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Editorial on the Research Topic

Methods in Chemical Ecology: 2022/23
Chemical ecology, i.e. the interdisciplinary study of chemically mediated organismic

interactions, has its origin in the 19th century (Hartmann, 2008), but got most popular in the

second half of the 20th century (Meinwald and Eisner, 2008). Since then, hundreds of studies

are published every year on this topic (Figure 1), with the aim to better understand the

chemical mechanisms of interactions within and among plants, animals, and

microorganisms. One reason for the success of this field of research is that all organisms

release, detect, and respond to chemicals, making the number and kinds of interactions to

potentially study extremely high (Meinwald and Eisner, 2008). Another reason is that there

are continuous advances in the methods available, further increasing the number of possible

research questions tackled (Mori and Noge, 2021). This Research Topic aimed to highlight

studies that developed or reviewed experimental techniques and methods used to investigate

fundamental questions in chemical ecology research. It brings together four articles that

describe methodological developments in chemical analytics, in identifying compounds

detected by insects, in investigating the functions of chemicals, and in collecting and

analysing volatile organic compounds. One study introduced a model system appropriate

to teach chemical ecology in practical classes, another one evaluated methods to identify

cryptic and potentially endangered ecotpyes of an orchid, and the seventh study of this

Research Topic reviewed approaches used to test for olfactory learning in insects.

Floral scents are key for the interaction between flowering plants and their pollinators

(Raguso, 2008), with the number of studies and scientists working on floral scents

continuously increasing. Eisen et al. present a set of best practices for floral scent

research by outlining methods for data collection (from experimental designs to the

chemical identification of compounds) and the analysis of the obtained data. The authors

also created the R package bouquet, which provides a data analysis pipeline.

Plants often release a complex mixture of scent compounds, with only a subset thereof

being perceived by animal interaction partners (Gfrerer et al., 2021; Gfrerer et al., 2022). Gas

chromatography coupled to electroantennographic detection (GC/EAD) is a tool often used

to identify physiologically active compounds in the antennae of insects, and thereby

narrowing down the number of compounds potentially involved in the communication
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(Schiestl and Marion-Poll, 2001). Shuttleworth and Johnson

introduce a method that integrates a GC, an EAD setup, a flame

ionization detector (FID) and a mass spectrometer (MS). This setup

resolves some of the challenges associated with dividing the GC

effluent between a detector at atmospheric pressure (an antenna) and

a detector under vacuum (the MS). It is especially useful for samples

that do not allowmultiple injections [thermal desorption, solid-phase

microextraction (SPME)].

Behavioral assays are critical steps in identifying volatile organic

compounds involved in the communication among organisms

(Haynes and Millar, 2012), and Huber and Schiestl describe a

simple and cheap method for offering the volatiles to the

organism(s) of interest. Volatiles are at first applied as a solvent/

volatile solution to a silicone septum, before allowing the solvent to

evaporate. Afterwards, the volatiles are emitted at repeatable rates

that can be fine-tuned to the desired emission rate.

Pollen is an important reward for various flower visitors, such as

flies and bees (Waser and Ollerton, 2006). Recently, it was

demonstrated for bees that the protein-to-lipid ratio as well as the

contents and ratios of fatty acids in pollen are strongly related to bee

foraging decisions and development (Arien et al., 2020; Ruedenauer

et al., 2020). Villagómez et al. propose a common protocol for the

extraction of lipids from pollen and their analysis via GC/FID and/

or GC/MS to obtain reliable and comparable results of pollen fatty

acid profiles.

Chemical ecological experiments are often time-consuming and

require elaborate equipment, and thus, are less appropriate for

student classes, especially for less advanced students. Mamin et al.

introduce cotton (Gossypium hirsutum) as a model for teaching

plants chemical ecology. This plant species stores defensive

compounds in glands as a constitutive defense, whereas the density

and the chemical filling (size) of these glands increase systematically

in leaves in response to herbivory (Opitz et al., 2008). As cotton gland

induction can be readily visualized under modest magnification,
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cotton is highly suited to teach chemical ecology and aspects of

plant defense theory in practical classes.

At least three different ecotypes, one thereof potentially

endangered, were recently described from sexually deceptive Drakaea

livida orchids using chemical analyses of the labella of unpollinated

flowers and pollinator choice trials (Weinstein et al., 2022). As flowers

will not be pollinated when collecting labella from unpollinated flowers

and pollinators are not always available, Weinstein et al. tested whether

identifying ecotypes could be successfully applied by sampling the

labella from pollinated flowers, thereby not affecting the reproductive

success of the plants. Indeed, they evidenced that the use of volatiles

from the labellum of recently pollinated flowers is an effective way to

determine the ecotype of unknown individuals.

Many insects do not only innately respond to olfactory cues but

are also capable of learning (Papaj and Prokopy, 1989). In their

review, Adam et al. discuss the scope and limits of olfactory learning

in insects and raise the question whether currently used learning

paradigms in artificial laboratory settings are appropriate to answer

all ecologically relevant questions. They believe that many insects

are able to learn olfactory information in as little as one trial. To

evidence one trial olfactory learning, refining the experimental set-

ups in the laboratory as well as designing research studies in an

ecologically relevant framework is needed.
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FIGURE 1

Number of studies published per year (1970-2022) on “chemical ecology” according to Web of Science™.
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