulation effects of native plants on heavy

metals and the short-term improvement of the soil environment,

never on their effects on plant survival, plant community formation

and plant colonization, and plant succession factors. Gastauer et al.

(2018) said that perhaps native nurse plants can have greater

ecological benefits relative to hyperaccumulation plants in

extremely degraded environments such as mine waste sites. Nurse

plants are stress-resistant species that not only grow rapidly in

extremely degraded environments, but also trigger the restoration

of essential ecosystem functions through ecological facilitation. In

this study, a field survey at the abandoned site of Pb-Zn mine in

Mine Town, Huize County, revealed that a native plant, Coriaria

nepalensis, which is adapted to the abandoned site of Pb-Zn mine,

may contribute to the natural restoration of the abandoned site of

the mine by its adaptation to pollution and extreme habitats and its

improvement of the surrounding microenvironment by forming a

plant community. To this end, this study was conducted to

investigate the effects of C. nepalensis on soil physicochemical

properties, soil heavy metal storage characteristics, soil microbial

community and plant colonization under the canopy under

different years of abandonment by using field plant sample survey

and soil physicochemical property determination. We also

investigated the effects of C. nepalensis on soil physical and

chemical properties, soil heavy metal fugacity, soil microbial

community and under-canopy planting under different years of

abandonment. It aims to provide a theoretical basis for restoration

of abandoned land in Pb and Zn mining areas through

ecological restoration.
2 Materials and methods

2.1 Description of the study area

Study area is located in the lead-zinc mining area of Mine

Town, Huize County, Qujing City, Yunnan Province (103.70° E,

26.64° N, altitude 2500 m), which belongs to the Wumeng

Mountain System. The region has a temperate highland monsoon

climate with abundant rainfall, mild climate and unknown seasons,

but a clear division between rainy and dry seasons. The average

annual rainfall is 858.4 mm and the average annual temperature is

12.6°C. This Pb-Zn mining area is the richest area in China in terms

of Pb-Zn ore taste and has a history of zinc refining for hundreds of

years (Zhou et al., 2018), and it is a famous collection and
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distribution area for clay-based zinc refining in China, which is

now a mine abandoned area with sparse vegetation. The area is

dominated by yellow-brown soils with weakly alkaline soils, and the

main vegetation types are herbs and shrubs (Zhou et al., 2018), and

the study area and sampling sites are shown in Figure 1.
2.2 Study site and soil sampling

In early September 2021, a field survey was conducted on

abandoned sites of Pb-Zn mines in mining town of Huize

County: representative sample sites of Coriaria nepalensis were

selected, and the soil heavy metal element range of each sample site

was delineated by a portable soil heavy metal analyzer and based on

the plant inspection of each sample site and the narrative of the

mine management personnel, etc., four (> 7 ha) different sample

sites of C. nepalensis were selected for this study, representing four

types of study sites that were abandoned for 10 years, abandoned for

20 years, abandoned for 30 years, and disturbed by mining,

respectively. The four sample plots are described in detail as

follows: abandoned 10-year sample plot (20 ha); abandoned 20-

year sample plot (12 ha); abandoned 30-year sample plot (15 ha);

and undisturbed by mining sample plot (7 ha). These four plots

were identified as the study plots (Figure 1), labeled S1, S2, S3, and

S4, respectively, and were selected based on the following criteria:

similar topography and slope < 3%, distance between any two plots

> 2 km, and distance between any two plots within 5 km for similar

topography and soil types and similar climatic conditions.
2.3 Sample collection and handling

Five C. nepalensis plants of similar size (C. nepalensis canopy

diameter of about 1.5~2 m) were randomly selected in each sample

site. Each C. nepalensis plant was used as a small sample point for

the study, totaling 20 sample points. A sample square (3 m × 3 m)

was set up at each sample site with the C. nepalensis as the geometric

center, and there were five sample squares in each sample site. Five

herbaceous samples were randomly selected in the area without C.

nepalensis around the sample plots, and five herbaceous samples

(3 m × 3 m) were set up (Figure 2), for a total of 40 samples. The

cover, plant height, vegetation cover, name of herbaceous species,

number of species, frequency of each sample, and the cover and

height of five randomly selected plants of each species in the sample

were counted and taken back to the laboratory for biomass

determination. Plant names and species delineation were

identified by consulting the Yunnan Central Wild Plant Manual

and seeking assistance from a plant taxonomist. Soil sample

collection: Soil samples were collected from 0–45 cm of the C.

nepalensis sample (Y) and the herbaceous samples (N) using the

five-point sampling method, and stored in two parts: one in a −80°C

refrigerator for soil microbiological determination, and one for

natural air-drying for the study of soil physical and chemical

properties and heavy metal distribution under C. nepalensis.
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2.4 Soil nutrient and heavy metal
content analysis

We measured and analyzed 40 soil samples collected for soil

bulk density (SBD), total nitrogen (TN), organic matter (SOM),

total phosphorus (TP), and soil heavy metals (TPb, TZn, TCd,

TMn). Soil bulk density (SBD, g/cm3) was determined by the ring-

knife method (Marc and Jacques, 2006). Total soil carbon and total

nitrogen (TC/TN, g/kg) were determined by combustion method
Frontiers in Ecology and Evolution 04
(Zhang and Elser, 2017) using a vario TOC select type total organic

carbon analyzer (Elementar Analysensysteme GmbH, Germany),

and soil organic matter (SOM, g/kg) was derived by total soil

nitrogen conversion. Soil organic matter (SOM, g/kg) was

obtained by total soil nitrogen conversion. Soil total phosphorus

(TP, g/kg) was determined by the sulfuric acid digestion-

molybdenum antimony resistance method (Zhang et al., 2013).

Total heavy metals in soil samples were determined by flame atomic

absorption spectrometry (Moyan et al., 2017). The samples were
FIGURE 2

Plant Sample Layout, S1: 10 years of abandonment; S2: 20 years of abandonment; S3: 30 years of abandonment; S4: four types of study sites
undisturbed by mining.
FIGURE 1

Geographical location of study sites (Drawing approval number is GS(2016)1600.), S1: 10 years of abandonment; S2: 20 years of abandonment; S3:
30 years of abandonment; S4: four types of study sites undisturbed by mining.
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determined on a flame atomic absorption spectrometer (Agilent

AA240 spectrometer, Agilent Technologies, CA, USA).
2.5 Soil microbiology determination

Total DNA was extracted from 0.5 g of soil sample per tube, and

the composition of soil bacterial, fungal and actinomycete

communities was analyzed using high-throughput sequencing (Li

et al., 2023).

Amplified by PCR using primers 338F: (5’-ACTCCTACG

GGGAGGCAGCA-3’)/806R: (5’-GGACTACHVGGGGTWTCT

AAT-3’) for the V3+V4 region of the bacterial 16S rRNA gene.

Fungi PCR amplification of the ITS1 region of the fungal ITS

rRNA gene was performed using the primer ITS1F: (5’-CTTGG

TCATTTAGAGGAAGTAA-3 ’ ) / ITS2 : ( 5 ’ -GCTGCGT

TCTTCATCGATGC-3’).

Actinomycetes were amplified by PCR using primer 960F:

(GGCTTAATTTGACTCAACRCG) NSR1438: (GGGCA

TCACAGACCTGTTAT) for the V7 region of the Actinomycetes

18S rRNA gene.

The qualified products were subjected to Illumina Miseq

sequencing, which was entrusted to Bei j ing Baimike

Biotechnology Co. The measured data (Raw Reads) were filtered

by Trimmomatic v 0.33 software, primer identification and removal

were performed by cutadapt1.9.1 software, followed by splicing of

the samples by over lap and length filtering by Usearch v10

software, and finally denoising and removal of the chimeric

sequences were performed by QIIME2 2020.6. chimeric sequences

to obtain the final valid data.
2.6 Plant characterization of the sample

(1) The relative interaction index (RII) and incremental species

richness (ISR) for the C. nepalensis samples and surrounding

herbaceous samples, (Cavieres et al., 2016) were calculated as

follows:

RII= ðaY  �  aNÞ=ðaY   +  aNÞ (1)

STotal =gY   +   gShared   +   gN (2)

SN=gN   +   gShared (3)

ISRY= ðSTotal  �   SNÞ   =STotal (4)

Where: aY,  aN are mean values of species richness within the

C. nepalensis samples and herbaceous samples, respectively; gN
denotes species found only within the matsutake bush sample;

gShared denotes species found in two microhabitats.

(2) Plant diversity indices: richness index (R), Simpson diversity

index (D), Shannon-Wiener diversity index (H), and Pielou

evenness index (J) (Ma et al., 1997), calculated as follows:

Richness index: R=S (5)
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Simpsondiversity index : D=1 −oS
i=1P

2
i (6)

Shannon-Wiener diversity index : H=−oS
i=1Pi ln Pi (7)

Pielou evenness index : J=−oS
i=1Pi ln Pi= ln S (8)

Where:S denotes the number of species occurring within the

sample square;Pi is the relative importance value, which is the

proportion of the number of the ith species to the total number of

all species.

(3) Biomass determination: 5 plants of each species randomly

determined in each sample square were dug out with roots, marked

and bagged according to different species in different squares,

returned to the laboratory, washed, divided into above-ground

and below-ground parts and then killed in the oven at 105°C for

half an hour, then dried at 65°C to a constant weight and weighed

with an electronic balance with an accuracy of 0.01 g to determine

total biomass.
2.7 Data analysis

Excel 2020 software was used to count and organize the data;

IBM SPSS 26.0 software was used to perform statistical analysis of

the data. One-way analysis of variance (ANOVA) was used to assess

differences in soil physicochemical properties, microbial diversity,

and plant diversity and biomass across the same parties. Finally,

Origin 2021 software was used for plotting. Structural equation

models (SEM) were constructed using the lavaan software package

in R (Rosseel, 2012; Hong et al., 2021), and the model parameter

estimation method was based on the maximum probability method.

SEMwas created to estimate the contribution of the main influences

and pathways in the presence of C. nepalensis (Branco et al., 2016).

All the above statistical tests and illustrations were performed in R

4.1.3 or R 4.2.0 (R Core Team, 2018).
3 Results

3.1 Effect of C. nepalensis on soil
physicochemical properties

3.1.1 Effect of C. nepalensis on soil nutrition
C. nepalensis can change the native habitat and improve the soil

properties in C. nepalensis sample (Y) compared with the

surrounding herbaceous sample (N). This indicates that the C.

nepalensis promotes the stabilization of the soil structure under the

canopy and increases the local resources of the soil with a “fertilizer

island” effect. As shown in Figure 3, the soil improvement effects

were reflected in the following aspects: (1) the soil bulk weight of C.

nepalensis samples was significantly lower than that of herbaceous

samples; (2) the organic matter of C. nepalensis samples was

significantly higher than that of herbaceous samples in all

samples except for S3 samples; (3) except for S3 sample, the total

nitrogen of the C. nepalensis samples was significantly higher than
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that of the herbaceous samples; (4) except for S3 and S4 samples, the

total phosphorus of the C. nepalensis samples was significantly

higher than that of the herbaceous samples.

3.1.2 Effect of C. nepalensis on soil heavy metals
As can be seen from Figure 4, total soil Pb in the C. nepalensis

samples was not significantly different from that in the herbaceous

samples. The total soil Zn and Cd in the C. nepalensis samples were

significantly higher than that in herbaceous samples in the S1, S2, S4

samples, while the opposite was true in Sample S3. In the C.

nepalensis samples, soil total Cd was significantly higher in S2 and

S4 than in herbaceous samples, while the opposite was true in S3. In

the C. nepalensis samples, soil total Mn was significantly higher in S1

and S2 than in herbaceous samples, while the opposite was true in S3.
3.2 Effect of C. nepalensis on soil microbial
community structure

The results of NMDS analysis based on Bray-Curtis similarity

coefficients for bacterial, fungal, and actinomycete community data

from each site soil sample are shown in Figure 5.

3.2.1 Effect of C. nepalensis on soil
microbial diversity

As seen in Figure 6, For the bacterial community, Chao1 index

was significantly higher in S1 and S3 samples for C. nepalensis
Frontiers in Ecology and Evolution 06
samples than for the herbaceous samples, while the opposite was

true for S4 samples; Shannon index was significantly higher in S2

and S4 samples for C. nepalensis samples than for the herbaceous

samples. For the fungal community, the fungal Chao1 index was

significantly higher in the C. nepalensis samples than in the

herbaceous samples in the S2, S3, S4 samples, and the fungal

Shannon index was significantly higher in the C. nepalensis

samples than in the herbaceous samples in the S3 and S4 sample

sites. For actinomycetes, the Chao1 index and Shannon index of

actinomycetes were significantly higher in the C. nepalensis samples

than in the herbaceous samples in the three sample sites, except for

the S3 sample site.
3.2.2 Effect of C. nepalensis on soil
microbial composition

As shown in Figure 7, the composition of bacterial and fungal

communities were similar for each site, but the abundance of each

phylum differed. In the C. nepalensis samples, it could be found that

the abundance of Proteobacteria was higher in each sample site than

in the herbaceous sample sites; except for the S3 sample site, the

abundance of Bacteroidetes was higher in the herbaceous sample

sites; in each sample site, the abundance of Chloroflexi was higher

in the herbaceous samples than in the C. nepalensis samples. For the

fungal community composition, In the C. nepalensis samples, it

could be found that the abundance of Ascomycota was higher than

that of herbaceous sample sites in all sample sites except S4; the

abundance of Basidiomycota was higher than that of herbaceous
FIGURE 3

Effect of C. nepalensis on soil physicochemical properties; S1, S2, S3, S4 are different years of abandonment; Y is C. nepalensis samples; N is a herb
samples; Different cases indicate significant difference between Y and N based on 95% confidence interval (p< 0.05).
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samples in all sample sites except S3; and the abundance of

Glomeromycota and Chytridiomycota was higher than that of

herbaceous samples in all sample sites.

3.2.3 Effect of C. nepalensis on soil
microbial functions

By comparing with the FAPROTAX database, we found that the

bacterial functions related to nitrogen fixation and nitrate reduction

were higher in the C. nepalensis samples than in the herbaceous

samples in all the sample plots; the bacterial functions related to
Frontiers in Ecology and Evolution 07
nitrogen respiration and nitrate respiration were higher in the C.

nepalensis samples than in the herbaceous samples except for the S4

sample plots; the bacterial functions related to predation or

ectoparasitism were higher in the herbaceous samples than in the

C. nepalensis samples except for the S3 sample plots (Figure 8). The

bacterial functions related to predation or ectoparasitism were higher

in the herbaceous samples than in the C. nepalensis samples except

for S3 (Figure 8). By comparing with the Bugbase database, we found

that more parthenogenic anaerobic bacteria and stress tolerance were

present in the C. nepalensis samples in all the sample plots; greater
A B C

FIGURE 5

Non-metric multidimensional scale (NMDS) ranking plots based on Bray-Curtis distances for (A) bacterial, (B) fungal and (C) actinomycete
community samples for all loci.
FIGURE 4

Effect of C. nepalensis on soil heavy metals; S1, S2, S3, S4 are different years of abandonment; Y is C. nepalensis samples; N is a herb samples;
Different cases indicate significant difference between Y and N based on 95% confidence interval (p< 0.05).
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abundance of potentially pathogenic bacteria and biofilm formation

were present in the C. nepalensis samples in all the sample plots

except S1; greater abundance of stress tolerance function was present

in the C. nepalensis samples in all the sample plots except S2; greater
Frontiers in Ecology and Evolution 08
abundance of aerobic bacteria and Gram-negative bacteria were

present in the C. nepalensis samples in all the sample plots except

S3; and greater abundance of aerobic bacteria was present in the C.

nepalensis samples in all the sample plots except S4. In addition to S3,
A B

FIGURE 7

Relative abundance (%) of bacterial and fungal taxa at the phylum level in different equations. (A) Bacterial taxa; (B) fungal taxa.
FIGURE 6

Alpha diversity indices of bacteria, fungi and actinomycetes in different loci. Top: Chao1 indices of bacteria, fungi and actinomycetes. Bottom:
Shannon indices of bacteria, fungi and actinomycetes. Different lowercase letters indicate significant differences (p< 0.05) based on 95% confidence
intervals for C. nepalensis samples and herbaceous samples.
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C. nepalensis samples had greater abundance of mobile elements and

Gram-negative bacteria; except for S4, C. nepalensis samples had

greater abundance of aerobic bacteria. In contrast, higher abundance

of Gram-positive bacteria was found in herbaceous samples in all the

plots except S3 (Figure 8).
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3.3 Effects of C. nepalensis on plant
community structure

3.3.1 Effect of C. nepalensis on the colonization
of sub-canopy plants

As shown in Table 1, the number of species unique to the C.

nepalensis samples were significantly higher than that of the

herbaceous sample in all the sample sites, and C. nepalensis had

more of its endemic species under its canopy. This indicates that in

the abandoned sites of Pb-Zn mines, C. nepalensis has a good nurse

effect on plants and can help other plant species to colonize under

its canopy.

As shown in Figure 2, the relative interaction index (RII) and

incremental species richness (ISR) were calculated for each sample

site based on the number of species and unique species in each

sample site (Table 2). As shown in Table 2, the relative interaction

index (RII) was greater than 0 for each site, indicating that the
A B

FIGURE 8

Microbial function prediction in different parties (A) based on bacterial function prediction in different parties of FAPROTAX; (B) based on bacterial
function prediction in different parties of Bugbase.
TABLE 1 Composition of unique species in each sample.

Sample
site

Sample
point

Species found in one of the sample
squares

S1
Y

Juncus effusus, Rorippa indica, Cyperus iria,
Cynoglossum amabile, Sonchus oleraceus, Erigeron

canadensis

N Cirsium japonicum

S2
Y

Anemone vitifolia, Juncus effusus,
Pseudognaphalium affine, Tradescantia

sillamontana, Stellaria media, Oxalis corniculata,
Galium asperifolium, Rosaomeiensis pteracantha,
Chenopodium album, Artemisia stechmanniana

N Oenanthe javanica

S3

Y

Plantago asiatica, Cynoglossum amabile,
Geranium wilfordii, Cirsium japonicum,

Rosaomeiensis pteracantha, Duchesnea indica,
Eupatorium fortunei,

Lespedeza juncea, Cotoneaster hissaricus,
Imperata cylindrica, Vaccinium fragile

N
Cyperus iria, Incarvillea arguta, Arthraxon

hispidus, Cynodon dactylon

S4
Y

Plantago asiatica, Erigeron canadensis, Oxalis
corniculata, Oenanthe javanica,

Duchesnea indica, Lespedeza juncea, Arthraxon
lanceolatus, Vaccinium fragile, Aster tataricus,
Leontopodium dedekensii, Elaeagnus pungens,
Populus yunnanensis, Tradescantia fluminensis

N Peristylus coeloceras
S1 is a 10-year abandoned sample plot; S2 is a 20-year abandoned sample plot; S3 is a 30-year
abandoned sample plot; S4 is a mining-disturbed sample; Y is a C. nepalensis sample plot; N is
a herbaceous sample.
TABLE 2 Relative interaction index (RII) and incremental species
richness (ISR) of sample.

Sample site Sample point RII index ISR index

S1

Y
0.1923; > 0

23.08%

N 3.85%

Y
0.2500; > 0

28.57%

N 2.86%

Y
0.3235; > 0

35.29%

N 11.76%

Y
0.4137; > 0

44.82%

N 3.44%
S1 is the abandoned 10-year sample site; S2 is the abandoned 20-year sample site; S3 is the
abandoned 30-year sample site; S4 is the sample site disturbed by mining; Y is the sample site
of C. nepalensis sample; N is the surrounding herbaceous sample.
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species richness increased at the patch scale in each sample site. At

the community level, the proportional increase in species richness

from the C. nepalensis can be expressed by the incremental species

richness (ISR) index, which was greater than 20%.

3.3.2 Impact of C. nepalensis on plant a-diversity
As shown in Figure 9, In C. nepalensis sample, the Shannon

diversity index and Simpson index were higher in the S2 and S4

samples than in the herbaceous sample. The Pielou index of the

herbaceous sample without C. nepalensis sample was significantly

higher than that of the C. nepalensis sample in the S1 sample.

3.3.3 Effect of C. nepalensis
on subcanopy biomass

The biomass of each sample was measured and the results are

shown in Figure 10. For the same site, the biomass of the C.

nepalensis sample was found to be significantly higher than that

of the surrounding herbaceous samples in all four sample sites.
3.4 Nurse role of C. nepalensis in
abandoned sites with different ages
of Pb-Zn mines

In this study, structural equation modeling was used to explore

the key factors affecting plant biomass within the sample plots

(Figure 11). The herbaceous sample square (SN) was used as a

control. In the SY sample, the effects can be divided into four main

pathways: (i) TN→Bio (l = 0.28), (ii) ACT-S→Bio (l = 0.40) and

(iii) SBD→Bio (l = −0.50), (iiii) SBD→ACT-S (l = 0.35)→Bio (l =

0.40). In the SN sample, there is a major pathway: (i) ACT-S→Bio

(l = 0.62), while there is a nitrogen recharge pathway: SOM→TN

(l = 0.56) in the SN sample due to nitrogen deficiency. In the C.

nepalensis complex, TN, ACT-S and SBD are direct factors affecting

plant biomass within the sample, while the effect of SBD on ACT-S

also affects plant biomass within the sample as an indirect factor.

When in herbaceous samples, ACT-S can directly affect plant

biomass within the sample, while herbaceous samples will

increase N content through SOM due to N deficiency, but have

no significant effect on biomass. Overall, N may be the main factor

limiting plant colonization and survival in degraded habitats in

mining areas.
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4 Discussion

4.1 Effect of C. nepalensis on
soil properties

The promotion of sub-canopy species by conservation plants is

primarily through intermediates (soils) (Hunter and Price, 1992).

Soil nutrient sharing may provide long-term benefits to nurse plants

and may be a neglected mechanism for maintaining plant

community coexistence and increasing phylogenetic diversity

(Anthelme et al., 2017; Montesinos-Navarro et al., 2017). Wright

et al. (2017) showed that in degraded systems, the impact of nurse

plants on soil characteristics was mainly in the form of improved

microhabitat (Tapella et al., 2021) through microclimate changes

induced within the canopy by nurse plants and in the form of

nutrient enrichment. In the C. nepalensis sample soil properties

outside the canopy were also improved compared to the herbaceous

sample, indicating that the C. nepalensis sample contributed to the

stabilization of the sub-canopy soil structure and the increase of

local soil resources and the “fertilizer island” effect. Firstly, the soil

tolerance of C. nepalensis sample was significantly lower than that of

herbaceous sample sites, which is consistent with Tapella et al.

(2021). As a symbiotic nitrogen-fixing actinomycete, C. nepalensis

fixes nitrogen in the air and increases the soil total nitrogen content

of C. nepalensis sample, thus improving the soil nutrition of the

patches, which is consistent with the study of Wang et al. (2017),

and C. nepalensis sample enriches nitrogen near C. nepalensis due to

its strong nitrogen fixation ability, thus promoting plant growth and

increasing community biomass. Meanwhile, it was found that the

organic matter in the C. nepalensis sample in large diverse sites was

significantly higher than that in herbaceous sample sites. This may

be due to the greater plant biomass under the C. nepalensis sample,

the accumulation of apoplastic material from the plants under the

cluster and the C. nepalensis’s own apoplastic material, which made

the organic matter content significantly higher than that of the bare

ground, thus contributing to the increase of soil nutrients.

The presence of C. nepalensis can increase soil nutrients,

Meanwhile significantly reduce heavy metal spillage. Soil organic

matter easily forms complexes with metals and acts as a sorbent

(Pezzarossa and Petruzzelli, 2003), and high molecular weight

humic acids form very stable complexes with metals, removing

toxic and hazardous metals from the environment and reducing
FIGURE 9

Plant diversity indices for the different equal sides. Different letters indicate significant differences based on 95% confidence intervals for different
squares (p< 0.05).
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their bioavailability (Wang et al., 2010). Therefore, the increase of

soil organic matter under the C. nepalensis sample further avoids

the escape of toxic and harmful metals from the soil and reduces

their toxic effects on organisms. It has also been shown that C.

nepalensis can form complexes with heavy metals due to its own

functional groups such as carboxyl or hydroxyl groups, and it can be

used as the best detergent for remediation of heavy metal soils when

the pH is acidic, while in the present study, the mine waste site is

mainly alkaline, and C. nepalensis mainly shows complexation for

heavy metals, and C. nepalensis can form complexes with heavy

metals to reduce the toxicity of heavy metals to plants under the

canopy (Cao et al., 2017).
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4.2 Effect of C. nepalensis on microbial
community structure

In microbial ecology, it is generally believed that co-nutritional

microorganisms are closely associated with r-strategies, while

oligotrophic microorganisms are associated with k-strategies

(Zhou et al., 2017; Loayza et al., 2018). Microbial trophic

partitioning may help to understand the results of this study (Ken

et al., 2009; Mihoc et al., 2016). Both Proteobacteria and

Bacteroidetes belong to the r-strategic bacteria (Zeng et al., 2018).

Previous studies have suggested that an increase in easily

decomposable organic matter such as glucose and root secretions

in soil stimulates a rapid increase in the abundance of r-strategic

bacteria (Bashan et al., 2017), which in turn initiates an excitation

effect to accelerate soil organic matter decomposition (Bernard

et al., 2007). In the study, the abundance of Proteobacteria and

Bacteroidetes was found to be higher in each sample site than in the

herbaceous sample sites, which justified the higher organic matter

in the C. nepalensis sample in this study, and the increase in organic

matter led to the increase in the abundance of r-strategic bacteria

and the faster decomposition of organic matter in the C. nepalensis

sample sites. Meanwhile, the presence of C. nepalensis increased the

abundance and diversity of soil actinomycetes, probably mainly due

to high inter-root organic matter content, faster decomposition,

loose soil and good moisture conditions, which allowed more

actinomycetes to colonize. Ascomycota and Basidiomycota have

the ability to decompose cellulose and hemicellulose. Among them,

Ascomycota belongs to r-strategic fungi, and the abundance of

Ascomycota in C. nepalensis sample was greater than that of

herbaceous samples in the abandoned sites of metal mining areas,

which may indicate that C. nepalensis sample are significantly more
A B

FIGURE 11

Structural equation modeling (SEM) showing the effects of C. nepalensis drivers on sample biomass. Total soil nitrogen content (TN), biomass (Bio),
soil organic matter (SOM), soil bulk density (SBD), and actinomycete Shannon diversity index (ACT-S). For each endogenous variable, the amount of
variance explained by the model (R2) is labeled above it, and the metric value of the overall model fit is labeled above the box. Standardized path
coefficients are adjacent to the arrows, (*: 0.01< p< 0.05; **: 0.001< p< 0.01; ***: p< 0.001). Red arrows indicate positive correlations, black arrows
indicate negative correlations, the stronger the correlation, the thicker the arrow, and dashed lines indicate non-significant paths. (A) Indicates C.
nepalensis-like (SY); (B) indicates herb-like (SN).
FIGURE 10

Plant biomass in different equal squares. Different letters indicate
significant differences (p< 0.05) based on 95% confidence intervals
for the different equations.
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prone to decompose organic matter than herbaceous samples, and

C. nepalensis sample decompose organic matter more rapidly. In

contrast, Basidiomycota plays a major role in the decomposition of

refractory organic matter, and an increase in the abundance of

refractory organic matter in the composition of apoplankton will

lead to an increase in Basidiomycota abundance (Yan et al., 2020).

In the study, the abundance of Basidiomycota was greater in the C.

nepalensis sample than in the herbaceous sample sites because of the

high plant species richness and biomass of the C. nepalensis sample,

which resulted in a complex composition of the C. nepalensis

sample with a higher content of refractory organic matter than in

the herbaceous sample sites. It was also found that the abundance of

Chloroflexi in the bacterial community and Glomeromycota and

Chytridiomycota in the fungal community was higher in the

herbaceous sample sites than in the C. nepalensis sample,

reflecting their ability to tolerate extreme conditions and support

lower substrate utilization (Eilers et al., 2010).

Meanwhile, in this study, it was found that N was significantly

higher in the C. nepalensis sample than in the herbaceous sample in a

large diversity of sites, and the prediction of bacterial functions based on

FAPROTAX revealed that the abundance of bacterial functions related

to nitrogen fixation, nitrate reduction, nitrogen respiration, and nitrate

respiration was higher in the C. nepalensis sample in a large diversity of

sites, so C. nepalensismay have recruited more functional genes related

to nitrogen cycling to improve the inter-root soil nitrogen cycle, which

needs to be Further studies are needed to prove this. Bugbase’s

prediction of bacterial functions revealed that more biofilm-forming,

parthenogenic anaerobic, stress-tolerant, aerobic, mobile progenitor-

containing and Gram-negative bacteria were present in the C.

nepalensis sample in a large diversity of sites. The inclusion of mobile

elements could play an important role in horizontal transfer, thereby

increasing microbial adaptation to the environment, while Gram-

negative bacteria were shown to be more metal-tolerant, so C.

nepalensismay recruit more well-adapted and tolerant microorganisms.
4.3 Effects of C. nepalensis on
subcanopy plants

Nurse plants (e.g., leguminous shrubs and trees, matted plants,

etc.) can induce microenvironmental changes within the canopy that

provide a benign environment more conducive to seed germination

and/or seedling recruitment than the surrounding environment,

promoting the colonization, growth, and development of other

plant species under their canopy, thereby increasing species

richness, diversity, and species coexistence (Ellison, 2019). The

present study showed that C. nepalensis could improve sub-canopy

soil nutrition, reduce the toxicity of heavy metals to sub-canopy

plants and recruit microorganisms that favor plant growth, resulting

in more species and biomass under the canopy. This is in agreement

with the findings of Joshi et al. (2001) in eroded sites and Mourya

et al. (2019) in central Himalaya on C. nepalensis. In conclusion, C.

nepalensis has a good nurse role in mining waste sites and C.

nepalensis can help the establishment of other plants, thus restoring

species populations and ecological interactions, which in turn makes

it possible to restore the relevant ecosystem functions.
Frontiers in Ecology and Evolution 12
5 Conclusions

In summary, C. nepalensis has a good nurse role as a naturally

colonized plant in Pb-Zn mine waste sites. It can improve the

microhabitat soil properties and regulate the soil microbial

community structure to conserve the under-canopy plants in the

abandoned areas of Pb-Zn mines, thus enabling plant community

succession in degraded environments. A comprehensive analysis of the

environmental improvement effectiveness andmechanism of mulberry

in Pb-Zn mine abandoned sites aims to provide a theoretical basis for

revegetation and restoration of Pb-Zn mine abandoned sites.
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