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Assessment and simulation of
thermal environments in Taiyuan
urban built-up area, China

Qiong Qiao1,2*, Zhilei Zhen2 and Yinding Lin1*

1Forest College, Shanxi Agricultural University, Jinzhong, Shanxi, China, 2College of Urban and Rural
Construction, Shanxi Agricultural University, Jinzhong, Shanxi, China
The urban heat island (UHI) effect has intensified with increases in impervious

surface areas and population densities due to urbanization, which affects the

quality of urban life and ecological services. Here, the Moran’s I and hot spot

analysis (Getis-Ord Gi*) are used to explore spatial autocorrelation of land

surface temperature (LST) in Taiyuan built-up area. Then, the built-up area is

divided to 41 sub-areas to accurately explore the urban LST differences caused

by different LULC types. Moreover, geographically weighted regression (GWR) is

used to analysis the spatial heterogeneity of LST. Finally, we simulate the LST

changes using the CA-Markov model in the study area in the year 2030. Our

results showed that 1) average LST was 22.76°C in Taiyuan built-up area in 2018.

The Highest-temperature areas were distributed in heavy-industry intensive

areas in the north, north central, and southeast, whereas the Lowest-

temperature areas mainly corresponded to rivers, lakes, urban forests, and

green spaces. 2) The Moran’s I gradually decreased from 0.8635 to 0.2097

with an increase in the spatial distance threshold. The optimal recognition effect

was obtained at a 400 × 400-m scale. The Getis-Ord Gi* analysis indicated that

the cold area was 1248.32 km2 (12.24% of the study area) and the hot area was

43.84 km2 (11.11% of the study area) in 2018. 3) The GWR analysis showed

significant spatial non-stationarity in the influence of LULC types on LST. The

GWR model was calculated with reference to the observation values of the

adjacent areas, so as to better reveal the spatial relationship between artificial

surface, woodland, water, grassland, and bare land and LST. 4) The UHI

distribution was more concentrated in 2030 than in 2021. The statistics of the

proportion and transfer matrix of LST indicated that the proportion of the Highest

and Lowest-temperature areas in 2030 decreased and the UHI effect will further

intensify. This study could be used to guide sustainable development in cities and

provides theoretical support for adjusting the urban spatial structure.

KEYWORDS

thermal environment, spatial autocorrelation, cellular automata-Markov model, build-
up area, Taiyuan city
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1 Introduction

Climate change is widely recognized as the main factor affecting

environmental changes (Jiang et al., 2021). However, these changes

have overlooked the effects of human activities, which has

irreversibly led humans to alter or exploit their surroundings

actively (Alavipanah et al., 2022). With intensifying urbanization

and continuously expanding urban hard landscapes, problems such

as water pollution (Chen et al., 2023), changes in carbon stock (Sun

et al., 2023), and destruction of ecological balance (Lin et al., 2023).

The urban heat island (UHI) effect is becoming increasingly serious

owing to global warming and human activities (Mohan and

Kandya, 2015; Kim and Brown, 2021), which is influencing

vegetation productivity in cities (Jia et al., 2018), land surface

phenology (Qiu et al., 2020), and human survival in the 21st

century (Ward et al., 2016; Manoli et al., 2019). Accordingly,

clarifying the spatiotemporal variation characteristics of the

thermal environment, revealing its formation mechanism, and

suggesting adaptive countermeasures are core topics in research

on climate change and urbanization.

The term UHI effect is interpreted as the phenomenon of urban

air temperature and land surface temperature (LST) being higher

than the temperature in surrounding rural areas (Stewart, 2011).

Since 19th century, most scholars have focused on the changes in

thermal environment and using LST to indicate the thermal

environment (Kafy et al., 2021). Studies have showed that

meteorological conditions, urban spatial morphology, underlying

surface characteristics, and anthropogenic heat emissions influence

the LST (Allegrini and Carmeliet, 2017; Sekertekin and Zadbagher,

2021). Reductions in green space and water area, weakening of air

flow, and substantial heat storage strongly influence the surface

energy balance and increase the UHI effect intensity (O’Malley

et al., 2015). However, changes in the landscape pattern of land use/

land cover (LULC) are recognized as the main driving factor of the

urban thermal environment (Yang et al., 2017; Li et al., 2021). Such

changes induce the conversion of LULC types such as cultivated

land, wetland, and forest to construction land, and bare land (Liang

et al., 2023), and lead to uneven distribution of latent heat fluxes

from solar radiation (Oke, 1982). Investigating the relationship

between LST and LULC can improve the understanding of the

spatial characteristics of the UHI effect under different LULC types.

Such research provides a theoretical basis for urban construction

and maintenance of the ecological environment from the

perspective of the UHI effect. The general understanding of the

response relationship between LULC types and LST mainly

includes two aspects: 1) artificial surface types (e.g., construction

land, roads, and traffic) are concentrated and distributed widely,

often forming high temperature areas, whereas areas with dense

natural surface types (e.g., water and vegetation) have a significant

cooling effect (Cui et al., 2021); 2) change of LULC types due to

urban expansion is a crucial aspect that exacerbates the change in

LST (Firozjaei et al., 2020). Although LULC types can reveal the

spatial distribution characteristics of the thermal environment to

some extent, each LULC type has spatial heterogeneity and

substantial internal temperature differences, which cannot fully

reveal the changes in spatial pattern of the LST. In addition, the
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crucial land dynamic process, which could significantly contribute

to the increase in LST and aggravation of the UHI effect, remains

poorly understood.

In recent years, thermal infrared remote sensing has been able

to simultaneously obtain a large range of LST, compensating for the

relatively coarse spatial information of traditional discrete

temperature observation data and gradually becoming the choice

of many urban ecologists (Li et al., 2013; Ren et al., 2016; Cristóbal

et al., 2018). Landsat satellite has the advantages of high spatial

resolution and long observation time series, with nearly 40 years of

observation data. Its spectral information is rich and the thermal

infrared band is relatively sensitive to the thermal information of

ground objects. Therefore, the Landsat images have become a

widely used data source in the study of UHI effect. Jiménez-

Muñoz et al. (2014) reported that the single-channel algorithm

can obtain accurate LST results when the atmospheric water vapor

contents retain a low value. Yu et al. (2014) found that the LST

inverted from the radiative transfer equation (RTE) using Band 10

of Landsat-8 has the highest accuracy compared with other

algorithms. Thus, the RTE algorithm can be widely used to

retrieve the LST (Yu et al., 2017; Yu et al., 2018). Moreover, to

better understand the future development of the thermal

environment, many prediction methods, such as boundary layer

numerical models based on thermodynamics and dynamics (Chen

et al., 2016), hydrodynamic computational fluid dynamics

technology (Su et al., 2014), artificial neural networks (ANN)

(Zhang et al., 2021), coupled ANN with cellular automata (CA)

(Zhang et al., 2023), and CA-Markov model (Amir Siddique et al.,

2021), are proposed. However, the CA-Markov model is more

effective in projecting short-term values over a large area and

predicting multi-directional changes (Wang and Zheng, 2022). In

previous studies, most of the predictions seldom account for the

results of spatial autocorrelation of LST and complexity of LULC

types and functional composition. Therefore, the prediction results

have some limitations, and it is inaccurate to illustrate the change of

urban thermal environment spatial.

Taiyuan is a traditional heavy-industrial city in northern China

where economic development and rapid urbanization have led to

the destruction of urban ecological balance. In the present study, the

built-up area of Taiyuan City was selected as the research object. We

used the Moran’s I and hot spot analysis to explore spatial

autocorrelation of LST. And then, the built-up area was divided

to 41 sub-areas and geographically weighted regression (GWR) are

used to analysis the spatial heterogeneity of LST. We determined the

parameters and weights that were needed in CA-Markov model

according to the previous results. Finally, we accurately simulated

and predicted the distribution of LST in 2030.
2 Materials and methods

2.1 Study area

Taiyuan is located in the eastern part of the Loess Plateau. It is a

famous historical and cultural city in China, a Chinese garden city,

and a core city in Taiyuan metropolitan area. The Fen River passes
frontiersin.org
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through the central area from north to south (Figure 1). The city is

surrounded by mountains on three sides, and the central and

southern parts are the alluvial fan plain of the Fen River (Ma

et al., 2022). The city is affected by a monsoon climate, with hot

summers and cold and dry winters. It has an annual average

temperature of 10.6°C. The local economy is supported by coal

mines, chemical industry, metallurgy, and machinery.

Urbanization has exacerbated urban ecological damage

problems in Taiyuan (Qiao et al., 2023) such as soil erosion, air

pollution, the UHI effect, etc. In the present study, the built-up area,

where there is the highest population density, the highest degree of

urbanization, the largest construction scale, and the most

prominent UHI effect problem, was selected as the research

object. The north, east, and west sides of the built-up area

surrounded by expressway, and the south includes a concentrated

industrial and building-intensive area in the Xiaodian District.
2.2 Data collection

To study the characteristics and evolution rules of the thermal

environment in the central urban area of a city, it is preferable to

select the data during the high temperature period in summer.

However, cloud cover and precipitation in summer can impact the

surface temperature, and also significantly impact the data quality

of remote sensing images, which cannot be used for research.

Therefore, based on the study of the climate characteristics of

Taiyuan City, images with low cloud cover, good imaging quality,

and no precipitation on summer were selected as the basic data for
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the study (Table 1). Landsat-8 OLI/TIRS images from 2015 to 2021

were used to retrieve the LST. Two scenes of high-resolution images

(GF-2) in 2018 were required for complete coverage of the study

area and were used for LULC classification. The preprocessing

process of data mainly includes image cropping, radiometric

calibration, atmospheric correction, and image fusion.
2.3 Method

2.3.1 Analytical steps
Firstly, the spatial autocorrelation of LST is analyzed byMoran’s

I, local indicators of spatial association (LISA) and hot spot analysis

(Getis-Ord Gi*). In addition, combined with the LULC types

extracted from GF-2 images in 2018, the spatial heterogeneity of

LST and the relationship with LULC types were revealed by

ordinary least square (OLS) and geographically weighted

regression (GWR). Finally, we use Landsat images in 2015, 2018

and 2021 to simulate and predict the characteristics of LST in 2030

by CA-Markov model (Figure 2).

2.3.2 LST analysis
The LST was retrieved by the radiative conduction equation

method (Jiménez-Muñoz et al., 2014). First, we estimated the

influence of the atmosphere on surface thermal radiation. The

atmospheric influence was then subtracted and the surface thermal

radiation intensity (STRI) was obtained. Finally, the STRI was

converted into the corresponding LST (Yu et al., 2018). The RTE is:

Ll = ½e · B(Ts) + (1 − e)Ldown� · t + Lup (1)
FIGURE 1

Location of Taiyuan built-up area in Shanxi Province, China. Fen River passes through the built-up area from north to south.
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where Ll is the thermal infrared radiation brightness value

received by the satellite sensor, Lup is the atmospheric upward

radiation brightness, Ldown is the atmospheric downward radiation

brightness, e represents the specific emissivity of the surface, Ts is

the real temperature of the urban surface (K), B(Ts) is the black

body thermal radiation brightness (Wm−2sr−1mm−1), and t presents
the atmospheric transmittance in the thermal infrared band.

According to Plank’s law, B(Ts) can be expressed as Eq. (2).

B(TS) = ½Ll − LUP − t(1 − e) · Ldown�=(te) (2)

Here, Lup , Ldown , and t data were obtained from

http://atmcorr.gsfc.nasa.gov.

The normalized difference vegetation index (NDVI) threshold

method proposed by Sobrino et al. (1991) was used to calculate the

e, and the calculation formula is:
Frontiers in Ecology and Evolution 04
e = 0:004Pv + 0:986 (3)

Pv =
NDVI −NDVISoil

NDVIVeg − NDVISoil
(4)

NDVI =
rNIR − rRED
rNIR + rRED

(5)

where NDVI is the normalized vegetation index, NDVISoil is the

NDVI value of the area completely in a bare soil state or without

vegetation coverage, NDVIVeg is the NDVI value for soil completely

covered by vegetation, rNIR is the near-infrared band, and rRED is

the infrared band.

After estimating B(Ts), the real ground temperature Ts was

obtained according to Eq. (6).
FIGURE 2

Analytical steps. LULC, land use/land cover; LST, land surface temperature; OLS, ordinary least square; GWR, geographically weighted regression;
LISA, local indicators of spatial association.
TABLE 1 Data sources used in this study.

Name Resolution (m) Data Cloud Cover (%) Air Temp. (°C) Source

Landsat-8 OLI/TIRS 30 × 30/100 ×100 21-Sep-21 2.38 18.7 http://www.gscloud.cn/ (Accessed on 28 August 2022)

29-Sep-18 0.52 14.1

7-Oct-15 1.15 17.2

Gaofen No.2 (GF-2) 4×4 6-Sep-18 <1.0 20.1 http://www.cresda.com

(Accessed on 12 May 2019)
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Ts = K2= ln
K1

BðTsÞ
+ 1

� �
(6)

where K1 = 774.89 mWm−2sr−1mm−1 and K2 = 1321.08 K.

2.3.3 Classification method
Usually, threshold segmentation, region growth segmentation,

pixel-based classification, object-oriented classification, and deep

learning approaches are used in remote sensing information

extraction and classification. Among them, deep learning method

has become an important research tool of artificial intelligence, in

which the samples are selected in advance and the model

parameters are continuously updated and iterated, the target

features can be automatically learned to identify the target object

(Zou et al., 2022). In this study, we divided six LULC types by the

regression tree method (Qian et al., 2014): grassland, woodland,

cultivated land, water area, artificial surface, and bare land. In

addition, careful comparison of the ground object distribution

and inversion temperature indicated that the temperature of the

building and its shadow differed significantly from that of the

surrounding space. Therefore, buildings and shadows were

extracted using TensorFlow deep learning classification (Hanni,

2019). Through the field accuracy random sampling survey, the

correct rate reached 87.2%.

2.3.4 LST spatial analysis
We selected global spatial autocorrelation (GSA) and the local

spatial autocorrelation method to explore the spatial distribution of

LST (Zhang et al., 2022). The Getis-Ord Gi* was used to improve

identification of the areas where heat and cold islands occurred. We

identified the statistically significant hot and cold spots, revealed

significant clusters of high and low LST values in the study area, and

determined the distribution of cold and hot spots. The Moran’s I

and Local Moran’s I exponents of different distance thresholds of

LST were calculated using the free and open-source software Geoda

(Anselin et al., 2010). This method is referred to as the local

indicators of spatial association (LISA) (Anselin, 1995). The

Getis-Ord Gi* exponents were calculated using ArcGIS

10.8 software.

2.3.5 Analysis of the influence mechanism of
LULC to LST

Based on OLS analysis, we integrated the geographical location

and spatial weight attributes of data into the regression analysis

process, constructed a GWR model between LULC types and LST,

and discussed the spatial non-stationarity of the effect of LULC

changes on LST at the 41 sub-areas. The OLS is as following:

yi = b0 +okbkxik + ei (7)

where yi is the dependent variable of point i, b0 is the intercept,
xik presents the kth independent variable at point i; k is an

independent variable to count; bk is the regression coefficient of

the kth independent variable, and ei is the residual error.
The GWR model introduces the geographical location into the

regression parameters, considering the local effect of spatial objects.
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Therefore, it is an effective method to quantitatively study spatial

non-stationarity (Fotheringham et al., 1998). The formula is:

yi = b0(ui, vi) +okbk(ui, vi)xik + ei (8)

where yi is the matrix of interpreted variables, (ui,vi) is the

spatial location of the i sampling point, bk(ui,vi) is the kth regression
parameter at sampling point i, and (u,v) is a continuous function.

The bk(ui,vi) function is:

bk(ui, vi) = (XTW(ui, vi)X)
−1XTW(ui, vi), and (9)

Wij = exp( − d   2ij =h
2) (10)

where XTW(ui,vi) represents the distance weight matrix, Wij is

the Gaussian function formula in the weight function of the GWR

model, h represents the bandwidth, and is the distance between

observation points j and i. In this study, we used the Akaike

information criterion (AIC) to determine the bandwidth:

AIC = 2nln(ŝ ) + nln(2p) + n
n + tr(s)

n − 2 − tr(s)

� �
(11)

where s presents the standard deviation of the estimated value

of the error term. Different bandwidths are introduced into the

formula, and the selection of the optimal model bandwidth occurs

at the minimum AIC value. The weight of the data beyond the range

of bandwidth from the regression analysis point is 0.

2.3.6 CA-Markov simulation
In the CA-Markov model, the continuous time state is regarded

as a random process. The initial state and transition probability

between different states are analyzed to determine the change trend

and law of the research object. The equation is:

St+1 = St � Pij (12)

where St is the state of LST at t moment, St+1 is the state of LST

at t+1 moment, and Pij is the transition probability matrix.

The specific steps of CA-Markov simulation prediction are:

(1) Transition probability matrix

In our study, LST data of 2015 and 2018 were standardized, and

the different temperature ranges were unified to the range from 0–1.

The LST was classified using the medium error method. In order to

improve the accuracy of LST identification, seven grades (Lowest,

Lower, Low, Medium, High, Higher, and Highest) were classified in

this study (Qiao et al., 2014). The standardized formula is:

NLST =
Ti − Tmin

Tmax − Tmin
(13)

where NLST represents the surface temperature of pixel i after

standardized processing, Ti is the primitive surface temperature of

the pixel, and Tmax and Tmin are the highest and lowest LST

values, respectively.

(2) Suitability atlas

In this study, the transformation rules were formulated

artificially using the multi-criteria evaluation (MCE) module in

IDRISI17.0 soft. The MCE model consists of two parts, namely
frontiersin.org
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constraints and influence factors. The suitability evaluation index

and weight were determined based on the results ofMoran’s I, LISA,

Getis-Ord Gi*, and GWR analysis.

(a) Determination of suitability evaluation index

The suitability evaluation indicators were LULC types, NDVI,

building, industrial storage area, water system distance, distance

from industrial storage, park, and water area. Park, water, building,

and industrial storage area were corresponding to the constraints

factors of the Lowest, Lower, Higher, Highest areas, respectively. No

constraints factors were set in Low, Medium, and High-

temperature areas.

(b) Determination of weight of influence factors

Influence factors for the Lower temperature areas were the

NDVI, LULC types and the water system distance, for which

weights were assigned as 0.4, 0.4, and 0.2, respectively, according

to their contribution rate to the LST characteristics. The influence

factors of the Higher temperature areas were the LULC types,

NDVI, and the distance from the industrial storage area, with set

weights of 0.4, 0.4, and 0.2, respectively.

(c) Suitability atlas

According to the index system, the ordered weighted average

method is used for the suitability atlas in the MCE module of

IDRISI 17.0.

(3) Accuracy verification

The simulation results in 2021 are compared with the real LST

in 2021 cell by cell, and the cell accuracy is calculated.

(4) Simulation and prediction

Using the 2021 image as the basis, a new transition probability

matrix and suitability atlas were introduced to obtain the simulation

results of the study area in 2030.
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3 Results and analysis

3.1 Spatial characteristics of LST in Taiyuan
urban built-up area

The result of LST in 2018 showed a maximum value of 40.27°C,

minimum value of 9.50°C, and a mean value of 22.76°C (Figure 3).

There are two large High-temperature areas, namely Taiyuan Iron

and Steel Group Co., Ltd. in the north-central part of the study area,

and Taizhong Coal Machinery Industrial Park, Taizhong Railway

Industrial Park, and Foxconn Industrial Park in the southeast.

whereas low temperature areas mainly corresponded to rivers,

lakes, urban forests, and green spaces. Water bodies have a large

heat capacity and low thermal conductivity, making them the main

components of urban cold islands. Jinyang Lake has a large water

area and significant low temperature performance. Fenhe River

runs through the entire research area from north to south, thus

exhibiting a linear distribution of low temperature areas. In

addition, park green spaces with water bodies also exhibit a

certain degree of low temperature characteristics. The average

LST of different LULC types was in the following order: artificial

surface > bare land > grassland > cultivated land > woodland >

water area. Among them, the average LST of artificial surface was

23.18°C, followed by that of bare land was 22.86°C.

From 2015 to 2018, the proportion of Medium-temperate areas

increased from 46.20% to 52.72% (Figure 4A), mainly transferred from

the Low-, High-, and Higher-temperature areas, with an area of

32.10 km2, 29.91 km2, and 12.11 km2, respectively (Figure 4B). The

proportion of the Low-temperature areas has increased from 14.66% to

17.11%, mainly transferred from the High-, Medium-, and Lower-
A B

C

FIGURE 3

The characteristics of LST distribution. (A) Inversion results of LST in 2018. (B) Areas of different LULC types. (C) Mean temperature in different LULC
types.
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temperature areas, with an area of 5.83 km2, 27.65 km2, and 11.83 km2,

respectively. The proportion of the High-temperature areas has

decreased from 14.29% to 10.38%, mainly transitioning to the

Medium-temperature areas, with an area of 29.91 km2.

From 2018 to 2021, the proportion of the Medium-temperature

areas decreased from 52.72% to 46.87% (Figure 4A), mainly

transformed into the Low- and High-temperature areas, and the

transformed areas were 32.08 km2 and 23.90 km2, respectively

(Figure 4C); the proportion of the Low-temperature areas increased

from 17.11% to 19.09%, mainly from the Medium-temperature areas.
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The Higher-temperature areas increased from 3.90% to 5.77%, mainly

from the Medium-, High-, and Highest-temperature ofMoran’s I area,

with the areas of 7.86 km2, 5.87 km2, and 3.16 km2, respectively.

3.1.1 Morans’ I analysis
According to the first Law of Geography, the similarity of things

gradually decreases with an increase in distance. Accordingly, a

spatial weight matrix must be established for spatial autocorrelation

analysis. This study established spatial weights for distances of 100,

200, 400, 1000, and 2000 m. The Moran’s I, based on different
A

B C

FIGURE 4

Spatial Characteristics of LST in Taiyuan Urban Built-up Area. (A) Proportion of different LST grades in 2015, 2015, and 2021. (B) Transition Matrix of
different LST grades from 2015 to 2018. (C) Transition Matrix of different LST grades from 2018 to 2021.
TABLE 2 The distribution heterogeneity of LST at five scales in 2018.

100 × 100 m 200 × 200 m 400 × 400 m 1000 × 1000 m 2000 × 2000 m

Moran I 0.8635 0.7645 0.5859 0.3662 0.2097

Z-score 242.4126 371.5137 581.9822 879.9525 956.3462

P-value 0.001 0.001 0.001 0.001 0.001
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distance thresholds, revealed a strong spatial positive correlation of

the LST distribution in 2018 (Z-score>2.58; P<0.001) (Table 2). The

distribution heterogeneity of LST was significant at five different

weight matrix scales. The spatial distance threshold increased, and the

Moran’s I gradually decreased from 0.8635 to 0.2097, indicating that

the aggregation of the LST distribution decreased with an increase in

the spatial weighted distance threshold.

3.1.2 LISA analysis
Identification of the specific location of spatial aggregation and

spatial anomaly distribution of data in each temperature zone can be

improved with LISA analysis. The LISA distribution of the temperature

partition data on each unit grid is drawn by the GeoDa software

platform (Anselin et al., 2010). Figure 5 reflected the specific location

and scale of the spatial aggregation and abnormal characteristics of the

LST in Taiyuan urban built-up area in 2018. The H-H clustering areas

were mainly artificial surface and bare land; whereas the L-L clustering

areas were mainly where water bodies and green land were located. The

performance of the H-L clustering area and L-H clustering area were

more prominent that ccould intuitively identify the local “heat island”

presented by the impermeable surface in the green space or the typical

local “cool island” corresponding to the green space distributed in

large-scale residential areas. The comparative analysis of the LISA
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aggregation maps of five weight scales showed that the identification

effect was the best at the scale of 400 m × 400 m.

3.1.3 Hot spot analysis
Compared with LISA analysis, Getis-OrdGi* analysis is more

sensitive to weights and can identify statistically significant hot

spots and cold spots. As shown in Figure 6, the distributions of hot

and cold spots were generally scattered. Hot spots were mainly

distributed in areas with frequent industrial production activities,

such as Taiyuan Iron and Steel Group Co., Ltd. and Taizhong

Industrial Park, as well as areas with high intensity of high-speed

rail and railway lines, warehousing, logistics and commercial

operation; cold spots were mainly distributed in urban water

bodies such as Fenhe River, Jinyang Lake, Zoo, Longtan Park,

marginal woodland and various types of green spaces and parks.

Thus, the contribution rate of green space, water body and

woodland to the cold spot of LST was high, while the

contribution rate of buildings and other impervious surface to the

hot spot of LST was high. At the 99% confidence level, the cold area

was 48.32 km2, accounting for 12.24% of the study area, that of the

hot area was 43.84 km2, accounting for 11.11% of the study area.

Monitoring and evaluating the distribution and impact of urban

cold and hot spots in the Taiyuan urban build-up area has
A B C

D E

FIGURE 5

Local spatial autocorrelation cluster diagrams of LST in 2018. Spatial weights for distances of (A) 100 m, (B) 200 m, (C) 400 m, (D) 1000 m, and
(E) 2000 m.
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important scientific significance for improving the microclimate

and ecological environment quality.
3.2 Influence of LULC on LST

3.2.1 OLS regression
The proportion of cultivated land in Taiyuan built-up area was

close to 0, which makes the OLS regression result unable to pass the

multicollinearity test, so the OLS analysis was performed after

excluding this type. The OLS results showed that different LULC

types played a significant role in driving LST (Table 3). Increasing

the ratio of woodland and water area could significantly reduce the

urban LST, and increasing the proportion of grassland, artificial

surface, and bare land would significantly increase the LST. For

every 10% increase in area, woodland, water area and shadow will

decrease the LST by 0.36°C, 0.51°C, and 1°C, respectively. While the

artificial surface, bare land, and building will increase the LST by

0.54°C, 0.42°C, and 0.63°C, respectively.
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3.2.2 GWR regression
In general, the administrative boundary or grid method is

commonly used to divide a research area. To accurately explore the

urban LST differences caused by different LULC types, combining the

results of spatial autocorrelation of LST, similarity of surface

landscape features, and urban road network, the study area was

divided into 41 sub-areas by artificial discrimination (Figure 7A).

GWR analysis showed that the influence of different LULC

types on urban LST was spatially unstable, and presented obvious

differences in different spatial locations. Therefore, GWR is

gradually introduced to research the relationship between the

change of LULC types and the spatiotemporal change of the

urban thermal environment (Li et al., 2010). In the south of the

study area, the relationship between LST and water area was more

obvious than that in the north, where the sub-areas of 29 and 35–41

were the most significant; whereas the sub-areas of 1–7 and 13 were

exactly the opposite. Therefore, with the increase of the proportion

of water area, the LST of 29 and 35-41 areas will decrease

significantly. The effect of woodland on temperature decreased

gradually from north to south, and its cooling effect was the most

significant in northern sub-areas of 1–7, with the lowest sensitivity

in sub-areas of 32 and 34–41 where there was a high degree of

urbanization. Urban high temperature was mainly caused by

artificial surface, and the spatial instability of LST was significant,

with the influence in the southern plain being stronger than that in

the northern rural landscape. In the north of the study area, the

influence of grassland on LST was greater than that in the south.

The effect of bare land on LST showed a trend of increasing

gradually from north to south. The relationship between

buildings or shadows and LST differed significantly from that of

other LULC types. The warming effect of buildings on LST became

stronger from west to east; whereas the influence of shadows

increased gradually from northwest to southeast. The average LST

in sub-area of 11 was 25.48°C, in which the proportion of woodland
A B

FIGURE 6

Cold and hot spot analysis. (A) Distribution of cold and hot spot. (B) Areas of cold and hot spot at different confidence.
TABLE 3 Regression relationship between LULC and LST based on OLS
method.

LULC types OLS R2 Pearson
correlation

Forest land y = –3.614x+24.081 0.407 –0.638

Grassland y = 2.833x+22.525 0.103 0.021

Water y = –5.051x+22.918 0.151 –0.388

Artificial surface y = 5.438x+19.032 0.717 0.847

Bare land y = 4.194x+22.612 0.142 –0.001

Building y = 6.266x+21.266 0.614 0.784

Shadow y = –10.328x+21.832 0.178 0.422
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was 7.17%, and the proportion of artificial surface was 74.72%. The

average LST in sub-area of 40 (Taizhong Industrial Park and

Foxconn Industrial Park) was 24.91°C, in which the proportion of

woodland was 3.2%, and artificial surface accounts for 61.3%

(Figure 7B). The temperature in sub-area of 11 was 0.57°C higher

than that in sub-area of 40, with 13.42%of artificial surfaces and

3.97% of woodland.

The OLS and GWR model exhibit a relatively consistent trend.

The GWR model is calculated with reference to the observation

values of the adjacent areas, so as to better reveal the spatial

relationship between artificial surface, woodland, water, grassland,

and bare land and LST. The AIC of GWR was 42.442 and that of

OLS was 36.643, showing that the fitting effect of GWR was superior.

The GWR analysis results showed significant spatial non-stationarity

in the influence of LULC types on LST in the study area. The

sensitivity of this effect varied with the types and characteristics of

land features in different spatial locations, and the driving effect of

LULC on the characteristics of the LST pattern was significant.
3.3 CA-Markov simulation and prediction

3.3.1 Verification of prediction accuracy
With the 2018 image as the reference image, the transfer

probability matrix and the suitability atlas were imported, and the

spatial cellular rules were constructed using a 5 × 5 filter with 10

iterations. The CA-Markov operation was performed to simulate a

LST image of 2021 in the study area. The simulated image and the

real ground temperature partition image were superimposed and

compared individually, and cell accuracy was calculated to

determine the simulated accuracy.

The simulated results of LST in 2021 were compared to the actual

LST map in 2021. The matching accuracy of the Lower, Low,

Medium, and Highest-temperature areas were 79.72%, 76.40%,
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87.38%, and 78.22%, respectively (Figure 8). The overall simulation

accuracy was 77.98%, indicating that the simulated LST distribution

was consistent with the actual LST distribution. Setting relevant

parameters met the requirements of the simulation prediction, and

could be used to predict the trend of the LST in the future.

3.3.2 Analysis of prediction results
The UHI distribution in 2030 was more concentrated than that

in 2021, and the center of the UHI was clearer (Figure 9). The

Highest-temperature area in the central part decreased significantly,

with its distribution remaining the same as that in 2021. The

Higher-temperature area expanded and tended to be integrated,

leading to the formation of a large patch with a High-temperature

grade in the central and eastern parts of the study area. A change in

the southeast region was not noticeable, and this area remained a

typical Highest-temperature center. The Medium-temperature

areas in other parts maintained their original scale. Each Low-

temperature grade was mainly distributed in the periphery, park

green space, and the location of a water body. However, the Low-

temperature area corresponding to water bodies and green space

had decreased in size, which was a manifestation of the further

intensification of the UHI effect. The statistics of the proportion of

LST and the transfer matrix of LST indicated that the proportion of

the Highest and Lowest-temperature areas in 2030 will decrease to a

certain extent and be closer to the average temperature.

However, the proportion of the Lowest-temperature areas

decreased from 3.72% to 2.66%, which was mainly transformed

into the Lower- and Low-temperature areas, with areas of 3.61 km2

and 1.05 km2, respectively. The proportion of the Lower-

temperature areas decreased from 6.91% to 6.61%, and were

mainly converted to the Low- and Medium-temperature areas,

with areas of 7.43 km2 and 1.21 km2, respectively. The proportion

of the Low-temperature area increased from 19.09% to 21.25%,

mainly from the Lower and Medium-temperature areas. The
A B

FIGURE 7

Artificial discrimination of the study area. (A) Divided into 41 sub-areas. (B) Mean temperature in different sub-areas.
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proportion of the Medium-temperature areas decreased from

46.87% to 45.02%, and mainly converted to the Low- and High-

temperature areas, with areas of 12.88 km2 and 17.75 km2,

respectively. The proportion of the High-temperature areas

increased from 11.82% to 13.42%, mainly from the Medium-

temperature area (17.75 km2). The change in the Higher-

temperature area was small. The Highest-temperature area

decreased from 5.82% to 5.21%, which was mainly converted into

the Medium- and Higher-temperature areas. In summary, the sum

of the proportions of the High-temperature areas, Higher-

temperature areas, and Highest-temperature areas increased from

23.41% to 24.59%, and the sum of the proportions of the Lower-

and Lowest-temperature areas dropped from 10.63% to 9.27%. The

UHI effect will further intensify.

The standard deviation ellipse and center of gravity of urban

LST zoning from 2015–2030 are shown in Figure 10. The center of
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gravity of the UHI shifted to the south from 2015–2018, southwest

from 2018–2021, and northeast from 2021–2030, with the UHI

gradually gathering in the middle. The shift of the center of gravity

of the UHI before 2021 corresponded to the occurrence of urban

development in the same period.
4 Discussion

4.1 The spatial pattern analysis of LST

Spatial autocorrelation is the main form of the first Law of

Geography (Tobler, 1970). The closer the geographical feature are,

the more similar they will be, and the greater the distance between

geographical features, the greater will be the differences. Spatial

autocorrelation analysis and testing of the LST determine whether
A B

FIGURE 9

Characteristics and changes of LST in 2030. (A) Simulation results of LST in 2030. (B) Changes of LST from 2021 to 2030.
FIGURE 8

Accuracy verification of simulation results.
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the spatial distribution of the urban thermal environment forms an

urban thermal field with a certain structure (Chen et al., 2021). Five

spatial weights with different distances were constructed to evaluate

the spatial autocorrelation of the LST distribution. The spatial

statistical results showed that LST in Taiyuan urban built-up area

had significant spatial autocorrelation characteristics and showed

multiple hot and cold spot clustering. At a spatial weight distance of

400 m, the identification effect of LST spatial autocorrelation in the

built-up area was optimal, and the result was accurate and

reasonable. This method can accurately identify the range of an

UHI and cold island, aiding determination of the exact location for

heat release measures and improving the efficiency of UHI

regulation and control. Using the LISA aggregation chart to

characterize LISA and comparing it to the high-resolution
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electronic map, the H-L gathering area in the region could be

clearly identified.

Fine-scale spatial units are helpful for revealing the spatial

details of a research area. Generally, the division of the study area

based on administrative boundaries, or the grid method was a

relatively rough zoning method. Such divisions do not consider

factors such as the spatial autocorrelation of LST distribution, or

landscape similarity and feature types. In this study, artificial

discrimination was used to divide the study area. The LST and

landscape characteristics of areas with relatively similar LULC types

were compared horizontally, or the areas with large differences in

LULC types and LST distribution characteristics were compared

and analysed, and the division of the study area had been carried

out many times. After the division is completed, comparative

analysis was carried out to determine its rationality, and finally 41

local areas were divided. On this basis, the driving effect of the

LULC type was analysed by OLS and GWR, and the observation

values in and around the sample were calculated by GWR analysis.

The results obtained provided superior characterization of the

complexity of the driving mechanism of LULC. In addition, they

are considered more beneficial to the science and rationality of the

CA-Markov simulation and prediction evolution rules.

The types of “heat source” and “cold source” corresponding to

the H-L and L-H agglomerations in the region could be clearly

identified. The hot-spot clusters in industrial zones indicated that

urban industrialization might exert a more significant impact on

LST, which was basically consistent with the study on Fuzhou

Central Area, China (You et al., 2021). In addition, high-density

residential areas and large commercial complexes are also closely

related to the Higher-temperature areas. In the future, industrial

parks and high-tech parks may be further developed, which will

bring greater challenges to the urban thermal environment (Li et al.,

2019). As shown in Figure 11, two local heat islands on the left

correspond to high-volume residential buildings and golf driving

ranges, and the two local cold islands on the right correspond to two

small, vegetated areas in heavy-industrial production areas. These

findings could help urban builders when considering ways for

increasing vegetation to improve the microclimate. Such measures

include strengthening the greening around high-volume buildings,

increasing vertical greening, or building rooftop gardens.
FIGURE 11

Comparison of local heat islands with actual ground objects.
FIGURE 10

Mean center and standard deviational ellipses of the LST in 2015-
2030.
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4.2 The impact factor on LST

Employing remote sensing technology, researchers have

conducted ample research on the thermal environment inversion

algorithm, spatiotemporal distribution characteristics, spatial

heterogeneity, and driving analysis (Zhou et al., 2014; Liu et al.,

2021). In most cities in China, the intensity of the UHI in summer is

higher than that in winter (Peng et al., 2018). A positive correlation

has shown between LST and impervious water surfaces (Ward et al.,

2016); whereas, green landscapes, such as parks and green land, play

a role in cooling and humidifying the surface (Asgarian et al., 2015).

In this study, artificial surface and bare land were indicated as the

main surface cover types in high temperature areas; whereas,

woodland and water areas were typical driving factors of the cold

island. Mansourmoghaddam et al. (2023) examined the impact

factors on LST in Yazd City and also indicated that bare lands in the

radii of 100, 50, and 150 m played key roles in affecting LST.

From 2015 to 2021, the thermal environment pattern has changed

very obviously in north Taiyuan built-up area. The area of the Highest-

temperature areas has shrunk significantly. Many High-temperature

areas in 2015 have now been converted into the Low-temperature

areas. This shows that the ecological barrier in northern Taiyuan is

gradually forming, and the ecological benefits of the ecological

conservation area are reflected. On the west side of the study area,

the distribution of LST has also changed significantly. The areas with

high LST areas near the edge of the study area have become

significantly smaller, and some have transformed into the Medium-

temperature areas. This is in line with the fact that this district has

strengthened the management of the ecological environment in recent

years. Related to the work, the forest scale of Yuquan Mountain Forest

Park has been completed and has exerted greater ecological benefits. In

the central part of the study area, only a small number of the High- and

Highest-temperature areas were visible in 2015. However, these areas

expanded to a certain extent in 2018, and by 2021, the High- and

Highest-temperature areas have increased significantly, and there is

even a tendency to be connected into a single area. Through the

identification of remote sensing images and field investigations, the

change in the LULC types caused by the accelerated urbanization

process in the region. Overall, although Taiyuan urbanization has

intensified, LULC types have changed, and the UHI effect has

intensified, the proportion of the Lowest-, Lower-, and Low-

temperature areas have increased significantly. The “Taiyuan City

Landscaping “13th Five-Year Plan” (2016–2020)” mentions that

within the five years from 2016 to 2020, Taiyuan City will focus on

the implementation of 35 major park construction projects. Therefore,

it is inevitable that the enhanced of the quality of urban green space in

the city will bring the improvement of the ecological environment and

the quality of the human settlement environment. In 2030, the Highest-

and Lowest temperature areas in Taiyuan urban built-up area will

approach the Medium-temperature, with the total proportion of other

LST grades increasing from 77.78% to 79.69%. The High-temperature

areas in the central urban area mainly transfer from a portion of the

Low- and Medium-temperature areas, and the distribution of Highest-

temperature areas showed a decrease, but the overall temperature will
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rise. From a local perspective, the Highest temperature areas are mainly

concentrated in Taiyuan Iron and Steel Group Co., Ltd. and Taizhong

Industrial Park, but the proportion has decreased. The Highest-

temperature accumulation state in 2021 will become discrete in 2030,

and some Higher-temperature areas will appear in the Highest-

temperature areas. The Lowest-temperature areas of water and green

space in the study area has been reduced, and most of them have been

transformed into Lower-temperature areas, which is also a

manifestation of the further aggravation of UHI effect. For example,

in the edge of the central and eastern part of the study area, the Lower-

temperature areas increase, while the Lowest-temperature areas

decrease. With the intensification of the UHI effect, the cold source

role of urban park green space is particularly important. The

development goals of the “Taiyuan 14th Five-Year Housing and

Urban-Rural Construction Plan” still contain many contents for the

implementation of ecological space construction, such as scenic spots,

parks, wetlands, residential areas and unit-affiliated green spaces, the

implementation of micro-green spaces, pocket park construction.

Under this opportunity, we should fully consider the role of green

space in alleviating the UHI effect, rationally plan the location and scale

of green space, scientifically design and construct, and strive to

maximize the cold island effect of urban green space.
4.3 Prospect

In the current study, the suitability index system of CA-Markov

simulation prediction was based on the results of LST spatial

autocorrelation and GWR regression analysis. These methods

could reflect the effect of the unique features of the environment

on LST, making the prediction results more instructive. On the

contrary, the method could be affected by the subjective judgment

of the researchers, leading to research results that are insufficiently

comprehensive or have limitations. Follow-up studies should

consider adding more explanatory factors such as meteorological

conditions and social economy to participate in the prediction.

Although GWR can effectively solve the problem of spatial non-

stationarity by adding spatial distribution information to regression

parameters, GWR studies the relationship between LULC and the

urban thermal environment based on fixed bandwidth, with certain

limitations. Due to the different dimensions of urban blocks, there are

also scale differences in the impact of block shape indicators on the

LST. Therefore, in future research, we can continue to try to use the

multi-scale GWR method to study the qualitative and quantitative

relationship between the block shape indicators and the LST at

different spatial scales to overcome the limitations of GWR.
5 Conclusions

In the present study, Landsat-8 OLI/TIRS images of 2015, 2018,

and 2021, and GF-2 images of 2018 were selected to explore the

influence of LULC types on LST. The CA-Markov model was chosen

to predict LST changes until 2030. The conclusions are as following:
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Fron
1) The LST distribution in the built-up area had a high degree

of spatial heterogeneity, with numerous hot and cold

points. In the GetisOrd Gi* analysis, the cold area was

1248.32 km2 and the hot area was 43.84 km2 at the 99%

confidence levels, accounting for 12.24% and 11.11% of the

study area, respectively.

2) The GWR regression showed that different LULC types had

significant driving effects on LST. Significant differences

were observed in the driving performance of various surface

cover factors on LST in different regions, indicating that the

formation of the LST spatial distribution in the study area

was the result of the combined action of several factors.

3) The Highest and Lowest LST in Taiyuan urban built-up area

in 2030 approached the Medium-temperature; however, the

proportion of the High-temperature grade was still

predicted to increase, indicating that the UHI effect

would further intensify in 2030.
The results of this study can be used as a reference for the

regulation and control of thermal environment on the regional

scale, optimize land cover pattern, and provide relevant support for

the planning and construction of Taiyuan urban parks and green

space in the future.
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