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The response surface model has been widely used in slope reliability analysis

owing to its efficiency. However, this method still has certain limitations,

especially the curse of high dimensionality when considering the spatial

variability of geotechnical parameters. The slice inverse regression

dimensionality reduction method is efficient to obtaining the dimensionality-

reduction variables from the original soil parameters space, before constructing

the response surface. However, the dimensionality reduction process may cause

accuracy deficiency due to the loss of variable information. An adaptive slope

reliability analysis method is proposed to quantify and correct information loss

and errors. Additionally, the slope failure probability based on the response

surface in the dimensionality reduction space is modified to an unbiased one

based on the finite model in the original space. In this study, two soil slopes

considering spatial variability are taken as examples. The results illustrate that this

method can effectively reduce the loss of accuracy in the dimensionality

reduction process, while obtaining unbiased finite-element-based failure

probability effectually. The method addresses the limitation whereby the

accuracy of the dimensionality reduction process depends on the sample size

and the number of dimensionality-reduction variables. Simultaneously, the

proposed method significantly improves the computational efficiency of the

sliced inverse regression method and realizes a reasonable dimensionality

reduction effect, thereby improving the application of the response surface in

practical slope reliability high-dimensional issues.

KEYWORDS

spatial variability, sliced inverse regression, response surface, subset simulation,
response conditioning method
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1 Introduction

The reliability analysis of slope stability is a crucial issue in

geotechnical engineering considering the uncertainties of

geotechnical parameters (Deng et al., 2017; Xiao et al., 2018; Cao

et al., 2019; Liu et al., 2019; Deng et al., 2020; Wang et al., 2020a;

Wang et al., 2020b; Zhang et al., 2023a; Zhang et al., 2023b). Many

reliability analysis methods have been proposed, such as the Monte

Carlo simulation (MCS) (e.g., Griffiths and Fenton, 2004; Cho,

2007; Cho, 2010; Huang et al., 2010; Li et al., 2015b), first-order

second moment method (FOSM) (e.g., Christian et al., 1994;

Hassan and Wolff, 1999; Xue and Gavin, 2007), first-order

reliability method (FORM) (e.g., Low and Tang, 1997; Low and

Tang, 2004; Ji, 2014; Low, 2014; Zeng and Jimenez, 2014), second-

order reliability method (SORM) (e.g., Cho, 2009; Low, 2014), and

advanced Monte Carlo simulation, Subset Simulation method (e.g.,

Au and Beck, 2001; Wang et al., 2010; Wang et al., 2011; Li et al.,

2016b). Among these, the failure probability must be obtained by

repeating slope stability analysis, which is computationally

expensive. In recent years, the response surface (RS) method has

been proven to be an effective method to solve this issue. The

principle is to develop an RS with small computational cost to

approximate the original complex model; therefore, the slope

reliability can be estimated almost negligible costs based on this

RS model.

To date, many scholars have proposed various RS models to

perform slope reliability analysis, such as the quadratic polynomial

(Xu and Low, 2006; Ji and Low, 2012; Ji et al., 2012; Tan et al., 2013),

Hermite polynomial chaos expansion (Jiang et al., 2014; Jiang et al.,

2015; Li et al., 2016c), support vector machine (Tan et al., 2011; Li

et al., 2013; Chang et al., 2020; Huang et al., 2020a), neural network

(Cho, 2009; Tan et al., 2011; Piliounis and Lagaros, 2014; Huang

et al., 2020c), and Kriging model (Luo et al., 2012a; Luo et al., 2012b;

Zhang et al., 2013). Although the RS model has been widely used in

reliability problems, several challenges remain to be resolved. The

curse of high dimensionality is a major criticism restricting the

application of RS in reliability analysis. When the dimensionality

increases rapidly, the number of required training samples is

dramatically increased to develop more complex RS forms. This

computational burden may even be higher than the direct Monte

Carlo methods, which is contrary to the original purpose of

establishing response surfaces. In slope reliability analysis, as the

inherent spatial variability of soil properties is one of the most

significant geotechnical uncertainties affecting the slope failure

mechanism (Christian et al., 1994; Griffiths and Fenton, 2004;

Wang et al., 2011; Huang et al., 2013; Li et al., 2015a; Li et al.,

2016a; Li et al., 2016b; Xiao et al., 2016; Xiao et al., 2017; Jiang et al.,

2018; Li et al., 2019a; Varkey et al., 2019; Huang et al., 2020b; Deng

et al., 2022; Nie et al., 2023; Zhang et al., 2023c), the curse of high

dimensionality is particularly when the spatial variability of soil

parameters is simulated using random fields.

Two dimensionality reduction techniques are usually used to

solve high-dimensional problems: simplifying the RS form and

reducing the number of random variables. In the former, different

methods are applied to constructing the sparse structure of the

polynomial chaos model, such as the stepwise regression technique
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(Blatman and Sudret, 2010) or the least-angle regression technique

(Blatman and Sudret, 2011), the weighted [PLANE1]4C1;1

minimization algorithm with a priori information (Peng et al.,

2014), and the Bayesian compressed sensing technique (Zhou et

al., 2020), while other researchers constructed the sparse RS based

on different basic terms, such as support vector regression (Cheng

and Lu, 2018) and the quadratic polynomial (Guimarães et al.,

2018). However, the computational costs of developing sparse

forms remain still large when considering more time-consuming

and complex models with a large number of random variables (Al-

Bittar and Soubra, 2014).

The latter reduces the random variables and then develops an

RS model with dimensionality-reduced parameters. Al-Bittar and

Soubra (2014) applied the Sobol index of global sensitivity analysis

to recognize significant input variables. However, it may lose

efficiency when the contributions of each variable are similar.

Rotation-based linear mapping techniques (Constantine et al.,

2014; Yang et al., 2016) required partial derivatives of input

variables and output, which may be computationally expensive.

Alternatively, the input variables are linearly combined and

transformed into a new dimensionality-reduced space, such as

principal component analysis (PCA) (Jolliffe, 2002) and sliced

inverse regression (SIR) (Li, 2000; Pan and Dias, 2017; Li et al.,

2019b; Deng et al., 2021). Specifically, PCA takes the principle of

maximizing the variance to linearly combine the original space. The

effectiveness of the PCA method depends on the data structure of

the input variables, which is not efficient when the input variables

are independent or low correlated. The SIR method linearly

transforms the original space into the dimensionality-reduced

space using the relationship between response values and input

variables, which makes it more efficient than the PCA method in

independent soil parameters of random fields. However, subsequent

studies found that the accuracy of the SIR method depends on the

initial training sample size. In addition, both two dimensionality

reduction techniques would lose some accuracy due to the loss of

variable information in the dimensionality reduction process. There

are few reasonable solutions for quantifying and correcting

information loss and errors in the dimensionality reduction process.

In this study, an adaptive reliability analysis method is proposed

to solve the curse of high dimensionality of the RS method and

problem-dependent accuracy of the SIR method, which integrates

the dimensionality reduction method, active learning method, and

response conditioning method. This method can correct the

information deficiency in the process of SIR dimensionality

reduction and generate unbiased reliability results with low

variability for slope stability in spatially varying soils. The SIR

method is firstly introduced to reduce the random variables, and the

accuracy-dependent problem of the SIR method is discussed, as

described in Section 2. In Section 3, the adaptive reliability analysis

corrects the preliminary slope reliability analysis results of the RS

model in a dimensionality-reduced space to an unbiased target

reliability based on the finite element (FE) model in the original

space. The method uses representative samples from the response

conditioning method to iteratively update the principal direction of

the SIR and the RS model near the failure domain to obtain a stable

unbiased target reliability. Furthermore, two slope examples
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considering the spatial variability are studied in Section 4 and

Section 5 to validate the capacity of this method.
2 Brief description of the sliced
inverse regression method

2.1 Karhunen–Loève expansion

In slope reliability analysis, the geotechnical parameters with

spatial variability are non-negligible indicators that affect the slope

failure mode and its stability. When the random field is applied to

simulate the spatial variability, a large number of spatially correlated

random variables are generated, causing the curse of high

dimensionality in slope reliability analysis. Taking the Karhunen–

Loève expansion method (Li and Der Kiureghian, 1993; Phoon

et al., 2002) as an example, the log-normal random field R can be

described as a set of independent standard normal random

variables, x = [x1, x2, …, xr]T:

R = exp (m + so
r

i=1

ffiffiffiffi
li

p
jx,ixi) (1)

where m and s represent the mean and standard deviation of

normal random field ln(R); r is the truncated number of the first

largest eigenvalues and the corresponding eigenvectors, li and jx,i
(i = 1, 2,…, r), at locations x, which is determined by the required

accuracy of random field discretization, such as 95% (Phoon et al.,

2002; Jiang et al., 2014; Xiao et al., 2015). Although the Karhunen–

Loève expansion method can reduce the number of random

variables by converting the number of coordinate points at

different locations into the number of expansion terms, it is

affected by the type of the correlation function, the

autocorrelation distance, and the scale of the random field. It may

require a large number of truncation terms, r, to meet the

accuracy requirement.
2.2 Basic theory of sliced
inverse regression

To reduce the large number of truncation terms, r, the SIR

method is utilized in this study for further dimensionality

reduction. The basic idea of the SIR method is to construct a

smaller number of linear combinations from the original high-

dimensional variables and to develop new variables in low-

dimensional space. To ensure that each linear combination

component reflects more original information, an eigenvalue

decomposition of the covariance matrix V of x is applied, as

shown in the following equation:

Vbj = ljbj, j = 1, :::, r (2)

where bj represents the eigenvector and lj represents the

eigenvalue of the covariance matrix V of dimension r.

Before the eigenvalue decomposition, the SIR method usually

divides the original space according to the relationship between x
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and its response value, Y, and obtains the covariance matrix of

conditional expectation E(x|Y), which makes it easier to determine

the principal direction (see Figure 1). In the following example, N is

set as the number of training samples, (x,Y). The SIR algorithm is

shown in the following steps:
(i) Standardize the input variables of x and sort the training

samples by the value of the response value of Y.

(ii) Divide the sorted training samples as evenly as possible into

H slices, S1, S2,…, SH (see Figure 1A); the number of

samples in each slice is approximated as nh = N/H. The

previous studies have stated that a certain range ofH has no

significant influence on the dimensionality-reduced results

of SIR (Li, 2000).

(iii) Calculate the mean of each slice of x; the conditional

expectation is set as �zh  =   1
nh
  o
Y (i)∈Sh

z (i), h=1,…,H, i=1,…, nh.

(iv) Calculate the covariance matrix (V̂ ) of the mean xh of each
slice, with the corresponding weight for each sample set as

nh/N.
V̂ =
1
N o

H

h=1

nh(xh − x)(xh − x)T (3)
where (x = 1
No

N

i=1
x(i) =

1
No

N

i=1
(x(i)1 , x(i)2 , :::, x(i)r )) represents the

mean value of the input variables x at all sample points; T

denotes the matrix transpose.

(v) Calculate the eigenvalues and eigenvectors of the

covariance matrix to determine the principal direction of

the SIR algorithm, as shown in the following equation:

V̂ b̂ j = l̂ jb̂ j, j = 1, :::, r

l̂ 1 ≥ l̂ 2 ≥ :::l̂ r

(4)

where eigenvector b̂ j represents the respective vector in the jth

direction of SIR (i.e., b = (1,1) as the eigenvector between

x1 and x2; see Figure 1B). Normally, the first d large vectors

are regarded as the principal direction (Pan and Dias,

2017).
BA

FIGURE 1

Schematic diagram of sliced inverse regression.
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Fron
(vi) Obtain new variables by conducting a linear combination

of the original variables x according to the principal

directions of SIR. The first d larger direction vectors

correspond to d new variables, i.e., wd = b̂
0

dx
2.3 Information loss due to
dimensionality reduction

The ability to obtain finite and large eigenvalues of lj
determines the effectiveness of SIR dimensionality reduction

methods. Compared with SIR, the PCA method directly uses the

covariance matrix of x for the eigenvalue decomposition without

preprocessing. However, the PCA method has certain limitations;

for instance, the same principal direction may be obtained based on

two samples with the same distribution and different response

values. In contrast, SIR explores the inverse regression curve of

the conditional expectation E(x|Y) to investigate how the associated

x changes with Y. The eigenvalue decomposition according to the

covariance matrix of E(x|Y) can obtain the principal direction

effectively. However, the accuracy of the SIR method is

parameter-dependent and information loss will increase with the

decrease of the initial training sample size. Taking the arithmetic

examples (Rackwitz (2001); Pan and Dias, 2017) as an example to

explain the information loss:

G(x1, :::xr) = r + 3s
ffiffi
r

p
−o

r

i=1
xi (5)

where zi, i = 1,…, r denotes random variables with independent

lognormal distributions, where the mean value is 1 and the standard

deviation is 0.2; r represents the dimensionality of the random

variable. To quantify the information loss and error in the SIR

dimensionality reduction process, the root mean square error (e)
and the correlation coefficient (r) between the original space and

the dimensionality-reduced space are used as indicators. The root

mean square error (e) is calculated as

e =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
Nt

t=1
(GRS − G)2

Nt

vuuut
(6)

where Nt denotes the test sample number, GRS is the response

value in the dimensionality-reduced space calculated based on the

RS, and G is the actual value in the original space calculated by

Eq(5).

As shown in Figure 2, the dimensionality reduction of SIR is

more effective than the PCAmethod in random variables. In the SIR

method, the first three larger eigenvalues can be selected from 40

random variables and the value of the fourth eigenvalue quickly

decays to 10−20, while in the PCA method, the values of eigenvalues

of random variables are nearly the same and it is difficult to select

the main eigenvalues and directions for constructing new

dimension-reduced variables.

Then, the accuracy of SIR with different parameters is shown in

Figure 3, varying in the number of training samples, number of

variables in the original (r = 20, 200, and 1,000), and number of
tiers in Ecology and Evolution 04
variables in the dimensionality-reduced space (d = 3, 10, and 20).

Larger training samples cause a higher accuracy in the

dimensionality reduction, which can be proved by the Fisher

consistency property (Li, 2000). When the number of training

samples increases infinitely, the statistical value of the sample

data approximates the true distribution and the principal

direction in dimensionality-reduced space can unbiasedly

simulate the original space. However, the huge computational

cost with larger training samples is impractical, which contradicts

the original intention of dimensionality reduction for higher

efficiency. In addition, when the number of random variables and

training samples (r = 20 N =100) are fixed, different dimensionality-

reduced variables (d = 2, 4, 6) will cause different accuracy loss, with

the correlation coefficient obtained as 0.912, 0.987, and 0.992, ϵ as

0.370, 0.145, and 0.112, respectively. It can be observed that the

accuracy of the SIR method is a parameter-dependent method.

Hence, this study proposes an adaptive slope reliability analysis

method to quantify and correct errors in the dimensionality

reduction process of the SIR method and obtain an unbiased

reliability estimation while neglecting the initial error.
3 Adaptive slope reliability analysis

In this section, the adaptive reliability method is used to address

the accuracy-dependent problem of the SIR method to reduce the

information loss with limited training samples. The principle is to

use the response conditioning method (Au, 2007) to improve the

accuracy of the result efficiently based on the correlation between

the simple and complex models, such that it is consistent with the

unbiased complex model. In this study, the RS model in the

dimensionality-reduced space is regarded as the simple model

and the FE model in the original space is regarded as the complex

model. In addition, compared with the traditional response

conditioning method, the simple models are gradually iteratively

updated, which is similar to the idea of active learning (Echard et al.,
FIGURE 2

Comparison of dimensionality reduction effect between PCA and SIR.
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2011; Dubourg et al., 2013; Marelli and Sudret, 2018). This mitigates

the requirement for a highly correlated and accurate initial

dimensionality-reduced space. It consists of three steps (see

Figure 4): initial SIR dimensionality reduction and preliminary

reliability analysis, which determines the principal directions of

SIR based on the limited training samples and then constructs the

RS model in the dimensionality-reduced space; target reliability

analysis, which selects sample points in the dimensionality-reduced

space and transforms them into the original space to recalculated in

FE model, and to obtain an unbiased estimate of the reliability with

the response conditioning method; and the adaptive update

strategy, which appends representative samples in original space

to the training samples and updates the SIR principal direction and

RS model until convergence is attained.
3.1 Preliminary reliability analysis in the
dimensionality-reduced space

The original and dimensionality-reduced space are defined asW
andW´, respectively. The SIR principal directions are obtained from

the original space samples (x, Y). Furthermore, the original space

samples are transformed into new samples (w, Y) in the

dimensionality-reduced space W´. Based on the dimensionality-

reduced samples, the simplest commonly used quadratic RS model

without cross terms is constructed in this study. The original

quadratic RS model is expressed as:
Frontiers in Ecology and Evolution 05
FS = M(x) = a0 +o
r

i=1
a1ixi +o

r

i=1
a2ix

2
i (7)

where M(x) is the original RS model containing 2r+1 basis

terms [1, xi, xi2, …]; [a0, a11, …, a1r, a21, …, a2r] are the unknown

coefficients; r is the input variable dimension in the original space; x
are the variables in the original space.

The RS model in dimensionality-reduced space is rewritten as:

FS = M
0
(w) = a0 +o

d

j=1
a1jwj +o

d

j=1
a2jw

2
j (8)

where M’(w) is the RS model in dimensionality-reduced space

containing 2d+1 basis terms [1, wj, wj
2, …] and w are the

dimensionality-reduced variables, obtaining through the linear

combination of x.
Subset simulations (Au and Beck, 2001; Li et al., 2016b) are then

performed to analyze the slope reliability based on the RS model.

The principle is that the occurrence of a small failure probability

event can be expressed as the product of the larger conditional

probabilities of a series of intermediate events. In this process, for an

m-level subset simulation, the entire dimensionality-reduced space

W´ is divided into m+1 mutually exclusive and completely

exhaustive subsets of Wk´, k = 0, 1,…, m, which are divided

according to intermediate failure events {fs1, fs2, …, fsm}, as

shown in Figure 4. The preliminary slope failure probability of Pf,

RS is calculated using the following equation (Au and Beck, 2001;

Xiao et al., 2016; Zhou et al., 2021).
FIGURE 3

Information loss of SIR due to dimensionality reduction.
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Pf ,RS = o
m

k=0

P(FRSjW
0
k)P(W

0
k) = o

m

k=0
o
Nk

j=1
IRS,kj

P(W
0
k)

Nk
(9)

where FRS = {FSRS < fs} represents the slope failure event

obtained based on the RS in the dimensionality-reduced space

and IRS,kj represents the failure indicator function for the jth

sample in subset Wk´ (i.e., IRS,kj = 1 if FSRS,kj < fs; otherwise, IRS,kj
= 0). P(Wk´) represents the occurrence probability of the subset Wk´

(P(Wk´) = p0
k(1−p0), k = 0, 1,…,m−1 or P(Wk’) = p0

k, k =m), where

m-level subset simulation contains mNl (1 − p0) + p0Nl samples and

Nl is the sample size in each simulation level. As the principal

direction of the SIR method directly determines the characteristic of

the dimensionality-reduced space, if the direction does not

accurately reflect the characteristics of the original space, the RS

in the dimensionality-reduced space will cause large accuracy loss

compared with the original finite-element model. This accuracy loss

caused by the inappropriate dimensionality reduction direction is

extremely evident when there are insufficient training samples.

Thus, target reliability analysis is applied to quantify and correct

this loss.
3.2 Target reliability analysis in the
original space

Although the deviation of the SIR principal direction leads to a

larger deviation in the RS model, the dimensionality-reduced space

still has a certain correlation with the original space. Therefore, the

samples in the dimensionality-reduced space can be selected using

the response conditioning method (Au, 2007) and transformed into

the original space to recalculate in the finite-element model, thereby

correcting the preliminary slope failure probability to an unbiased

estimate, as shown in Figure 4. This process is based on the sub-

binning strategy (Au, 2007), where the main principle is that the

samples in the adjacent region share similar properties, i.e., when an

interval is sufficiently small, a random sample from that interval can

be used to characterize its properties, such as whether the interval

fails or not. Only the selected samples are recalculated for
Frontiers in Ecology and Evolution 06
reevaluating the failure probability in the FE model so that a large

amount of FE analyses can be avoided.

For instance, each subset Wk´ is further divided into Ns equal

sub-bins Wkj, j = 1, 2, …, Ns. Taking advantage of the correlation

between the dimensionality-reduced and original spaces, one

sample from each sub-bin is randomly selected as a representative

sample to revert to the original space W and its response value FSFE
is obtained in the FE model. According to the response conditioning

method, the target reliability failure probability Pf,FE is calculated as

(Li et al., 2016a; Xiao et al., 2016; Zhou et al., 2021):

Pf ,FE = o
m

k=0

P(FFEjWk)P(W
0
k) = o

m

k=0
o
Ns

j=1
IFE,kj

P(W
0
k)

Ns
(10)

where FRS = {FSFE< fs} is the slope failure event obtained based

on the FE model in the original space Wk; IFE,kj is the failure

indicator function for the representative sample Wkj in the

original space (i.e., IFE,kj = 1 if FSFE,kj < fs; otherwise, IFE,kj = 0).

As the representative samples are drawn from the dimensionality-

reduced space, the subset Wk (i.e., P(Wk´) = P(Wk)), occurs with

the same probability as the subset Wk´ [i.e., P(Wk´) = P(Wk)].

The accuracy of Pf,FE depends on the correlation of the

dimensionality-reduced space with the original space, which is

directly determined by whether the SIR principal direction is

accurate or not. If the SIR principal direction is inconsistent with

the true direction, the Pf,FE will have a relatively high variability. In

this case, the principal directions of the SIR and RS coefficients are

updated gradually by an adaptive strategy to obtain a stable target

reliability estimate.
3.3 Adaptive strategy

This adaptive strategy progressively updates the simple model

(the principal direction of the SIR and preliminary RS models), in

order to reduce the variability of Pf,FE due to the deviation of SIR

principal direction. This process utilizes the representative samples

in target reliability analysis, to update the covariance matrix (Vnew),
FIGURE 4

Schematic diagram of adaptive slope reliability analysis based on SIR.
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the corresponding eigenvalues (lnew), and eigenvectors (bnew).
Therefore, the SIR principal direction and the RS model are

updated with special emphasis nearby the failure domain (Bucher

and Bourgund, 1990; Ji and Low, 2012). Subsequently, a second

round including preliminary and target reliability analysis is

performed. The detailed implementation procedures of the

adaptive strategy are provided in Figure 5. The SIR directions and

the RS model are gradually updated by active learning and a final

unbiased reliability estimate with small variability is obtained, until

the correlation (rRS,FE) between RS values in the dimensionality-

reduced space and FE values in the original space reaches

convergence (rRS,FE ≤ 5%). Owing to the different sample weights

in each subset, the correlation between the two modes can be

calculated as (Li et al., 2016a):

rRS,FE =
E(FSRS � FSFE) − E(FSRS)E(FSFE)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D(FSRS)D(FSFE)
p (11)

w h e r e E(X) = o
m

k=0

E(Xk)P(Wk) a n d D(X) = o
m

k=0

E(X2
k )P(Wk) − E(X)2

represent the expectation and variance, respectively; X represents

FSRS, FSFE, or FSRS × FSFE, whereas Xk represents samples of X in the

subset of Wk.
4 Example I: undrained homogeneous
soil slopes

An undrained homogeneous soil slope (Griffiths and Fenton,

2004; Jiang et al., 2015) is taken as an example to illustrate the effect

of the proposed method. With a height of 5 m and angle of 26.6°
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(see Figure 6), the slope has its undrained shear strength and unit

weight as 23 kPa and 20 kN/m3, respectively (see Table 1). In this

study, deterministic analysis was performed by the shear strength

reduction technique in FE analysis. The soil is modeled by an

elastic-perfectly plastic constitutive model with the Mohr–Coulomb

failure criterion. The deterministic safety factor is 1.348 through the

shear strength reduction technique in FE analysis, which is close to

1.356 using the simplified Bishop method (Cho, 2010; Jiang et al.,

2015), similar to Zhou et al. (2021). The slope reliability analysis

was then repeated by implementing a non-intrusive stochastic

manner (Li et al., 2016b). In the slope reliability analysis

considering the spatial variability of slope soil properties, two

different cases are conducted: the first is the benchmark case with

a coefficient of variation (COV) of 0.15 and an autocorrelation

function of squared exponential (QExp); the second is the high-

dimensional case with identical parameters, but with a single

exponential autocorrelation function (SExp). Considering the

non-negativity of the parameters, log-normal random fields are

used for the undrained shear strength.
4.1 Case I: benchmark case

In this case, 15 random variables are required to meet the 95%

accuracy of K–L random field discretization. A total of 30 training

samples (x, Y) are required as training samples to compare the

dimensionality reduction effect of SIR and PCA. As shown in

Figure 7, the first two larger eigenvalues of SIR are 0.937 and

0.427 in the initial iteration, and from the third eigenvalue, its value

decays from 10−16 to 10−18. Therefore, the eigenvectors

corresponding to these two eigenvalues are selected to determine

the SIR principal directions to construct the dimensionality-

reduced variables. It shows that the dimensionality reduction of

SIR is more effective than the PCAmethod in slope spatial variables.

In addition, these samples are further used as training samples to

construct response surfaces.

Figure 8 provides an example of one adaptive reliability analysis

with the results of the updating of the cumulative distribution

function, which reaches convergence after three iteration steps, with

p0 = 0.1,m = 4,Nl = 5,000 in preliminary analysis andNs = 50 in target

analysis, invoking (4 + 1) × 250 + 30 = 780 FE analyses. In the first

iteration, taking the first eigenvalue of l1 and its principal direction b1
as an example, the linear combination of the first variable (w1 = b1x
FIGURE 5

Implementation procedures of adaptive slope reliability analysis
based on SIR.
FIGURE 6

Deterministic FE analysis of the undrained slope example.
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−0.74x1 + 0.27x2 + 0.25x3 − 0.01x4 + 0.03x5 + 0.17x6 + 0.05x7 +

0.23x8 + 0.02x9 + 0.03x10 − 0.32x11 − 0.13x12 + 0.01x13 − 0.31x14 −
0.10x15) is the same as that of w2. Relative to the original 15-variable

RSmodel, it is possible to construct a more simple (only two variables)

quadratic polynomial RS model in dimensionality-reduced space (Y =

0.31 + 0.08w1 − 0.03w2 + 0.006w1
2 + 0.002w2

2). Pf,RS is 0 in the

preliminary reliability analysis of the first iteration, which showcases

inadequate accuracy of the RS owing to the dimensionality-reduced

bias in the principal direction of the SIR, resulting in that the finite

number of layers of subset simulation does not reach the failure

domain. Additionally, the initial correlation between FSRS and FSFE is

0.801 and the sample dispersion of the first iteration is large,

specifically near the failure domain where there is a significant bias,

as shown in Figure 8. Nevertheless, the introduction of representative

sample points in the original space recalculated in target reliability

analysis leading to an unbiased probability of 4.35 × 10−4.

Representative samples near the failure domain are appended to

the training samples to update the SIR principal directions. As shown

in Figure 9, the first principal direction update in iteration 2 is

primarily reflected in the reduction of the weights of the 5th, 6th, 7th,

and 8th random variables and the increase of the weights of the 11th,

12th, and 14th random variables. The updated RS model is obtained

based on the updated principal directions as Y = 0.30 + 0.11w1 +

0.002w2 + 0.005w1
2 + 0.001w2

2 (see Figure 10). Therefore, the

preliminary reliability analysis Pf,RS significantly increases to 1.66 ×

10−4, which is closer to the target failure probability of this iteration

step (i.e., 5.24 × 10−4). Meanwhile, the correlation coefficient increases
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to 0.932. The update in the principal direction of the SIR in the third

iteration of the analysis is majorly reflected in the increase in the

weight of first variable from a negative value to a larger positive value

of 0.68, as well as the decrease in the weights of second and third

variables (see Figure 9), obtaining a higher model correlation

coefficient (0.951). The final reliability estimates for Pf,RS and Pf,FE
are 4.98 × 10−4 and 6.58 × 10−4, respectively.

In addition, different sampling methods, the Monte Carlo

sampling method (MCS) and Latin hypercube sampling method

(LHS), are used for comparison in Table 2 and the results are

basically found to be the same. The effect on the accuracy loss of the

SIR dimensionality reduction process between 3,000 samples and 30

samples is also compared; it can be seen that the principal direction

of the SIR obtained based on 3,000 MCS is closer to being unbiased.

However, this proposed method can correct the SIR direction with

only a sample size of 1/100 to obtain a consistent reliability

assessment, which is also close to the subset simulation results of

1,850 FE analyses (p0 = 0.1, m = 4, and Nl = 500). In addition, to

fairly compare the computational efficiency among different

reliability methods, the unit COV is taken as a measurement to

consider the effect of sample size on the variation of reliability

estimation, calculated as COV(Pf) × Nt
1/2 (Au, 2007), where Nt is

the total number of FE analyses. For reference, the unit COV of the

Monte Carlo simulation roughly equals to 1/Pf
1/2, which is treated

as the upper bound of unit COV. As shown in Table 3, the

variability of the final iteration of adaptive analysis is reduced by

nearly three times that in the subset simulation method, more

importantly, with only around one-third computational efforts. In

addition, the unit COV of adaptive analysis is 4.94, which is only

one-fifth of the subset simulation method (23.66) and one-eighth of

the Monte Carlo simulation method (39.99), which demonstrates

that the computational efficiency of the adaptive slope reliability

analysis method is increased by 25 and 64 times, respectively.

Moreover, as the iterations increase, the COV(Pf,FE) in the target

reliability analysis decreases from a moderate level of 0.54 to a lower

level of 0.19. Furthermore, the unit COV decreases from 9.04 to

4.94, which means the adaptive process wins more variability

reduction compared with the computational efforts.
4.2 Sensitivity analysis of SIR dimensionality
reduction parameters

As previously mentioned, an increase in initial training samples

N can reduce accuracy loss, and the number of dimensionality-

reduced variables d can also affect the accuracy. Taking this

benchmark case as an example, a sensitivity analysis is performed
TABLE 1 Soil properties for the undrained slope example.

Parameter Case Mean COV Distribution
Autocorrelation distance

[qh, qv] (m)
Correlation function

Undrained shear strength (kPa)
I

23 0.15 Lognormal 20, 2
QExp

II SExp

Unit weight (kN/m3) 20 / / / /
FIGURE 7

Comparison of the dimensionality reduction effect between PCA
and SIR.
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to explore the effects of these two parameters on the accuracy loss in

the SIR dimensionality reduction process and the error correction

effect of the adaptive slope reliability analysis. The effect of different

values of N and d on the results of the adaptive reliability analysis

method is illustrated in Table 4. Despite the large dimensionality

reduction error (lower correlation coefficient of r) caused by the

smaller number of training samples, this adaptive method can

quickly improve the accuracy of failure probability to an unbiased

estimation through adaptive iterations. This adaptive reliability

analysis method is insensitive to parameters N and d, thereby

solving the problem of parameter-dependent accuracy in SIR

dimensionality reduction. This is because a large number of

samples near the failure domain in the iteration step are added to

the initial training samples to gradually update the principal

direction of dimensionality reduction and the form of the
Frontiers in Ecology and Evolution 09
response surface. As a suggestion for practical choice, N can be

approximately taken as double the number of random variables and

d can be chosen as suggested by Pan and Dias (2017).
4.3 Case II: high-dimensional case

As mentioned in the previous section, as the number of

variables increases, the number training samples also increases to

ensure the accuracy of the dimensionality reduction process. In this

section, we investigate the effect of the proposed method in the

high-dimensional case. In this case, the correlation function type is

single exponential (SExp) and the number of expansion terms of K–

L random field discretization is increased from 15 to 200 to achieve

95% accuracy.

Based on these 200 variables, 400 training samples are used for

dimensionality reduction and 10 dimensionality-reduced variables

are obtained. The adaptive reliability analysis is then performed

with p0 = 0.1, m = 4, Nl = 5,000, and Ns = 50. After three iterations,

the correlation between the response value of RS in the

dimensionality-reduced space and the value of the FE model in

the original space increases from 0.732 to 0.881. The final target

failure probability is 1.12 × 10−4, which is significantly improved

compared with the initial result (i.e., 0) obtained from the RS model.

The procedure requires only 400 initial training samples to obtain

unbiased results compared with the result of 5,000 training samples

(see Table 2). As shown in Figure 11, there are still some errors with

the RS model in the three iterations, but its gradual shifting toward a

more accurate value and the target reliability estimates all remain

within the range of reasonable values. The corresponding unit COV

based on this method is one-half that of the subset simulation

method and one-seventh that of the Monte Carlo simulation

method (see Table 3), which shows the high effectiveness of the

proposed method.
FIGURE 8

Updating of cumulative distribution function using adaptive reliability
analysis.
FIGURE 9

Updating of first SIR direction in adaptive reliability analysis.

FIGURE 10

Updating of RS model in adaptive reliability analysis.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1257854
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Zhou et al. 10.3389/fevo.2023.1257854
5 Example II: soil slope with a
weak layer

This adaptive slope reliability analysis method is further

investigated in a more complex slope example containing a weak

layer (Kim et al., 2002; Xiao et al., 2015). The slope has a height of
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12.2 m, an angle of 26.6°, and a weak layer with a thickness of 0.4 m

above the bedrock (see Figure 12). The geotechnical parameters of

the upper and weak layers are listed in Table 5, where there are three

uncertainty parameters (i.e., cohesion and friction angle of upper-

layer soil c1, f1, and friction angle of weak-layer soil f2). The
deterministic safety factor of slope stability is 1.336 through the
TABLE 2 Results of adaptive reliability analysis for the undrained slope example.

Case
No. of variables Iter. 1 Final iter. FE analyses

x w Pf,RS r Pf,FE Pf,RS r Pf,FE Init. training samples No. Iter. No.

I 15 2

0 0.829 4.34 × 10−4 4.98 × 10−4 0.951 6.58 × 10−4 30(MCS) 3

3.86 × 10−5 0.8293 5.06 × 10−4 6.90 × 10−4 0.967 5.94 × 10−4 30(LHS) 3

4.90 × 10−4 0.973 5.46 × 10−4 4.72 × 10−4 0.987 5.86 × 10-4 3,000 2

II 200 10

0 0.732 1.76 × 10-4 7.40 × 10-6 0.881 1.12 × 10−4 400(MCS) 3

0 0.793 8.80 × 10−5 4.80 × 10−6 0.865 1.90 × 10−4 400(LHS) 3

3.78 × 10−5 0.977 1.96 × 10−4 5.31 × 10−4 0.985 1.18 × 10−4 5,000 2
fr
x Initial random variables in original space; w random variables in dimensionality-reduced space.
TABLE 3 Comparison of reliability analyses using different methods.

Case Method No. of FE analyses Mean of Pf COV of Pf Unit COV

I

Response surface
Iter. 1 30 8.79 × 10−5 1.95 10.68

Final 425 5.28 × 10−4 0.40 8.25

Adaptive analysis

Iter. 1 280 6.71 × 10−4 0.54 9.04

Iter. 2 530 5.95 × 10−4 0.27 6.22

Final 675 6.10 × 10−4 0.19 4.94

Subset simulation 1,850 5.90 × 10−4 0.55 23.66

Monte Carlo simulation 4,000 6.25 × 10-4 0.2 39.99

II
Adaptive analysis (final) 975 1.23 × 10−4 0.41 12.80

Subset simulation 1,850 1.29 × 10−4 0.66 28.39
TABLE 4 Impact of SIR dimensionality reduction parameters on adaptive reliability analysis.

No. of parameters Iter. 1 Final iter.
Iter. no.

N d Pf,RS r Pf,FE (×10−4) Pf,RS (×10
−4) r Pf,FE (×10−4)

30

2 0 0.801 4.34 4.98 0.951 6.58 3

4 1.10 × 10−4 0.862 8.07 7.54 0.971 6.68 3

10 7.05 × 10−3 0.742 1.80 4.36 0.983 6.22 4

100

2

5.68 × 10−5 0.810 4.41 4.29 0.953 5.30 3

500 3.01 × 10−4 0.951 9.54 3.91 0.968 5.94 2

1,000 1.91 × 10−4 0.965 5.30 4.21 0.975 5.60 2

3,000 4.90 × 10-4 0.973 5.46 4.72 0.987 5.86 2
o
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shear strength reduction technique in FE analysis, same with Xiao

et al. (2015) and between the lower and upper bounds using limit

analysis (Kim et al., 2002). The spatial variability is simulated using

a lognormal random field, where the type of autocorrelation

function is SExp, with horizontal and vertical autocorrelation

distances of 20 m and 2 m, respectively. The number of required

K–L expansion terms is 910 (i.e., 440 for c1, f1, 30 for f2) to satisfy

the accuracy of random field discretization (i.e., 95%).

Because of the dimension increase of geotechnical parameters,

the initial number of required training samples is appropriately

increased. Taking the 2,000 training samples and 20 principal

directions as an example, the initial RS in the dimensionality-

reduced space is constructed. In three iterations with p0 = 0.1, m
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= 4, Nl = 5,000, and Ns = 50, the preliminary failure probability of

RS is updated to the final reliability from 0 to 2.62 × 10−4.

The correlation between the response value of RS in the

dimensionality-reduced space and the response values of the FE

model in the original space increased from 0.734 to 0.835. The SIR

dimensionality reduction with 50,000 training samples was

considered as a comparison. Although convergence is reached in

two rounds with higher correlations of 0.973 and 0.975, only 1/25 of

the samples is required in this adaptive analysis to obtain an

unbiased reliability assessment consistent with the results of the

sufficient sample (see Figure 13), which again illustrates the high

effectiveness of the proposed approach.
6 Summary and conclusions

In this paper, an adaptive slope reliability analysis method

based on SIR dimensionality reduction is proposed. Accordingly,

this method addresses the information loss problem of the SIR

method through three steps: preliminary reliability analysis based

on the subset simulation of the RS model in the dimensionality-

reduced space, target reliability analysis based on the finite-

element model and response condition method in the original

space, and adaptive strategy of the SIR principal direction and RS

updating. Two spatial variability slopes were used to verify the

effectiveness of the proposed method. The main conclusions are

as follows.
(1) The effects of dimensionality reduction between PCA and

SIR methods considering spatially varying soils were

compared in slope reliability analysis. Taking advantage

of the relationship between input and response variables in

the SIR method, it is easier to determine larger direction

vectors for dimensionality reduction. In addition, in this

paper, the initial training samples can be repeatedly used

as response surface training samples to reduce the

computational cost. However, the accuracy of SIR

dimensionality reduction is affected by the parameters; a

large loss of information will be induced specifically when

the number of training samples is limited.

(2) The proposed adaptive reliability analysis method reduces

the requirement of determining a highly correlated simple
FIGURE 11

Results of adaptive reliability analysis in the high-dimensional case of
the undrained slope example.
FIGURE 12

Deterministic FE analysis of the weak-layer slope example.
TABLE 5 Soil properties for the weak-layer slope example.

Parameter Mean COV Distribution Autocorrelation distance [qh, qv] (m) Correlation function

Upper layer
Friction angle (°) 20.0 0.2

Lognormal 20, 2 SExpCohesion (kPa) 28.7 0.3

Weak layer
Friction angle (°) 10.0 0.2

Cohesion (kPa) 0 / / / /
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Fron
model in the response conditioning method, and the

accuracy requirement of the initial principal direction of

dimensionality reduction, thus overcoming the information

loss of the traditional SIR dimensionality reduction

method. The correlation between the dimensionality-

reduced space and the original space was also utilized to

update the principal direction of SIR dimensionality

reduction and the response surface model by adding the

original space training samples near the failure domain.

(3) The adaptive slope reliability analysis method has a suitable

correction effect on the SIR dimensionality reduction error

in various dimensions for both single-layer slopes and

relatively complex slopes containing a weak layer.

The proposed method significantly improves the

computational efficiency compared with the traditional

SIR method, subset simulation method, and Monte Carlo

method, it can obtain stable and unbiased slope reliability

assessment with a small number of samples, thereby

enhancing the application of RS in slope reliability

analysis considering the curse of high dimensionality.
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