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Xi’an, China
Engineering projects are confronted with many problems resulting from

overbreak in tunnel blasting, necessitating the optimization of design

parameters to minimize overbreak. In this study, an AI-based model for

overbreak prediction and optimization is proposed, aiming to mitigate the

hazards associated with overbreak. Firstly, the Extreme Gradient Boosting

(XGBoost) model is integrated with three distinct metaheuristic algorithms,

namely Particle Swarm Optimization (PSO), Whale Optimization Algorithm

(WOA), and Sparrow Search Algorithm (SSA), respectively. Consequently, the

hyperparameters are optimized, and the performance of predictions is

enhanced. Meanwhile, to overcome the limitations of a small dataset and

enhance the generalization ability of the three developed models, a 5-fold

cross-validation is employed. Then, the performance of the different models

with five distinct swarm sizes is evaluated via four metrics, including coefficient of

determination (R2), mean square error (MSE), mean absolute error (MAE), and

variance accounted for (VAF). Subsequently, by comparing the aforementioned

developed models, the optimal prediction model with the highest accuracy can

be obtained, which is then used for parameter optimization research. Finally,

individual studies are conducted to address the issue of overbreak caused by the

adoption of identical blasting parameters due to geological variations, aiming to

minimize overbreak in different sections of the tunnel. By comparing the

optimization abilities of PSO, WOA, and SSA, the objective of finding the

minimum value of overbreak within a short timeframe is achieved. The results

indicate that the model developed in this study accurately predicts overbreak,

and effectively optimizes blast parameters for different sections of the tunnel.

KEYWORDS

tunnel blasting, overbreak prediction, parameter optimization, metaheuristic
algorithms, geological condition
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1 Introduction

Drilling and blasting methods are widely used in tunnel

excavation due to their cost-effectiveness and unique rock-

breaking approach (Zare and Bruland, 2006; Mandal et al., 2008;

Ak et al., 2009; Wang et al., 2018; Tian et al., 2019). However, a

multitude of adverse consequences often occur during the actual

process of tunnel blasting (Zhao et al., 2022; Zhao et al., 2023),

encompassing the phenomena of overbreak and underbreak.

Overbreak is defined as the excavation profile exceeding the

design profile, while underbreak refers to the design profile less

than the intended excavation profile (Koopialipoor et al., 2019b). In

summary, overbreak is mainly influenced by the geological

conditions and blasting design factors (Jang and Topal, 2013;

Mottahedi et al., 2018). While geological parameters are often

measured but cannot be altered (Mohammadi and Azad, 2020;

Chai et al., 2023), contrast with design parameters, which can be

adjusted as per specific circumstances (Jang and Topal, 2013).

Consequently, optimizing blasting design parameters becomes an

imperative measure to mitigate overbreak and underbreak.

Compared to underbreak, the occurrence frequency of overbreak

is often higher in practical engineering projects (Foderà et al., 2020).

Overbreak results in resource wastage and compromises the

stability of the surrounding rock, thereby posing hazards to

tunnel construction and operation (Mohammadi et al., 2015;

Tang et al., 2019; Chen et al., 2021). Hence the optimization of

tunnel blasting design parameters is necessitated, resulting in the

minimization of the extent of overbreak induced by tunnel blasting.

To address the challenge of optimizing blasting design to

minimization overbreak, the initial step involves the precise

prediction of overbreak induced by various tunnel blasting

designs. Extensive research has been conducted, employing

various methods to predict overbreak in tunnel construction,

including empirical, statistical, and numerical approaches. For

instance, Jang et al. (2019) proposed an empirical approach by

analyzing the relationship between overbreak and its influencing

factors, introducing a resistance factor for predicting overbreak

caused by blasting. Dey and Murthy (2012), based on statistical

analysis, established the relationship between overbreak and rock

parameters, explosive parameters, and blasting design parameters

to develop a comprehensive overbreak prediction model,

demonstrating an error within 10%. Daraei and Zare (2018) first

simulated the excavation damage zone in tunnel excavation using

numerical simulation, and then calculated the depth of overbreak

using a rock strength factor.

Factors contributing to overbreak typically encompass multiple

blasting parameters (Salmi and Sellers, 2021). However, due to the

nonlinear relationship between these parameters and the ultimate

overbreak, formulating an equation that accurately accounts for all

factors is challenging (He et al., 2023). In this context, artificial

intelligence (AI) emerges as a burgeoning and highly promising

technology, showcasing its advantages in tackling complex

nonlinear problems and achieving high predictive performance.

Research on utilizing AI for predicting overbreak is increasingly

prevalent (Koopialipoor et al., 2019c; He et al., 2023). For example,

Koopialipoor et al. (2019c) developed an artificial neural network
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(ANN) model optimized using a genetic algorithm (GA) to predict

overbreak. The performance of the models was evaluated based on

R2, MSE, and VAF values between the predicted and measured

values, leading to the conclusion that the GA-ANNmodel exhibited

superior predictive capability. Five neural network overbreak

prediction models were established by Jang et al. (2019), followed

by a thorough analysis of the influential factors impacting overbreak

to distinguish their contributions to overbreak.

Once overbreak can be accurately predicted, key steps in

reducing overbreak can be taken through optimizing blasting

design based on the prediction model. In previous studies, the

focus was mainly on establishing accurate prediction models and

forming overbreak warning and prevention systems. Specifically, for

a given engineering project, design parameters were input into the

prediction model to obtain the overbreak value associated with

those parameters. If the obtained overbreak value exceeded the

requirement, design parameters were adjusted accordingly to

minimize overbreak. For instance, Jang and Topal (2013)

developed a system that accurately predicts overbreak by

comparing different prediction models. They demonstrated that

this model could serve as an overbreak warning system, providing a

basis for adjusting actual blasting parameters. In recent years, the

widespread utilization of heuristic algorithms has opened up new

directions for optimization design. Within the realm of meeting

design criteria, the exploration for blast parameters that minimize

overbreak and correspond to the minimal value of overbreak can be

pursued. For example, Koopialipoor et al. (2019b) employed the

Artificial Bee Colony algorithm to seek the minimum overbreak

value for a Rock Mass Rating (RMR) of 36, resulting in a 47%

reduction compared to the unoptimized overbreak value.

The aforementioned prediction and optimization models have

achieved significant progress, yet some issues still remain. Firstly, as

previously analyzed, one significant cause of overbreak is geological

factors. Due to the varying formation mechanisms in different

sections of the tunnel face, employing the same blasting

parameters can lead to severe overbreak (Zhang, 2019). Therefore,

it is essential to predict and optimize overbreak for different tunnel

sections separately. Secondly, in the construction of existing

overbreak prediction models, the selection of hyperparameters

may not adhere to standardized methods and may overlook

certain more effective hyperparameters (Dimitraki et al., 2019; Li

et al., 2021b). Additionally, the absence of cross-validation in

previous research studies makes the results less persuasive

(Ebrahimi et al., 2016). Finally, most studies have focused solely

on overbreak prediction and the comparison of different prediction

models, with limited research on actual parameter optimization.

Some parameter optimization studies are specific to particular

projects, lacking widespread applicability. While utilizing

metaheuristic algorithms for overbreak optimization is promising,

its accuracy also needs to be validated.

In this study, an AI-based overbreak prediction and optimization

model is proposed, which can accurately predict overbreak and

optimize parameters to minimize overbreak. In Sect. 2, a database

is collected and established for model training. The basic algorithms

for model prediction and parameter optimization are introduced in

Sect. 3. Sect. 4 focuses on the auxiliary means and initial parameter
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settings during the model construction process. In Sect. 5, all

prediction models are compared using four evaluation metrics, and

the best prediction model is selected. Finally, three methods are

employed in Sect. 6 to separately optimize blasting parameters for

achieving the minimum overbreak.
2 Database establishment

To assess the relationship between various influencing factors

and overbreak in tunnel excavation, a comprehensive dataset

encompassing different tunnel face sections is essential for the

prediction and optimization of overbreak. In this study, 95 groups

of blasting overbreak datasets were collected from Zhang (2019) for

the purpose of predicting overbreak area and optimizing blasting

parameters, which 48 groups were associated with the upper section

of the tunnel face spanning from the arch crown to the shoulder

(crown to shoulder), while 47 groups were attributed to the lower

section encompassing the tunnel shoulder to the haunch (shoulder

to haunch).

The dataset consisted of 12 input parameters and one output

parameter. The input parameters comprised the uniaxial

compressive strength of surrounding rock (UCS) (MPa),

Surrounding Rock Grade (SRG), jointing degree (J), depth of

burial (D) (m), number of blastholes (N), spacing between

perimeter holes (S) (cm), spacing between relief holes (SR) (cm),

burden of perimeter holes (B) (cm), total explosive charge (Q) (kg),

explosive charge structure of perimeter holes (Ps), and maximum

charge per single cut hole (QC) (kg), charge concentration of

perimeter holes (Pc) (kg/m). The output parameter, on the other

hand, represented the overbreak area (OA) (m2).

The distribution ranges for each parameter were visualized

using violin plots with boxes, as shown in Figure 1. The central

bold pentagram denoted the median of each parameter, while the

black rectangular box represented the range from the lower quartile

to the upper quartile. The black lines indicated 1.5 times the

interquartile range (IQR). The original dataset was divided, with

80% allocated for training purposes and the remaining 20%

withheld for testing the performance of the developed model (Li

et al., 2021b).
3 Algorithmic methods

3.1 Extreme gradient boosting

XGBoost, a highly efficient, flexible, and portable optimized

distributed gradient boosting tree, is specifically designed to

enhance performance (Chen and Guestrin, 2016). It has been

convincingly proven that XGBoost is an immensely effective

approach for addressing both regression and classification tasks

(Zhou et al., 2016; Xu et al., 2019; Ding et al., 2020; Nguyen

et al., 2020).

XGBoost has experienced meticulous optimizations based on

the original Gradient Boosting Decision Tree, resulting in enhanced
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performance and prevention of overfitting. The prediction target in

the dataset D, which comprises n samples and m features, is

modeled as an additive combination of K base models. This is

expressed as (Qiu et al., 2021):

Y
∧
i = o

K

k=1

fk(Xi) (1)

j = F(X) = ws(X)f g (2)

where Y
∧
i represents the prediction value for the ith sample; Xi

represents the i-th data sample, and fk(Xi) denotes the the i-th

sample experiences a base model transformation; j represents the

collection of regression trees, which comprises a set of tree structure

parameters denoted by s, and fk ∈ j; F(X) denotes the weighting of
the terminal nodes within the regression trees, whereas w represents

the number of leaves.

The XGBoost algorithm employs a second-order Taylor

expansion on the objective function, which is composed of two

parts i.e. the loss function and the regularization term. The aim is to

assess the operational efficiency of the algorithm. The traditional

representation of the loss function is as Eq. (3):

Obj =o
M

i=1
l Yi,Y

∧(t−1)

i + fi(Xi)

� �
+W(fk) (3)

While the regularization term can be expressed by Eq. (4):

W(fk) = mT + 1=2nw2 (4)

where i is the i-th instance in the dataset, whileM represents the

aggregate volume of data utilized in the k-th tree; m and n are

utilized to adapt the intricacy of the tree (Qiu et al., 2021).
3.2 Particle swarm optimization algorithm

PSO stands as a prominent metaheuristic algorithm, initially

put forth by Kennedy and Eberhart (1995). This algorithm finds its

inspiration from the foraging behaviors witnessed among avian

flocks and fish schools , showcasing its adaptive and

exploratory nature.

During the search process, individual particles are treated as

autonomous entities with unique attributes of velocity and position.

The velocity attribute corresponds to the speed of particle

movement, while the position attribute indicates the direction in

which the particle is headed. The assessment of each x is contingent

upon the employed problem-solving methodology, while the

individual optimum solution refers to the most favorable solution

found by a single particle. The global optimal solution is ascertained

by selecting the most superior solution among these individual

optimal solutions and subsequently contrasting it with the past

historical global optimum. Throughout the iterative process, the

velocities and positions of the particles experience constant

adjustments, ultimately converging towards the globally optimal

solution. The update equations for the particle velocity (v) and

position (x) are presented as follows:
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vt+1id = wVt
id + c1rand(A)(p

t
idbest − xtid) + c2rand(B)(g

t
idbest − xtid)

xt+1id = xtid + vtid

(

(5)

where i denotes the i-th particle in the population, while d

represents the search dimension; where t denotes the present

iteration count, w represents the inertia weight, assumes a critical

role in effectively harmonizing the delicate balance between local

exploitation and global exploration capabilities within the algorithm

(Poli et al., 2007); c1 and c2 denote the acceleration coefficients that

govern learning behavior of the particle; rand(A) and rand(B)

represent random numbers in the range (0,1); ptidbest denotes the

best solution found by each particle individually, while gtidbest

represents the overall best solution found globally.
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3.3 Whale optimization algorithm

WOA is an innovative optimization algorithm rooted in the

swarm intelligence exhibited by whales in their foraging behavior

(Mirjalili and Lewis, 2016). The primary objective of whale foraging

behavior is to capture prey. In a collective search for prey, there is

always a whale that detects the prey first. Subsequently, other whales

swim towards the leading whale to compete for the prey. This

predatory behavior serves as a basis for the problem-solving process

in WOA, wherein an individual whale represents a solution, and

multiple solutions are embodied by multiple whale individuals.

Employing WOA to search for problem solutions entails the

continuous updating of positions by multiple whale individuals

until a satisfactory solution is obtained.
FIGURE 1

The data distribution of all parameters employed in the development of models obtained from Zhang (2019).
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Before applying WOA for problem-solving purposes, it is

crucial to formulate mathematical equations that accurately depict

the three distinct predatory behaviors of whales: encircling prey,

bubble-net attacking, and searching for prey. These equations will

serve as the foundation for simulating the problem-solving process

using WOA, where individual whales represent potential solutions

and their positions are continuously updated until a satisfactory

solution is found.

1) In the encircling prey behavior, the global optimal position is

considered to be the closest position to the prey. Once an individual

whale detects the prey, it will swim towards the location of the

global optimum, utilizing it as the target for updating its own

position. This process involves gradually reducing the encirclement

around the prey. The underlying principle can be summarized as

follows:

~D = ~c · X∗
k
�!

− Xk
�!��� ��� (6)

~Xk+1 = X∗
k
�!

− ~a · ~D (7)

~a = 2~a ·~g −~a (8)

~c = 2 ·~g (9)

where k denotes the present iteration count, whereas D denotes

the size of the encircling step; X∗�!denotes the most optimal solution

in the context of the problem being addressed; The coefficient

vectors, ~a and~c, are of utmost importance, with ~a governing the

alterations of ~a throughout the computational process, it
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progressively diminishes from 2 to 0 in a linear fashion as the

parameter k increases;~g as a vector constrained to values between 0

and 1, exercises control over the collective update of the swarm. The

position of prey has a significant impact on the position and

distance of whale. A greater value of~c results in a stronger effect

on the whale, while a smaller value of~c leads to a weaker effect.

2) Two strategies have been developed to simulate the bubble-

net attacking behavior observed in humpback whales. The whale

moving in a spiral trajectory around the prey, while simultaneously

generating bubbles along this path, thereby creating a trap.

a) Shrink encircling: Achieved by reducing the value of~a in Eq. (8).

By randomly assigning values to the coefficient vector “ a“ from the

range of −1 to 1, a new position for a search agent can be determined,

which lies between the original position of the agent and the position of

the current best agent. This process effectively enables encircling

predation, enhancing the search capabilities of the algorithm.

b) Spiral updating of positions: As depicted in Figure 2, the

distance between the position of the whale, and the position of the

prey, is calculated. Subsequently, a spiral equation is formulated to

establish a mathematical relationship between these two positions,

thereby replicating the distinctive spiral movement exhibited by

humpback whales:

~Xk+1 = X∗
k
�!

+~r · ebl · cos (2p l) (10)

~r = X∗
k
�!

− Xk
�!��� ��� (11)

where b represents the parameter that defines the shape of the

spiral line, and l is a random variable ranging from −1 to 1.
FIGURE 2

Spiral updating position.
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To emulate the bubble-net attacking behavior, a stochastic

approach is employed, assuming a 50% probability for humpback

whales to exhibit both the shrinking encircling mechanism and the

spiral position updating. The mathematical representations

describing these behaviors are as follows:

Xk+1
��!

=
X∗
k
�!

− ~a ·~r,                           when p < 0:5

~r · ebl · cos (2p l) + X∗
k
�!

,       when p ≥ 0:5

8<
: (12)

3) In addition to the bubble-net method, another strategy

employed by humpback whales involves the random search for

prey. This stage is characterized by global exploration, where the

entire whale population engages in the search process. When jaj  ≥
 1, indicating a certain level of exploration, the whale population

discontinues updating their positions based on the current best

solution. Instead, they select a random whale and update their

positions accordingly, with the objective of expanding the search

range and exploring optimal solutions to maintain population

diversity.

Xk+1
��!

= Xrand
k
���!

− ~a~r (13)

~r = ~c · Xrand
k
���!

− Xk
�!����
���� (14)

where Xrand
���!

represents the position of the randomly

selected whale.
3.4 Sparrow search algorithm

Similar to the previous two metaheuristic algorithms, SSA is

also inspired by the predatory behavior observed in natural

ecosystems (Xue and Shen, 2020). Sparrows are a ubiquitous

presence in our environment, and their adept predatory

characteristics, have been ingeniously employed in the pursuit of

optimal solutions, showcasing remarkable optimization capabilities.

The optimization process is characterized using a population

consisting of h sparrows. Throughout the entire process, the

sparrows are categorized into two roles: producers and

scroungers. The producers are responsible for surveying food

resources and providing the regions and directions for food

search, while the scroungers rely on the producers to obtain food.

The composition of the population is illustrated as follows:

P =

p11 p12 p13 ⋯ p1w

p21 p22 p23 ⋯ p2w

⋮ ⋮ ⋮ ⋮ ⋮

ph1 ph2 ph3 ⋯ phw

2
666664

3
777775 (15)

where p denotes the position of all sparrows; w represents the

dimension of the variables in a given problem; h represents the total

quantity of sparrows; and pil denotes the l-th dimension of the i-th

sparrow. The fitness values of all sparrows can be expressed as

Eq. (16):
Frontiers in Ecology and Evolution 06
Fx =

Y ½(p11, p12,⋯, p1w )�
Y ½(p21, p22,⋯, p2w )�
               ⋮

Y ½(ph1 , ph2 ,⋯, phw )�

2
666664

3
777775 (16)

where Y ( : ) represents the fitness calculation formula for

determining the adaptability value of each sparrow.

In SSA, individuals within the population, endowed with the

highest fitness values, are bestowed with the capability to acquire

food resources with priority. As producers, they possess a

significantly broader range of search, whereas scroungers have

comparatively limited search capabilities. During each iteration

process, the positions of producers are updated according to the

following procedure:

pil(k + 1) =
pil(k ) · exp − i

a·kmax

� �
     if g2 < ST

pil(k ) + m · n                       if g2 ≥ ST

8<
: (17)

where k represents the current iteration, while kmax denotes the

maximum number of iterations; The random variable a follows a

uniform distribution within the range of (0, 1); m is a random

variable following a normal distribution; n is a matrix of size 1� d,

with all elements equal to 1; the value of g2 ranges from 0 to 1, while

ST takes values between 0.5 and 1, representing the threshold values

for alert and safety, respectively.

When g2 is less than ST , it signifies the absence of predators in

the vicinity, enabling the producers to engage in extensive search

operations. When g2 exceeds or equals the threshold ST , it implies

that some sparrows have already detected the presence of predators

and are issuing warnings to other sparrows. In this scenario, all

sparrows are required to swiftly fly to secure locations for foraging.

The producers are constantly being monitored by certain

scroungers. When the producers discover better food, the

scroungers promptly abandon their current positions and move

towards competing for the food. If they succeed in winning the

competition, they can immediately obtain the food. The position of

scroungers is updated as Eq. (18):

pil(k + 1) =
m · exp

pworst−p
i
l (k )

i2

� �
                                                 if i > h

2

pbest(k + 1) + pil(k ) − pbest(k + 1)
�� �� · q+ · v      if i ≤ h

2

8<
: (18)

where pbest represents the optimal position occupied by the

current producers, while pworst denotes the globally worst position;

q is a matrix of size 1×d, where each element is randomly assigned a

value of 1 or -1; q+ is defined as q+ = qT (qqT )−1.When i exceeds h
2 ,

it implies that the ith scrounger with lower fitness has not obtained

food and needs to fly to another location for foraging.

In the foraging process, certain sparrows possess the ability to

perceive the presence of potential threats in their surroundings. The

initial positions of these sparrows are randomly determined. Their

strategies for updating their positions as Eq. (19):

Pi
l(k ) =

Pbest(k ) + f · Pi
l(k ) − Pbest(k )

�� ��       if Zi > Zg

pil(k ) + c pil(k )−pworst (k )j j
(Zi−Zw)+ϵ

� �
                   if Zi = Zg

8><
>: (19)
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where Pbest represents the current global best position; f is a

parameter that controls the step size, following a normal

distribution with mean 0 and variance 1; c is a random number

indicating the direction of sparrow movement, serving as a step size

control parameter; Zi denotes the current individual fitness value,

while Zg and Zw represent the current global best and worst fitness

values, respectively; ϵ is a minimal constant, which utilized to

prevent division by zero (Gharehchopogh et al., 2023).
4 Auxiliary methods and techniques

4.1 Experimental evaluation metrics

In order to assess the accuracy of each model, as described in

Sect. 2, 80% of the data was utilized for training, while the

remaining 20% was employed for testing. The evaluation methods

employed were identical for both the training and testing datasets,

allowing for the assessment of the fitting and generalization

capabilities of models. The square of the correlation between the

anticipated and measured values is denoted as R2. Prediction

performance is described by VAF, which compares the standard

deviation of the fitting error with the standard deviation of the

measured value. MSE and MAE serve as metrics for evaluating the

prediction accuracy of the model, while MAE can assess the

robustness of the model (Tang and Na, 2021; He et al., 2023). In

this current study, the performance was evaluated using R2, MSE,

MAE, and VAF as metrics. The equations for these metrics are

provided below:

R2 = 1 −
o
M

i=1
(OAi − OA

0
i)
2

o
M

i=1
(OAi − OAi)

2
(20)

MSE =
1
Mo

M

i=1
(OAi − OA0

i)
2 (21)

MAE =
1
Mo

M

i=1
OAi − OA0

i

�� �� (22)

VAF = 1 −
var(OAi − OA

0
i)

var(OAi)

 !
� 100 (23)

where OAi, OA
0
i and OAi represent the original, predicted and

mean values of the overbreak area, respectively; and M represents

the total amount of data.

The value of R2 ranges from 0 to 1, with higher values indicating

a better degree of model fit. The value of MAE is typically greater

than 0, and the closer it is to 0, the better performance of the model,

VAF ranging from 0% to 100%, exhibits better predictive capability

as the value increases. When the predicted and measured values of

the overbreak are identical, R2 equals 1, MAE equals 0 and VAF

equals 100% (Mottahedi et al., 2018; He et al., 2023).
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4.2 K-fold cross-validation

To bolster the persuasiveness of the constructed model and

mitigate the drawback of limited original data, this study

incorporates the practice of cross-validation. The underlying

principle involves partitioning a portion of the data as the

training set, while the remaining data serves as the validation set.

There exist diverse methodologies for conducting cross-validation,

with k-fold cross-validation being a prominent choice, where k is

commonly set to 5 or 10 (Kohavi, 1995; Rodriguez et al., 2010).

Figure 3 illustrates the utilization of 5-fold cross-validation in this

study, whereby the training set is divided into five subsets, each of

which has the potential to serve as either the training or validation

set. The performance of the model on the validation set serves as an

indicator of its generalization capability. The final performance of

model is determined by averaging the results obtained from five

repeated tests (Zhang et al., 2022). The assessment of machine

learning model performance is based on its generalization ability,

focusing on the ultimate measure of generalization error rather than

empirical error. In this study, the introduction of 5-fold cross-

validation entails averaging the performance of the model across

five distinct validation sets, serving as the final performance metric.

Additional benefits can be obtained through cross-validation,

including the identification of overfitting or underfitting phenomena.

This leads to a more standardized selection of hyperparameters,

thereby yielding more reliable outcomes. However, the drawbacks of

k-fold cross-validation are evident. Due to its repetitive nature, it

necessitates significant computational time, with efficiency largely

reliant on the capabilities of the computer system. Furthermore, it is

not advisable to employ k-fold cross-validation when the data exhibits

repetitive patterns, as this would entail redundant processing of the

same dataset.
4.3 Initial setup

In this study, three optimization methods from Sect. 3 are

utilized to adjust the hyperparameters of XGBoost, including the

learning_rate, max_depth and n_estimators. For crucial parameter

details and their corresponding upper and lower bounds, refer to

Table 1. The stability of model training is evaluated by computing

the fitness value, and stability is deemed to be achieved when the

fitness value no longer changes. Typically, an increase in the

number of iterations leads to a stabilization of the optimization

performance (Li et al., 2021b). The design of the fitness function

should be able to reflect the relationship between predicted values

and measured values, in order to determine the performance of the

model. This discrepancy can include, but is not limited to, metrics

such as mean absolute error, root mean square error, correlation

coefficient, and others. By selecting an appropriate fitness function,

a better understanding of the capabilities and reliability of the

predictive model can be attained, thereby offering compelling

guidance for further enhancing and optimizing the model. The

fitness function employed in this research is defined as Eq. (24):
frontiersin.org

https://doi.org/10.3389/fevo.2023.1255384
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Liu et al. 10.3389/fevo.2023.1255384
fitness =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(OA

0
i − OAi)

2

n

vuuut
(24)

where OAi
0 and OAi represent the predicted value and the true

value of overbreak, respectively, n denotes the total amount of

test samples.

By employing metaheuristic algorithms, the optimal

hyperparameters for XGBoost can be determined. Coupled with

five-fold cross-validation, the hyperparameters that minimize

Eq. (25) can be identified, indicating the superior predictive

performance of the model. However, the performance of these

metaheuristic algorithms is influenced by multiple factors, with

swarm size and the number of iterations being the two most

significant ones (Koopialipoor et al., 2019a; Li et al., 2021a; Yu

et al., 2021). In this current study, a careful comparison and

selection will be conducted for these two parameters. The

remaining parameter configurations are presented in Table 2.

F =
1
5o

5

i=1
  fitnessi (25)
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In consideration of the limited data and the prominent

predictive ability of XGBoost, the selection of the swarm size

requires careful consideration. If the particle number is

excessively large, it will inevitably result in time wastage and

potential overfitting. Furthermore, with a total of 12 input

parameters in the model, the dimension of the search space

increases significantly, thereby necessitating an adequate number

of particles. Therefore, opting for a swarm size between 50 and 90

proves to be a favorable choice. Consequently, a comparison was

conducted among swarm sizes of 50, 60, 70, 80, and 90 to identify

the optimal swarm size for optimizing XGBoost predictions. From

Figures 4–12, it is evident that the swarm size within the range of 60

to 90 exhibits strong predictive performance. Moreover, the optimal
FIGURE 3

Schematic representation of 5-fold cross-validation.
TABLE 1 Information on optimizing critical hyperparameters of
XGBoost.

Hyperparameters Specific meaning Type
Value
range

learning_rate Boosting learning rate Float [0.1, 1]

max_depth
Maximum tree depth for

base learners
Integer [1, 8]

n_estimators
Number of gradient

boosted trees
Integer [100, 300]
TABLE 2 Parameter settings of three optimization algorithms.

Meta-heuristic
algorithm

Parameter Value

PSO

c1 2

c2 2

kp 0.6

wV 1.2

wP 1

WOA a Decreasing linearly from 2 to 0

SSA

ST 0.8

PD 0.2

SD 0.2
c1 , c2, Acceleration constant; kp, Parameter determining the relationship between particle
velocity and movement; wV , Elastic coefficient in the velocity update formula; wP, Elastic
coefficient in population update formula; ST , safety threshold; PD, the proportion occupied by
producers; SD, the proportion occupied by scouts.
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predictions are found in the middle range of 50 to 90, rather than at

the extremes. This finding provides compelling evidence supporting

the correctness of selecting the swarm size within this range. To

ensure a fair comparison with equivalent conditions, the number of

iterations is typically chosen to match the stable values observed for

all models as mentioned in the relevant literature. Based on

Figures 4, 7 and 10 around the vicinity of 100 iterations, the

change in fitness value starts to diminish, but to guarantee stable

training for all models, a choice of 300 iterations is deemed even

more favorable. At this stage, the value of the fitness function ceases

to experience any further changes, indicating convergence.
5 Discussion

In the pursuit of developing an optimized prediction model for

overbreak based on XGBoost, this study integrates three

metaheuristic algorithms with XGBoost, yielding prediction

models known as XGBoost-PSO, XGBoost-WOA, and XGBoost-

SSA. The datasets for tunnel crown to shoulder and shoulder to

haunch are individually utilized for prediction, resulting in a total of
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six models being compared. Throughout the entirety of the

construction process for the predictive model, the incorporation

of 5-fold cross-validation remains intact. The workflow for the

prediction and comparison of all the mentioned models is depicted

in Figure 13A. The evaluation of model performance follows the

assessment method proposed by Zorlu et al. (2008). Each

performance metric is assigned a specific score, wherein higher

scores indicate superior performance. Ultimately, all scores are

aggregated to determine the best model.
5.1 XGBoost-PSO

Figure 4 illustrates the optimization process of PSO with

different swarm sizes, showcasing the diverse optimization

performance between the two data sets. It is evident that the

variation in swarm sizes does not directly impact the stability of

convergence. Merely relying on this optimization process cannot

determine the optimal model. For instance, at a swarm size of 90,

the convergence appears to be the best in Figure 4A, while in

Figure 4B, its convergence behavior closely aligns with the others,

and even its convergence value slightly exceeds the rest. All fitness

function values remain around 0.0008 with insignificant

fluctuations, indicating that the models trained with different

swarm sizes have attained stability. This assertion is further

supported by the R2 values presented in Figures 5A, 6A.

Further comparison was conducted on models with different

swarm sizes, evaluating them based on four distinct metrics, as

illustrated in Figure 5. The fluctuations in MSE and MAE exhibit a

similar pattern, while the variation patterns of R2 and VAF exhibit

similar tendencies. Figures 5, 6 provide a clearer visualization of the

performance of the model, enabling a comprehensive assessment of

its performance scores and trends. Both the training and testing sets

demonstrate optimal performance with a swarm size of 60.

However, it is important to acknowledge exceptional cases. For

instance, at a swarm size of 80, the minimum values of MAE and

MSE are observed in Figures 5B, 6A, respectively. Hence, employing

an aggregate score for a comprehensive evaluation of the model

performance is a more scientifically robust approach. Table 3

presents the total scores of models corresponding to different

swarm sizes for both sets of data, clearly indicating that the

model performs optimally with a swarm size of 60, corroborated

by Figures 5, 6. This swarm size yields the best performance for both

the training and testing sets. The robustness of the model is

confirmed at this swarm size. Conversely, when the swarm sizes

are 50 and 90, despite its satisfactory performance on the training

set, the model demonstrates inferior performance on the testing set,

indicating a lack of robustness in generalizing to new data.

To achieve optimal prediction of tunnel overbreak using PSO

optimization, a swarm size of 60 demonstrates the strongest

predictive capability. In the arch crown to shoulder section, the

R2, MSE, MAE, and VAFvalues for the training set are 0.99999,

0.000025724, 0.0033966, and 99.9994%, respectively. For the testing

set in the same section, the corresponding values are 0.91805,

0.0045527, 0.026009, and 92.7639%. Remarkably, this swarm size

also exhibits impressive predictive performance for the shoulder to
A

B

FIGURE 4

Optimization performance of XGBoost-PSO with different swarm
sizes: (A) crown to shoulder and (B) shoulder to haunch.
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A

B

FIGURE 5

Performance and scores of different swarm sizes in the crown to shoulder dataset of XGBoost-PSO: (A) training set and (B) testing set.
A

B

FIGURE 6

Performance and scores of different swarm sizes in the shoulder to haunch dataset of XGBoost-PSO: (A) training set and (B) testing set.
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haunch section of the tunnel. In the training set for this section, the

R2, MSE, MAE, and VAF values are 0.99999, 0.0000038818,

0.0012167, and 99.9993%, respectively, while in the testing set, the

values are 0.99996, 0.0000009, 0.0006593, and 99.9961%. These

findings highlight the impressive predictive abilities of the chosen

swarm size, effectively estimating tunnel overbreak for both the arch

crown to shoulder and shoulder to haunch sections, respectively.
5.2 XGBoost-WOA

Similar to XGBoost-PSO, the optimization process of WOA is

showcased initially, as depicted in Figure 7. Merely based on the

distinction in swarm size, it remains challenging to differentiate

significantly, with similar degrees of convergence during iterations.

The convergence during iterations serves as the first step to evaluate

the stability and training adequacy of the model. If this step fails to

provide distinguishing characteristics, differentiation becomes

necessary through the summation of scores. In Figures 8, 9, a

comprehensive depiction is presented, illustrating the detailed

metric data and corresponding scores for each indicator with
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different swarm sizes and tunnel sections, in the context of WOA

optimization. The optimal swarm size can be identified through

Figures 8, 9, but to optimize the expression and address the

numerous indicators and lack of direct relationships among them,

Table 3 is introduced, which represents the cumulative scores of

indicators for the arch crown to shoulder and shoulder to haunch

sections, obtained with swarm sizes ranging from 50 to 90. This

approach facilitates a more comprehensive assessment by

integrating numerical and visual elements, enabling the

determination of superiority or inferiority.

Analyzing the data in Table 4, it is evident that in XGBoost-

WOA, the swarm size of 60 exhibits the overall highest predictive

capability, although its score for the arch crown to shoulder section

is lower than that of the swarm size of 90. However, this does not

imply that the former has weaker predictive ability compared to the

latter. By considering Figure 8, it can be observed that the swarm

size of 90 primarily achieves higher scores on the training set, while

the predictive performance of testing set does not surpass that of the

swarm size of 60. Similarly, the predictive capability of the swarm

size of 70 deserves recognition, particularly for the shoulder to

haunch section. However, it does not demonstrate such prominence

in the other dataset, indicating a need for further verification of its

generalization ability. This also implies that the model at this stage

should not be adopted, as it may exhibit poor predictions on new

data. Furthermore, accurate prediction is an integral part of blasting

optimization, necessitating the utilization of a model with strong

generalization capability and accurate predictions.

In summary, the optimal swarm size of 60 is determined for the

WOA-optimized XGBoost model used in predicting tunnel

overbreak. At this swarm size, the measured and predicted values

exhibit a close alignment, Specifically, for the arch crown to

shoulder section, the metrics R2, MSE, MAE, and VAF

demonstrate remarkable values in the training set are 0.99999,

0.000022766, 0.0030607, and 99.9994%, respectively. In the

testing set, the corresponding values are 0.91342, 0.0043292,

0.023462, and 92.3185%. For the shoulder to haunch section, the

R2, MSE, MAE, and VAF values between the measured and

predicted values are noteworthy in the training set are 0.99999,

0.0000045625, 0.0014242, and 99.9993%. In the testing set, the

corresponding values are 0.99997, 0.0000006, 0.000621,

and 99.9972%.
5.3 XGBoost-SSA

The novel metaheuristic algorithm SSA has demonstrated

favorable performance in optimization tasks (Lu et al., 2022; Xu

et al., 2023; Zhou et al., 2023). However, its suitability for this

particular problem needs to be further evaluated through

comparative screening. Analysis of the optimization process of

SSA with varying swarm sizes, as depicted in Figure 10, In

Figure 10A, it can be observed that the fitness values for swarm

sizes of 50 and 60 are relatively higher, indicating poor convergence

compared to the other three swarm sizes. The calculation of fitness

values, as described by Eq. (24), involves the relationship between

the measured and predicted values, indicating its capability to
A

B

FIGURE 7

Optimization performance of XGBoost-WOA with different swarm
sizes: (A) crown to shoulder and (B) shoulder to haunch.
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B

FIGURE 9

Performance and scores of different swarm sizes in the shoulder to haunch dataset of XGBoost-WOA: (A) training set and (B) testing set.
A

B

FIGURE 8

Performance and scores of different swarm sizes in the crown to shoulder dataset of XGBoost-WOA: (A) training set and (B) testing set.
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capture the fitting ability to the training set. Consequently, for the

optimization process from arch crown to shoulder, these two swarm

sizes are directly discarded. For fitness values that show no apparent

distinction, a selection process is applied by comparing the scores of

four metrics.

After discarding swarm sizes of 50 and 60, the performance of

swarm size 70 draws attention from Table 3 and Figures 11, 12,

achieving the highest overall score, particularly in the arch crown to

shoulder section, exhibiting the most exceptional performance

among all. The performance of swarm size 90 should not be

overlooked either, as it demonstrates notable capabilities. From

the scores in Table 3, it can be inferred that the performance of the

swarm size is relatively stable. However, it is premature to draw

conclusions solely based on this information. It is imperative to

meticulously analyze the data presented in Figures 11, 12,

evaluating the actual performance of the swarm size. From

Figures 11A, 12A, it can be observed that there is minimal

disparity in the performance metrics of all models on the training

set, despite the provision of graded ratings. Within the spectrum of

SSA-based optimization models, the R2 values for the training set

are close to 1, indicating rapid convergence and steadfast terminal

values during model training. Hence, the primary differentiation lies

in the predictive performance on the testing set, wherein the swarm

size of 70 exhibits superior capabilities compared to the

performance scores of different metrics with various swarm sizes,

as depicted in Figures 11B, 12B. The scores for swarm sizes of 50

and 60 have also been statistically analyzed in Table 3, confirming

their relatively poor predictive abilities, and validating the observed

phenomenon of high fitness values in Figure 10A. It is not excluded

that when the swarm size is 80, there may be lower fitness values

and correspondingly lower scores for evaluation metrics, as the

calculation methods for predicted values and measured values in the

fitness function, as well as in the evaluation metrics of the model,

lack a direct connection or correspondence. In practical model

training processes, simpler approaches can be employed to

determine the expression of the fitness function. For instance,

utilizing a metric like MSE, which reflects the relationship

between predicted values and measured values, researchers have

directly employed similar metrics as fitness calculation methods for

model training (Urbanek et al., 2015).

In optimizing the prediction of XGBoost using SSA, the

selection of a swarm size of 70 is representative in this type of

optimization. It can accurately predict the extent of overbreak after

tunnel blasting. The R2, MSE, MAE, and VAF values between the

predicted overbreak values and the measured values for the training

set from the arch crown to the arch shoulder are 0.99999,

0.00002189, 0.0031407, and 99.9994%, respectively. Similarly, for

the testing set within the same section, the values are 0.93666,

0.0035189, 0.02257, and 94.3496%. Exceptional performance is also

observed in the dataset from the shoulder to haunch, the training set

covering the shoulder to the haunch yields values of 0.99999,

0.0000045749, 0.0013514, and 99.9992%. The testing set in the

same section exhibits values of 0.94964, 0.0011121, 0.014919,

and 95.9831%.
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5.4 Competition of optimization algorithms

PSO, WOA, and SSA were employed to optimize XGBoost with

varying swarm sizes. It is noteworthy that the optimal swarm size

differs among these optimization algorithms. The optimal swarm

sizes corresponding to these three distinct optimization algorithms

have been identified in Sects. 5.1, 5.2, and 5.3, respectively.

However, the previous categorization was limited to comparisons

within each algorithm. to further optimize the parameters, a

comparison among the selected models is still necessary to

identify the most suitable model for prediction. As discussed in

Sect. 5.3, the differences in the training set among the SSA models

are minimal. In fact, not only that, based on the metrics of the

training set depicted in Figures 5A, 6A, 8A, 9A, it can be observed

that all models in the entire research article exhibit exceptional

performance on the training set, with minimal variation among

them. This indirectly indicates the suitability of XGBoost for this

problem. Distinctions and selections should be made regarding the

predictive capabilities on the testing set. Figure 14 illustrates the
A

B

FIGURE 10

Optimization performance of XGBoost-SSA with different swarm
sizes: (A) crown to shoulder and (B) shoulder to haunch.
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relationship between the predicted values and the measured values

for the testing set using PSO, WOA and SSA optimization

approaches. The first nine data points in Figure 14 correspond to

the prediction of the arch crown to the arch shoulder, while the

subsequent eight data points correspond to the prediction of the

shoulder to the haunch.

The predicted values and actual measurements in Figure 14, as

well as the differences among the predicted values, exhibit minimal

discrepancies. The conclusion drawn from these minute differences

is that all three algorithm-optimized models can be employed for

overbreak prediction. The values of each metric with the optimal

swarm size for each optimization algorithm are presented in

Figure 15, revealing that each optimization algorithm is suitable

for specific data sets. For instance, in the overbreak prediction of the

testing set from the arch crown to the arch shoulder, the R2 and

VAF values obtained through PSO and WOA optimization are

lower than those achieved through SSA optimization, while the M

SE andMAE values are higher compared to SSA optimization. This

observation indicates that PSO and WOA demonstrate lower

optimization capabilities compared to SSA in this particular

dataset. However, in the dataset from the shoulder to the waist

section, a completely contrasting outcome emerges, challenging the

aforementioned conclusion.

The generalization ability of a model is a crucial evaluation

criterion that must be considered (Jin et al., 2019). The difference in

values for each metric between the two datasets in Figure 15, also

reflects generalization capability of the model. Based on the
Frontiers in Ecology and Evolution 14
observed trends in Figure 15, it is evident that SSA exhibits the

highest stability. It consistently yields elevated values for both

datasets, indicating its strong robustness. Conversely, PSO and

WOA demonstrate drastic fluctuations. In XGBoost optimized

using various metaheuristic algorithms, similar to SSA, its

advantages are magnified with increasing dataset sizes, leading to

a significant reduction in overbreak in practical engineering

applications. Hence, the optimal model derived from this study is

the XGBoost-SSA model with a swarm size of 70, which will be

employed for subsequent parameter optimization research.
6 Blasting parameters optimization
and comparison

6.1 Steps for parameter optimization

For the already selected optimal predictive model, mere

prediction alone is insufficient to achieve the objective of reducing

overbreak. Leveraging the accurate predictive capability of the

established model, it is possible to forecast the overbreak values

corresponding to all blasting parameters within the design range.

Subsequently, by exploiting the characteristics of the PSO, WOA,

and SSA algorithms, the minimal overbreak value along with the

corresponding blasting parameters can be identified. The specific

process is depicted in Figure 13B. The detailed description of the

steps is as follows:
A

B

FIGURE 11

Performance and scores of different swarm sizes in the crown to shoulder dataset of XGBoost-SSA: (A) training set and (B) testing set.
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A

B

FIGURE 12

Performance and scores of different swarm sizes in the shoulder to haunch dataset of XGBoost-SSA: (A) training set and (B) testing set.
TABLE 3 Total performance scores for different swarm sizes of the predictive model.

Swarm size Crown-to-Shoulder Shoulder-to-Haunch Final score

XGBoost-PSO 50 25 21 46

60 32 39 71

70 30 28 58

80 28 23 51

90 21 26 47

XGBoost-WOA 50 24 26 50

60 35 28 63

70 23 32 55

80 24 24 48

90 36 24 60

XGBoost-SSA 50 24 23 47

60 20 31 51

70 36 25 61

80 23 24 47

90 30 28 58
F
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Fron
1) A swarm size of 70 particles was set, and the XGBoost model

was optimized using the SSA algorithm for a total of 300

iterations. The training process involved separate training

of the arch crown to shoulder and arch shoulder to waist

datasets. Subsequently, the trained and completed

XGBoost-SSA model is outputted, which was ready for use.

2) The real-time geological information of the tunnel face is

determined. The real-time geological information of the

tunnel face is determined, and based on this information, a

range of blasting parameters is generated. In the context of

this study, the geological conditions that need to be

determined include UCS, SRG, Jc and D. The range of

blasting parameters varies according to different sections of

the tunnel. In this study, based on the findings of Zhang

(2019) and the guidelines provided by the Ministry of

Transport of the People’s Republic of China (2020), the

ranges of parameters can be obtained as presented in

Table 4.

3) The algorithm generates a swarm of smooth blasting

parameter sets based on the geological conditions and

Table 4. The overbreak values corresponding to the

parameter sets are calculated using the trained optimal

model.

4) By employing three distinct optimization algorithms, i.e.

PSO, WOA, and SSA, the minimum overbreak value and

the corresponding blasting parameters that minimize the

overbreak are identified.

5) The optimization results, as well as the required

optimization time with the same conditions, are

compared for each algorithm.
6.2 Assessment of optimization results

Reducing overbreak has always been a challenge (Kim and

Moon, 2013), and the objective of this study is to provide a solution

that minimizes overbreak control. In the optimization approach
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described in Sect. 6.1, by calculating the overbreak values

corresponding to all blast parameter combinations that meet the

rock conditions, we can utilize the optimization algorithm to find

the minimum overbreak value and its corresponding blast

parameter values. Different optimization algorithms will

inevitably yield different results.

In this study, a comparison is made between the final overbreak

values and the overall optimization time, to showcase the

applicability and advantages of the optimization algorithms. It

should be noted that the parameter settings for each optimization

algorithm are still based on Table 2. For the sake of convenient

comparison, the optimization process continues to employ the

previously determined iteration count and swarm size, with a

swarm size of 70 and an iteration count of 300. Each set of

particles represents a unique combination of blast parameters,

resulting in a total of 21,000 possible combinations of particles

representing different blasting parameter configurations being

considered, aiming to comprehensively identify potential

overbreak values while meeting the specified criteria. To minimize

errors, the operations are performed on the same computer.

Based on a specific tunnel face data from Zhang (2019), which

includes a UCS of 36.8 kPa, SRG grade IV, D of 72m, and J of 0.7,

optimization of parameters was conducted for two sections, i.e.

from the crown to the shoulder and from the shoulder to the

haunch. Figure 16 illustrates the final minimum OA values and the

corresponding time required for the three algorithms. The unit of

OA is measured in square meters (m2), and the unit of time is

measured in seconds (s). The area of the circular disk in Figure 16 is

divided into three segments, with each segment representing the

area of the final OA, while the radius of each ring represents the

time required for the entire optimization process.

According to Figure 16, it is evident that for the two sections of

the tunnel, the SSA algorithm requires significantly less time

compared to the other two algorithms, with a difference of

approximately 4–5 minutes. This establishes a clear advantage for

the SSA algorithm in terms of time efficiency. Observing the

minimized OA in Figure 16, the WOA algorithm yields a slightly

smaller value of 3.9035 m2 for the arch crown to shoulder section,

while the other two algorithms produce a value of 3.9063 m2. The
TABLE 4 Range of blasting parameter values for different geological conditions.

Parameters
Crown to Shoulder

Class III rock Class IV rock
Shoulder to Haunch

Class III rock Class IV rock

N 40–60 45–70 70–100 90–120

S(cm) 45–60 30–50 45–60 30–50

QC(kg) ≤3.6 ≤2.6 ≤3.6 ≤2.6

B(cm) 45–75 37.5–100 45–75 37.5–100

SR(cm) 100–130 60–100

Q(kg) 30–50 160–190

Ps 0.17 or 1 0.23 or 0.26 or 1

Pc 0.15–0.25 0.15–0.25
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OA values are identical for the remaining sections. However, the

WOA algorithm takes a much longer time, specifically 306 s more

than the SSA algorithm, which puts it at a significant weakness.

When considering the marginal difference of 0.0028 m2 in the OA

overbreak area, the time disadvantage becomes more crucial.
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In accord with the aforementioned analysis, SSA stands out as the

optimal tool for uncovering the minimal overbreak. Within the realm

of seeking the minimum OA, an exceptional capability is exhibited by

the algorithm to achieve this objective, while substantially diminishing

the associated time requirements. When dealing with engineering
A B

FIGURE 13

Specific process: (A) comparison of models and (B) comparison of parameter optimization.
FIGURE 14

Comparison between measured and predicted value.
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FIGURE 15

Performance of four metrics on the testing set with the optimal swarm size.
A B

FIGURE 16

Optimized value for overbreak and the corresponding time: (A) crown to shoulder and (B) shoulder to haunch.
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problems such as tunnel blasting, the slight difference in OA can be

disregarded, considering the time savings that can be achieved. This

allows for a more efficient handling of multiple cross-sections, thereby

increasing productivity. In the face of large-scale projects involving

multiple tunnel sections, the dominance of SSA over the other two

optimization algorithms is undeniable.
7 Conclusions

To address the severe issue of overbreak caused by tunnel

blasting, an urgent need arises to resolve it through the

optimization of blasting parameters. In this study, a model is

proposed for overbreak prediction and optimization in different

sections of the tunnel, aiming to tackle this problem. To achieve this

objective, a combination of XGBoost and three renowned

metaheuristic algorithms, namely PSO, WOA, and SSA, is

employed, resulting in the formation of XGBoost-PSO, XGBoost-

WOA, and XGBoost-SSA for prediction purposes. By integrating

with 5-fold cross-validation, the metaheuristic algorithm

successfully identifies the optimal hyperparameters. A scoring

system based on four metrics is used to evaluate the performance

of the model, considering the significant impact of swarm size and

iteration count on optimization effectiveness. The results

demonstrate that XGBoost-SSA exhibits the best predictive

capability and generalization ability, making it the optimal choice

for subsequent parameter optimization research.

Based real-time geological conditions, the algorithm generates

corresponding blast parameter ranges for different sections of the

tunnel. By utilizing the best predictive model, the overbreak values

corresponding to all blasting parameters within this range are

computed. Subsequently, the best overbreak value is determined

through the application of three optimization algorithms i.e. PSO,

WOA and SSA. The results indicate that when a sufficiently large

swarm size is generated, meaning that there are enough different

blasting parameter combinations corresponding to blasting design

scenarios, the optimization algorithm consistently identifies nearly

identical minimum OA values. Even in the presence of disparities,

these variations can be completely ignored in tunnel blasting

engineering problems. The primary divergence lies in the

computational time required for the entirety of the optimization

process. According to the parameter optimization results from this

study, SSA can achieve the optimal overbreak result in the shortest

time. SSA saves 4–5 minutes compared to PSO and WOA while

achieving the same outcomes. Expanding the time savings to

multiple cross-sections, can yield substantial temporal benefits for

the entire project duration.
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