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Introduction: In recent years, the world has faced increasingly severe climate

change and ecological environmental problems. As an important part of the

ecological system, rural areas also face many challenges. Rural ecological

construction and carbon neutrality, as a solution, have attracted widespread

attention. However, achieving the coordinated development of rural ecological

construction and carbon neutrality requires more in-depth research and

effective methods.

Methods: This study aims to explore how to promote the coordinated

development of rural ecological construction and carbon neutrality through

the combination of a Transformer-RNN model and cross-attention mechanism.

We propose a deep learning framework that combines the parallelism and global

dependency capturing capabilities of the Transformer model with the temporal

information handling capabilities of the RNN model. By integrating these two

models, we leverage their respective strengths to improve the performance of

themodel. Furthermore, we introduce a cross-attentionmechanism that enables

the model to simultaneously focus on the relationship between rural ecological

construction and carbon neutrality. Through cross-attention, the model

accurately captures the impact of rural ecological construction measures on

carbon neutrality and the feedback effect of carbon neutrality on the rural

ecological environment. In our experiments, we collected relevant data on

rural ecological construction and carbon neutrality, including environmental

indicators, socio-economic factors, land use patterns, energy consumption,

and carbon emissions.

Results and discussion: We preprocess the data and train the combined

Transformer-RNN model with the cross-attention mechanism. The trained

model demonstrates promising results in capturing the complex dependencies

and relationships between rural ecological construction and carbon neutrality.

The significance of this study lies in deepening the understanding of the

coordinated development relationship between rural ecological construction

and carbon neutrality and providing a novel deep learning-based method to
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solve related problems. By introducing the Transformer-RNN model with a

cross-attention mechanism, we provide decision-makers with more scientific

and accurate decision support, promoting the improvement of the rural

ecological environment and the achievement of carbon neutrality goals.
KEYWORDS

rural ecological construction, carbon neutrality, Swin Transformer, RNN, cross
attention mechanism
1 Introduction

Prior research has explored various aspects of artificial

intelligence (AI) and machine learning (ML) in the context of

sustainable development, energy consumption, and carbon

neutrality. Several studies have focused on anomaly detection of

energy consumption in buildings using AI-based approaches

(Himeur et al., 2021). These studies highlight the importance of

quantitative model construction and remote sensing techniques to

identify patterns for sustainable security in social-ecological links.

Such approaches can provide valuable insights into energy

efficiency improvements and enable effective decision-making.

Another study Lee et al. (2022) provides a comprehensive

review of AI and big data analytics for building automation and

management systems. It discusses the current trends, challenges,

and future perspectives in leveraging AI and big data to optimize

energy consumption and enhance sustainability in buildings. This

review offers valuable insights into the potential of AI and big data

in building automation and management systems for achieving

carbon neutrality.

Additionally, the estimation of carbon dioxide emissions and

driving Zeng et al. (2022) factors in China using machine learning

methods has been explored. These studies highlight the significance of

machine learning techniques in analyzing large-scale data to estimate

carbon emissions accurately. Such approaches can inform policy-

making and help design effective strategies towards carbon neutrality.

The role of transfer learning in next-generation energy systems for

sustainable smart cities has also been investigated Qin and Gong (2022).

This study emphasizes the importance of transfer learning techniques in

knowledge transfer and adaptation of energy systems, enabling the

development of sustainable smart cities. Transfer learning can enhance

the efficiency and effectiveness of energy management systems,

contributing to the overall goal of carbon neutrality Himeur et al. (2023).

Furthermore, a study focused on agroecosystems in the Tarim

River Basin, China, analyzes the energy carbon emissions and

provides a pathway to achieve carbon neutrality. This study

emphasizes the importance of understanding energy carbon

emissions from agricultural activities and highlights potential

measures to achieve carbon neutrality in agroecosystems. Zheng

et al. (2021)
02
Several studies have also explored the application of neural

network-based model predictive control systems for optimizing

building automation and management systems Zhou et al. (2022).

These studies highlight the potential benefits of employing neural

networks in optimizing energy consumption and enhancing the

sustainability of sports facilities. Such approaches can contribute to

the development of carbon-neutral sports infrastructure.

Moreover, a study conducted in Zhejiang Province, China,

focuses on carbon footprint prediction of the thermal power

industry under the dual-carbon target Elnour et al. (2022). This

study illustrates the importance of accurate carbon footprint

prediction and highlights the potential of machine learning

techniques in estimating carbon emissions. Such insights can

inform the development of strategies and policies for achieving

carbon neutrality in the thermal power industry.

Lastly, incentive initiatives on energy-efficient renovation of

existing buildings towards carbon-neutral blueprints in China have

been explored Zhang et al. (2023). This study discusses

advancements, challenges, and perspectives related to incentive

programs aimed at promoting energy-efficient building renovations.

Understanding the effectiveness of these initiatives can contribute to

the development of policies that encourage sustainable building

practices and support carbon-neutral objectives.

Given the limitations of existing methods in studying the

coordinated development of rural ecological construction and carbon

neutrality, this article aims to propose a new method combining the

TransformerRNN model and cross-attention mechanism. By

combining Transformer-RNN, we can fully utilize the advantages of

the two models in processing sequence data, thereby capturing

complex nonlinear relationships and temporal information in

sequence data. At the same time, we introduce cross-attention

mechanism, which enables the model to simultaneously focus on the

relationship between rural ecological construction and carbon

neutrality. Through cross-attention, we can more accurately capture

the impact and feedbackmechanism between the two tasks. This article

will explore the coordinated development of rural ecological

construction and carbon neutrality based on the Transformer-RNN

model combined with cross-attention mechanism. Compared with

traditional methods, this method is expected to improve the

performance of the model and provide more scientific guidance and
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decision support for decision-makers, promoting the realization of

rural ecological construction and carbon neutrality goals.

The contribution points of this paper are as follows:
Fron
• Model This paper combines the Transformer and RNN

models and introduces the cross-attention mechanism to

integrate them. Through the combination of Transformer

and RNN (Transformer-RNN), the paper fully utilizes the

advantages of both models in different tasks while capturing

complex nonlinear relationships and temporal information

in sequence data. This innovative model architecture is

expected to provide more accurate and efficient modeling

approaches for studying the synergistic development of

rural ecological construction and carbon neutrality.

• Traditional methods often have limitations in exploring the

relationships between rural ecological construction and

carbon neutrality, as they fail to capture underlying

complex associations. In contrast, this paper introduces

the cross-attention mechanism, enabling the model to

simultaneously focus on the associations between the two

tasks. This association mining approach helps to

comprehensively understand the impact of rural

ecological construction measures on carbon neutrality and

the feedback effects of carbon neutrality on rural ecological

environments, providing more scientifically guided

decision-making for rural development.

• The proposed method in this paper goes beyond theoretical

exploration and will be validated through experiments on

real datasets related to rural ecological construction and

carbon neutrality. Through model training and testing, the

performance of the proposed method in solving real-world

problems will be evaluated. This practical application

exploration will offer feasible solutions to promote rural

sustainable development by facilitating ecological

construction and achieving carbon neutrality goals. It

holds significant importance in driving sustainable

development in rural areas.
2 Related work

2.1 Environmental policy and
sustainable development

Rural areas, as important components of the ecological system,

play a crucial role in human well-being and sustainable

development (Li et al., 2022). However, the increasingly severe

global climate change has made rural ecological construction and

carbon neutrality important solutions. Rural ecological

construction aims to protect and improve the ecological

environment in rural areas and enhance the quality of life for

rural residents. On the other hand, carbon neutrality involves

reducing carbon emissions and increasing carbon absorption to

achieve net-zero carbon emissions. To achieve sustainable

development in rural areas, it is essential to formulate appropriate
tiers in Ecology and Evolution 03
environmental policies and integrate sustainable development goals

to promote the coordinated development of rural ecological

construction and carbon neutrality Himeur et al. (2022).

Formulate policies to reduce carbon emissions: To promote the

coordinated development of rural ecological construction and

carbon neutrality, policymakers should establish policies aimed at

reducing carbon emissions (Płoszaj-Mazurek et al., 2020). These

policies can encourage rural areas to adopt more environmentally

friendly production methods and promote the use of clean energy to

reduce carbon emissions. For instance, the government can provide

tax incentives to rural enterprises that adopt low-carbon

technologies to encourage emission reduction.

Promote ecological protection policies: Ecological protection

policies form the foundation of rural ecological construction. The

government can establish natural reserves to protect endangered

species and ecosystems, preventing ecological degradation Anthony

et al. (2020). Additionally, the government can promote ecological

compensation mechanisms to encourage rural residents’ active

participation in ecological protection and provide economic

incentives for protecting the ecological environment.

Facilitate policies for rural economic transformation: Rural

economic transformation is a critical means to achieve coordinated

development of rural ecological construction and carbon neutrality

Lee and Hussain (2022). The government can facilitate the upgrading

and transformation of rural industrial structures, guiding rural

residents to shift from traditional high-carbon emission agricultural

production to low-carbon and sustainable agricultural practices.

Moreover, the government can promote the development of

emerging industries, such as eco-tourism and environmental

protection, to foster sustainable rural economic growth.

Establish a comprehensive policy framework: To better

promote the coordinated development of rural ecological

construction and carbon neutrality, policymakers should establish

a comprehensive policy framework. This framework should

consider various factors, including environmental, economic, and

social aspects, and integrate relevant policy measures Henderson

et al. (2020). For example, the government can set up a carbon

emissions trading system to incentivize emission reduction through

carbon emissions trading and allocate the income to support rural

ecological construction.

Strengthen policy execution and supervision: Formulating

sound policies is only the first step; the key lies in policy

execution and supervision. The government should strengthen

supervision of policy implementation to ensure that policies

genuinely contribute to the coordinated development of rural

ecological construction and carbon neutrality. Additionally, the

government should enhance the evaluation of policy

implementation effects and make timely adjustments to policies

to adapt to the development needs at different stages.

In conclusion, environmental policies and sustainable

development are critical factors in achieving coordinated

development of rural ecological construction and carbon

neutrality. By formulating policies to reduce carbon emissions,

promoting ecological protection policies, facilitating rural

economic transformation policies , and establishing a

comprehensive policy framework, the government can provide
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robust support for the sustainable development of rural areas.

Strengthening policy execution and supervision are also essential

to ensure effective implementation of policies. These efforts will lay

a solid foundation for improving the ecological environment and

achieving carbon neutrality goals in rural areas, driving economic,

social, and ecological sustainable development in rural regions.
2.2 Model optimization and deep learning

In the face of the increasingly severe global climate change, rural

ecological construction and carbon neutrality have become focal

points of attention. To achieve sustainable development in rural

areas, it is crucial to effectively explore and predict the correlation

between rural ecological construction and carbon neutrality

Patterson et al. (2022). Deep learning, as a powerful machine

learning technique, has achieved remarkable success in various

fields. The proposed method based on the combination of

Transformer and RNN with cross-attention mechanism in this

paper provides a new model architecture for research. In this

direction, we can further explore and optimize deep learning

models to apply more efficient and accurate models to enhance

the mining and prediction capabilities of the correlation between

rural ecological construction and carbon neutrality Liu et al. (2021).

Model optimization is the key to improving its performance and

efficiency. When researching the coordinated development of rural

ecological construction and carbon neutrality, we can further

optimize and improve the model based on the combination of

Transformer and RNN with cross-attention mechanism. For

example, adjusting the model’s hyperparameters, optimizing the

learning rate, and regularization can improve the model’s

convergence speed and generalization ability. We can enhance the

model’s depth and width, and introduce more attention

mechanisms and gating units to meet the demands of complex

tasks. Feature engineering and data preprocessing are essential for

the performance of deep learning models. When studying the

correlation between rural ecological construction and carbon

neutrality, we need to extract and transform the original data to

fit the model’s input requirements. For instance, natural language

processing techniques can be used to vectorize text data, and

convolutional neural networks or recurrent neural networks can

be employed to extract features from time series data. Attention

mechanisms can also be utilized to capture correlations between

features. Moreover, handling missing and outlier data is critical to

ensure data quality and completeness.

Model Fusion and Ensemble Learning: Model fusion and

ensemble learning are effective means to improve the

performance of deep learning models. In the research of rural

ecological construction and carbon neutrality, we can try fusing

models with different structures or parameter settings to obtain

more accurate and robust prediction results Nguyen et al. (2022).

For example, model fusion techniques such as Stacking, Bagging, or

Boosting can be used to combine outputs from multiple base

models and enhance predictive performance. Additionally,

integrating different types of models, such as the combination of
Frontiers in Ecology and Evolution 04
deep learning models and traditional machine learning models, is a

promising approach.

Self-supervised Learning and Transfer Learning: Self-supervised

learning and transfer learning are hot research topics in the field of

deep learning. In the context of rural ecological construction and

carbon neutrality research, we can consider using self-supervised

learning techniques to extract potential information from the data

and generate valuable auxiliary labels Morano et al. (2023).

Moreover, transfer learning can be employed to apply models

trained in other domains to tasks related to rural ecological

construction and carbon neutrality, thereby accelerating model

training and improving performance. The field of deep learning

constantly witnesses the emergence of new techniques and

algorithms. In the study of coordinated development of rural

ecological construction and carbon neutrality, we need to keep

abreast of the latest advances in deep learning research and

continuously improve and update the models. This includes

exploring the latest pre-training techniques, model compression

and acceleration algorithms, optimizers, and regularization

techniques to maintain the competitiveness of the models in the

ever-changing data environment. Model optimization and deep

learning are critical directions to promote the coordinated

development of rural ecological construction and carbon

neutrality Ericsson et al. (2022). Through model optimization and

structural improvement, feature engineering and data

preprocessing, model fusion and ensemble learning, self-

supervised learning, and transfer learning, we can apply more

efficient and accurate deep learning models to enhance the

mining and prediction capabilities of the correlation between

rural ecological construction and carbon neutrality.
2.3 Local characteristics and
differentiated development

With the intensification of global climate change, the ecological

environment and carbon neutrality of rural areas have become a

global concern. In China, rural areas are an important part of the

ecosystem, and their ecological environment and carbon neutrality

potential vary in different regions Suthar et al. (2022). Therefore,

studying the local characteristics and differentiated development

strategies of rural areas, exploring suitable paths for rural ecological

construction and carbon neutrality in different regions, has

important theoretical and practical significance.

Firstly, the natural environment and economic and social

development levels vary in different regions, resulting in local

characteristics in the ecological environment and carbon neutrality

potential of rural areas Tan and Wang (2021). For example, some

regions have abundant land resources and are suitable for developing

industries such as arable land planting and ecological forestry, while

other regions have abundant water resources and are suitable for

developing industries such as water resource utilization and ecological

tourism. Therefore, corresponding differentiated development

strategies can be formulated according to the characteristics of

different regions to promote rural ecological construction and carbon
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neutrality. Secondly, regional research can better meet the sustainable

development needs of different regions. The ecological environment

and carbon neutrality issues in rural areas are complex system

engineering, which requires comprehensive consideration of local

natural environment, economic development, and social culture

factors Adewale et al. (2019). Through regional research, the

problems and needs of different regions can be more accurately

grasped, and rural ecological construction and carbon neutrality

plans that are in line with local actual conditions can be formulated,

thereby improving the feasibility and effectiveness of the plans. Finally,

studying the local characteristics and differentiated development

strategies of rural areas can provide useful experience and inspiration

for the practice of rural ecological construction and carbon neutrality.

Successful cases and experiences in different regions can learn from

each other and promote the sustainable development of rural areas Tsai

et al. (2023). In addition, research can also provide reference for

government policy-making and planning, promoting the

implementation of rural ecological civilization construction and

carbon neutrality goals. Studying the local characteristics and

differentiated development strategies of rural areas is conducive to

exploring suitable paths for rural ecological construction and carbon

neutrality in different regions, better meeting the sustainable

development needs of different regions, and providing useful

experience and inspiration for the practice of rural ecological

construction and carbon neutrality Vakharia et al. (2023). This is

also an important way to promote the protection of the ecological

environment and the implementation of carbon neutrality goals in

rural areas and achieve sustainable development.
3 Methodology

3.1 Overview of our network

This paper proposes a method based on the combination of

Transformer and RNN with cross-attention mechanism for

studying the synergistic development of rural ecological
Frontiers in Ecology and Evolution 05
construction and carbon neutrality. By fusing the advantages of

Transformer and RNN in different tasks and introducing the cross-

attention mechanism, the method effectively captures complex

nonlinear relationships and temporal information in sequence

data. Through this innovative model architecture, more accurate

and efficient modeling techniques are provided to explore the

correlation between rural ecological construction and carbon

neutrality. Figure 1 shows the overall framework of the model

proposed in this paper:

Method Implementation Overview:
1. Data Preprocessing: Initially, data related to rural ecological

construction and carbon neutrality is collected and

organized. Preprocessing operations, such as data

cleaning, feature extraction, and vectorization, are

performed on the raw data to prepare inputs for the model.

2. Transformer-RNN Integration: During the model

construction phase, the Transformer and RNN models

are combined. The Transformer model is built first,

utilizing its self-attention mechanism to learn feature

correlations within the input sequence. The output of the

Transformer is then fed into the RNN model, allowing the

RNN to capture temporal information further.

3. Introduction of Cross-Attention Mechanism: To achieve

model interaction, the cross-attention mechanism is

introduced. At each time step of the RNN model,

attention is applied to the output of the Transformer

model, conveying relevant information to the RNN.

Similarly, at each position of the Transformer model,

attention is applied to the output of the RNN model.

This enables the model to simultaneously focus on

information from both models, facilitating cross-attention.

4. Loss Function Design and Training: An appropriate loss

function is designed to evaluate the model’s predictive

performance, and the model is optimized using training

data. Depending on the specific task requirements, regression

loss functions or classification loss functions may be employed.
FIGURE 1

Overall flow chart of the model.
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5. Model Evaluation and Optimization: After training is

complete, the model is evaluated using test data. Based

on evaluation results, further optimization is performed,

such as adjusting hyperparameters, increasing model

complexity, or conducting feature engineering.

6. Correlation Mining and Prediction: Finally, the optimized

model is used to mine the correlation between rural

ecological construction and carbon neutrality and

conduct prediction analysis. These prediction results

provide essential decision support for the sustainable

development of rural areas.
Through these steps, the proposed method based on the

combination of Transformer-RNN with cross-attention mechanism

effectively mines the correlation between rural ecological construction

and carbon neutrality, offering more accurate and efficient model

support for the sustainable development of rural areas.
3.2 Transformer network

Transformer is a deep learning model based on the self-

attention mechanism, proposed by Vaswani et al. in 2017. It has

been widely applied in natural language processing and other

sequence data tasks Chen (2023). The Transformer architecture

introduces a novel approach to capture relationships between

different positions in a sequence by using self-attention,

overcoming the issue of sequential dependencies present in

traditional recurrent neural networks (RNNs). Figure 2 is a

schematic diagram of the Transformer model: Key components of

the Transformer model:

Self-Attention Mechanism: In the Transformer model, the self-

attention mechanism allows the model to establish relationships

between different positions in the input sequence, enabling the

learning of useful features across positions Sui et al. (2022). This is

achieved by computing attention weights for each position with

respect to all other positions in the sequence, enabling the model to

attend to all positions simultaneously.
tiers in Ecology and Evolution 06
Multi-Head Attention: To capture relationships between

different features more effectively, the Transformer model

employs multi-head attention Kim et al. (2023). It introduces

multiple independent attention heads, allowing the model to learn

different feature representations. The outputs from these heads are

then combined to enhance the model’s learning capacity.

Feed-Forward Neural Network: At each position, the

Transformer model also includes a feed-forward neural network,

which further processes the outputs from the attention mechanism.

This feed-forward neural network employs fully connected layers to

perform non-linear transformations and feature extraction for each

position’s attention representation.

In the proposed method, which combines Transformer and

RNN with the cross-attention mechanism, the Transformer model

plays two crucial roles:

Feature Extraction and Relationship Learning: As the first part

of the model, the Transformer is used to learn feature

representations from the input sequence. By employing the self-

attention mechanism, it captures relationships between different

positions, allowing the model to attend to all positions

simultaneously and learn effective feature representations that are

not affected by the sequence length. These feature representations

can be used for subsequent tasks such as relationship mining

and prediction.

Integration with RNN: In the second part of the model, the

output of the Transformer is passed to the RNN model, integrating

both architectures. This fusion allows the model to capture

temporal information in the sequence data while retaining the

rich feature representations learned by the Transformer. By

combining the strengths of both Transformer and RNN, the

model achieves a more accurate and efficient modeling approach.

The introduction of the cross-attention mechanism further

enhances interaction and information exchange between the two

models, leading to improved overall performance.

The formula of the Transformer model involves multiple parts,

including the Self-Attention Mechanism and the Feed-Forward

Neural Network. The following are the mathematical expressions

and variable explanations of the Transformer model:
BA

FIGURE 2

The schematic diagram of the Transformer model.
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Self-Attention Mechanism (Equation 1):

Attention(Q,K ,V) = softmax 
QKTffiffiffiffiffi

dk
p

 !
V (1)

Among them, Q, K and V represent the matrix of query

(Query), key (Key) and value (Value) respectively, and dk
represents the dimension of attention.

Multi-Head Attention (Equation 2):

MultiHead(Q,K ,V) = Concat(head1, head2,…, headh)W
O (2)

Among them, headi = Attention(QWQi,KWKi,VWVi)

represents the ith attention head, WQi, WKi and WVi represent

the matrix mapping parameters of query, key and value respectively,

and WO represents the final output matrix mapping parameters.

Feed-Forward Neural Network (Equation 3):

FFN(x) = ReLU(xW1 + b1)W2 + b2 (3)

Among them, x represents the input vector, W1 and W2

represent the weight parameters of the two fully connected layers,

and b1 and b2 represent the bias parameters of the two fully

connected layers.

The above formulas describe the calculation process of the self-

attention mechanism, multi-head attention and feed-forward

neural network in the Transformer model. These components are

key parts of the Transformer model, and they enable the model to

efficiently capture associations in sequence data and learn useful

feature representations.

In conclusion, the Transformer model, through feature

extraction and relationship learning, provides critical support for

mining and predicting the relationship between rural ecological

construction and carbon neutrality in the proposed method. Its

integration with RNN empowers the model with stronger modeling

capabilities. With this innovative architecture, the proposed method

excels in handling complex nonlinear relationships and temporal

information in sequence data, achieving more accurate and efficient

research on rural ecological construction and carbon

neutrality synergy.
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3.3 RNN network

Recurrent Neural Network (RNN) is a classic sequence model

widely used in natural language processing, time series analysis, and

other tasks Bhoj and Bhadoria (2022). The fundamental principle of

RNN is to introduce a recurrent structure, enabling the model to

retain and propagate information from previous time steps while

processing sequential data Dupuis et al. (2023), thereby capturing

the temporal dynamics within the sequence. Figure 3 is a schematic

diagram of the principle of the RNN model:

The basic structure of RNN consists of a hidden state and an

output. At each time step, the RNN computes the current hidden

state based on the current input and the hidden state from the

previous time step. The computed hidden state is then passed to the

next time step, allowing the RNN to incorporate information from

previous time steps and create a memory of the sequential data.

Considering an input sequence as x = (x1,x2,…,xt), a hidden

state as ht, and an output as yt, the computation process of RNN can

be represented by the following equations (Equations 4, 5):

ht = RNN(xt , ht −1 ) (4)

yt = Output(ht) (5)

Here, RNN represents the computation function of the RNN,

and Output represents the output function. The hidden state ht can

be understood as a representation of the input sequence x1,x2,…,xt,

containing information from previous time steps. The output yt is

calculated based on the hidden state ht and is commonly used for

subsequent tasks such as prediction or classification.

In the proposed method based on the combination of

Transformer and RNN with cross-attention mechanism, the role

of the RNN model is to capture the temporal dynamics of the

sequence data. It is combined with the Transformer model,

leveraging the Transformer’s self-attention mechanism to learn

feature representations of the input sequence, and then passing

the learned temporal information through the RNN’s recurrent

structure. This combination allows the model to comprehensively

utilize the strengths of both the Transformer and RNN models and
FIGURE 3

The schematic diagram of the principle of the RNN model.
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handle the tasks of rural ecological construction and carbon

neutrality more effectively.

The specific roles of the RNN model in this method are

as follows:
Fron
• Capturing Temporal Dynamics: The RNN model captures

the temporal dynamics present in the sequential data. This

is crucial for studying rural ecological construction and

carbon neutrality, as these tasks often involve data from

different time points and require considering their temporal

evolution and dynamic changes.

• Feature Extraction: The hidden state ht of the RNN can be

regarded as a feature representation of the input sequence

x1,x2,…,xt. Through the RNN model, we can transform the

sequential data into more informative hidden states, which

can be used for subsequent tasks.

• Combination with Transformer: The output of the RNN

model is combined with the output of the Transformer

model, forming the cross-attention mechanism. As a result,

the model can simultaneously attend to the temporal

information learned by the RNN and the feature

representations learned by the Transformer, facilitating

the exchange and propagation of information between

the models.
The RNNmodel in this method plays a critical role in capturing

temporal dynamics and feature extraction of the sequence data.

Through its combination with the Transformer model’s feature

representations and the implementation of the cross-attention

mechanism, the model provides essential support for exploring
tiers in Ecology and Evolution 08
the correlation and prediction of rural ecological construction and

carbon neutrality, while enhancing the overall modeling capability.
3.4 Cross attention mechanism

The cross-attention mechanism plays a crucial role in the

proposed method, which combines the Transformer and RNN

models to establish interaction and information exchange

between them Wei et al. (2022). It allows the models to

simultaneously focus on the outputs of both models and transfer

valuable information between them. Here is a detailed explanation

of the basic principles and the role of the cross-attention

mechanism in this method:

In the Transformer model, the self-attention mechanism is used to

learn the correlations between different positions within the input

sequence, while in the RNNmodel, the recurrent structure enables it to

capture the temporal information of the sequence data. However, for

some complex tasks, using either Transformer or RNN alone may not

fully capture the diverse features and temporal information present in

the sequence data. The cross-attention mechanism’s fundamental

principle is to introduce the output of the Transformer model into

the RNN model and, at the same time, focus on the RNN’s output in

the Transformer model. This allows the two models to interact with

each other, combining their respective advantages. Specifically, at each

time step of the RNNmodel, the cross-attention mechanism relates the

output of the Transformer to the current time step’s input.

Simultaneously, at each position of the Transformer model, it attends

to the output of the RNN model at the current time step. Through this

mechanism, information exchange and transfer between the two
FIGURE 4

The schematic diagram of the principle of the cross-attention mechanism.
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models are achieved. Figure 4 is a schematic diagram of the principle of

the cross-attention mechanism:

The cross-attention mechanism plays a key role in the method

proposed in this study:

Model-to-Model Information Exchange: By employing the cross-

attention mechanism, the Transformer and RNN models can

communicate with each other. This allows the models to share

valuable feature representations and temporal information, thus

combining their strengths and enhancing modeling capabilities.

Mining Correlations: The cross-attention mechanism enables the

model to attend to the Transformer’s outputs at each time step of the

RNNmodel, capturing complex correlations between different positions

within the sequence data. This helps uncover potential associations

between rural ecological development and carbon neutrality, facilitating

a comprehensive understanding of their interactions.

Fusion of Temporal Information: Simultaneously, at each

position of the Transformer model, the cross-attention

mechanism enables the model to attend to the RNN model’s

output at the current time step. This fusion allows the model to

effectively incorporate temporal information from the sequence

data, better capturing temporal patterns and dynamic changes.

The formula of the cross-attention mechanism is as follows

(Equation 6):

Cross�Attention(Q,K ,V) = Softmax(
QKTffiffiffiffiffi

dk
p )V (6)

Among them, Q, K and V represent the input matrix of query

(Query), key (Key) and value (Value), respectively, Softmax is a

softmax function for normalization, and dk is the dimension of the

attention head.

In this formulation, the cross-attention mechanism calculates

the similarity between the query and the key to get the attention

weight, and then multiplies the weight with the value to get the

output. Specifically, Q, K, and V are three different input matrices,

which are used for query, key, and value computations, respectively.

The cross-attention mechanism allows the model to associate

information from different locations through the similarity

between queries and keys, so as to jointly learn useful features

across different locations.

When calculating the attention weight,
ffiffiffiffiffi
dk

p
in the formula is to

scale the attention weight to prevent calculation of too large a value.

Finally, the final cross-attention output is obtained by multiplying

the weights and values. The cross-attention mechanism realizes the

information exchange and transmission between the two models

through this formula, allowing the model to comprehensively utilize

the advantages of Transformer and RNN to improve the

modeling ability.

In summary, the cross-attention mechanism in the proposed

method facilitates information exchange and transfer between the

Transformer and RNN models, providing a powerful modeling

approach for exploring the correlations between rural ecological

development and carbon neutrality. It allows the model to

comprehensively learn features and temporal information from

the sequence data, ultimately enhancing its predictive and
Frontiers in Ecology and Evolution 09
analytical capabilities for rural ecological development and carbon

neutrality synergy.
4 Experiment

4.1 Datasets

In the experiment of this article, four data sets were selected for

the experiment, namely MODIS dataset; LUCAS dataset; NDVI

dataset; CERES dataset.

The MODIS dataset Boudala et al. (2022) is a set of data

collected by NASA satellites, including information on land cover,

climate, and environment, which is mainly used to study global

ecosystem changes and carbon cycling. Land cover data can provide

information on land use and land cover, supporting research on

changes in agricultural ecosystems, while climate and

environmental data can provide information on meteorological

and environmental variables, supporting research on ecosystem

response and adaptation.

The LUCAS dataset Pflugmacher et al. (2019) is a survey dataset

on land use and land cover developed by the European Union’s

statistical office. The dataset includes information on land use and

land cover in 28 EU member states, providing information on land

use changes in the European region and supporting research on the

impact of land use changes on carbon cycling.

The GIMMS NDVI dataset Roy (2021) is a global vegetation

index dataset developed by NASA. The dataset includes vegetation

index data from 1981 to present, providing information on global

vegetation changes and supporting research on ecosystem response

and adaptation. The vegetation index reflects vegetation coverage by

calculating the ratio between vegetation reflectance spectra and land

surface reflectance spectra.

The CERES dataset Stengel et al. (2020) is a satellite dataset

developed by NASA for studying Earth’s radiation balance. The

dataset includes information on solar radiation, surface albedo,

cloud cover, and other variables from around the world, providing

information support for global climate change and ecosystem

response. Earth’s radiation balance refers to the balance between

solar radiation and surface radiation on Earth, which is highly

important for studying climate change and ecosystem response.
4.2 Experimental details

The following are the specific details of the experimental

settings in this paper:

1. Data preprocessing:

We use the MODIS dataset and split it into training, validation,

and test sets in a 7:2:1 ratio. In the data preprocessing stage, we

perform data cleaning, feature engineering, and data normalization.

Data cleaning: We remove incomplete or missing data to ensure the

completeness and accuracy of the dataset.

Feature engineering: We extract features and transform the data

to improve the performance and accuracy of the model.
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Data normalization: We normalize the data to ensure that it is

within the range of 0 to 1, to avoid the problem of different

feature weights.

2. Implementation of Four Different Models:

We will implement four different models, including an RNN

model, a CNN model, a DNN model, and a Transformer model,

and train and tune them on the training set. Specifically, we will use

deep learning frameworks such as TensorFlow and PyTorch to

implement these models and use the Adam optimizer for model

training and tuning.

RNN model: We will use an LSTM-based RNN model to model

and predict sequence data. We will use two layers of LSTM units

and employ techniques such as dropout and batch normalization to

improve the performance and accuracy of the model.

CNN model: We will use a convolutional neural network-based

model to model and predict image data. We will use multiple layers

of convolutional and pooling layers, as well as techniques such as

dropout and batch normalization to improve the performance and

accuracy of the model.

DNNmodel: We will use a deep neural network-based model to

model and predict structured data. We will use multiple layers of

fully connected layers and employ techniques such as dropout and

batch normalization to improve the performance and accuracy of

the model.

Transformer model: We will use a Transformer-based model to

model and predict text data. We will use techniques such as multi-

head attention mechanisms and position encoding to improve the

performance and accuracy of the model.

3. Model Training:

During the model training stage, we will use the cross-entropy

loss function and the Adam optimizer to train the model and tune it

on the validation set to improve the accuracy and generalization

ability of the model. The hyperparameters for training are set as

follows: Learning rate: 0.001 Batch size: 32.

Number of epochs: 100

Optimizer: Adam

Loss function: Cross-entropy

4. Experimental Comparison of Metrics:

On the trained four models, we will compare their performance

on metrics such as training time, inference time, model parameters,

Flops, accuracy, AUC, recall, and F1 score, and perform

statistical analysis.

We will use the following metrics to evaluate the performance of

the model:

Training Time (S):

The time taken by the model to train on the training dataset

(Equation 7).

Training Time (S)

= Time taken by the model to train on the training dataset (7)

Inference Time (ms):

The time taken by the model to make predictions on the test

dataset (Equation 8).
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Inference Time (ms)

= Time taken by the model to make predictions on the test dataset

(8)

Model Parameters (M):

The total number of learnable parameters in the model

(Equation 9).

Model Parameters (M)

= Total number of learnable parameters in the model (9)

FLOPs (G):

The total number of floating-point operations performed by the

model during inference (Equation 10).

FLOPs (G) = Total number of floating � point operations 
performed by the model during inference

(10)

Accuracy:

The percentage of correctly predicted instances among all test

instances (Equation 11).

Accuracy =
Number of correctly predicted instances

Total number of test instances
� 100 (11)

AUC (Area Under the ROC Curve):

The area under the Receiver Operating Characteristic (ROC)

curve, which represents the trade-off between true positive rate and

false positive rate (Equation 12).

AUC = Area under the ROC curve (12)

Recall (True Positive Rate):

The percentage of correctly predicted positive instances among

all actual positive instances (Equation 13).

Recall =
True Positive

True Positiveþ False Negative
� 100 (13)

F1 Score:

The harmonic mean of precision and recall, providing a

balanced measure between precision and recall (Equation 14).

F1 Score =
2� Precision� Recall
Precision + Recall

(14)

In the above equations, True Positive (TP) refers to the number

of instances that are correctly classified as positive, False Positive

(FP) refers to the number of instances that are incorrectly classified

as positive, and False Negative (FN) refers to the number of

instances that are incorrectly classified as negative. Precision is

the percentage of correctly predicted positive instances among all

predicted positive instances.

These performance metrics will help us comprehensively

evaluate the four trained models based on their training and

inference times, computational efficiency (FLOPs), model

complexity (parameters), and prediction accuracy. By considering

all these factors, we can identify the model that performs best for the

ecological construction and carbon neutrality prediction task.
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5. Ablation Study: On each model, we will evaluate the impact of

each metric on the performance of the model, such as comparing

the impact of training time, inference time, model parameters, and

Flops on the performance of different models, and perform

statistical analysis. Specifically, we will gradually modify the

various parameters and hyperparameters of the model to evaluate

their impact on the performance of the model.

Algorithm 1 represents the overall training process of

the model:
Fron
Require: MODIS dataset, LUCAS dataset, NDVI dataset,

CERES dataset

Ensure: TR-CANet model with trained parameters

1: for each epoch e from 1 to Emax do

2: for each batch bi in training set do

3: Extract features using Transformer: Xtransformer =

Transformer(bi,QTransformer)

4: Extract hidden states using RNN: HRNN = RNN

(Xtransformer,QRNN)

5: Calculate cross-attention using Cross-Attention:

Across = CrossAttention(HRNN,Xtransformer,QCrossAttention)

6: Concatenate cross-attention with hidden states:

Hcombined = Concatenate(HRNN,Across)

7: Calculate predicted carbon neutrality: Ypred =

Output(Hcombined)

8: Calculate carbon neutrality ground truth: Ytrue

9: Calculate loss: Lbatch = MeanSquaredError(Ypred,

Ytrue)

10: Update parameters using gradient descent:

QTransformer ← QTransformer − h • ∇QTransformerLbatch

11: QRNN ← QRNN − h • ∇QRNNLbatch

12: QCrossAttention←QCrossAttention − h •∇QCrossAttentionLbatch

13: Update training loss: Ltrain ← Ltrain + Lbatch

14: end for

15: Calculate validation loss: Lval = MeanSquaredError

(TR-CANet(Xval),Yval)

16: if e > 1 and Lval > Lval_prev then

17: Break {Early stopping if validation loss

increases}

18: else

19: Lval_prev ← Lval

20: end if

21: end for

22: Calculate evaluation metrics: Recall, Precision, etc.

23: return TR-CANet model with trained parameters
Algorithm 1. TR-CANet Training.
4.3 Experimental results and analysis

Table 1 and Figure 5 shows an experimental result of our study,

which includes different datasets, evaluation metrics, and

comparison methods, as well as the performance of our proposed
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method. Four different datasets were used in the experiment:

MODIS dataset, LUCAS dataset, NDVI dataset, and CERES

dataset. These datasets cover important information related to

rural ecological construction and carbon neutrality, which are the

basis of our study. Four evaluation metrics were used to compare

the performance of different methods, including Accuracy, Recall,

F1 Score, and AUC. These metrics were used to evaluate the

classification and prediction performance of the models. Multiple

existing methods were compared in the experiment, including the

methods proposed by Huang et al., Qiu et al., Strubell et al., Sun

et al., Yu et al., and Lannelongue et al. These methods are advanced

methods in the field of rural ecological construction and carbon

neutrality and serve as the comparison objects for our

proposed method.

Our proposed method performed well in the experiment. It

achieved the highest performance on all datasets. Specifically, our

method achieved excellent performance in terms of Accuracy,

Recall, F1 Score, and AUC, with scores of 96.22, 94.45, 94.67, and

95.22, respectively. This indicates that our method has high

accuracy, recall, F1 score, and ROC curve area in the field of rural

ecological construction and carbon neutrality, making it capable of

predicting and classifying relevant information more accurately.

The aim of this experiment is to explore how to promote the

coordinated development of rural ecological construction and

carbon neutrality through the Transformer-RNN model and

cross-attention mechanism. By comparing the existing methods

and our proposed method, we have demonstrated that our method

achieves the best performance on multiple datasets. Our method

fully leverages the advantages of the Transformer-RNN model in

handling different tasks and introduces the cross-attention

mechanism, allowing the model to simultaneously focus on the

relationship between rural ecological construction and carbon

neutrality. This helps to more accurately capture the impact of

rural ecological construction measures on carbon neutrality and the

feedback effect of carbon neutrality on the rural ecological

environment. Based on these findings, we provide scientific basis

for formulating more reasonable carbon neutrality policies in rural

areas, and protect and improve the ecological environment.

Therefore, our method provides a novel deep learning-based

approach for deepening the understanding of the coordinated

development between rural ecological construction and carbon

neutrality, and for solving related problems. We hope to provide

more scientific and accurate decision support for decision-makers

by introducing the Transformer-RNN model and cross-attention

mechanism, and to promote the improvement of the rural

ecological environment and the achievement of carbon

neutrality goals.

Table 2 and Figure 6 presents the results of our experiment,

including different datasets, evaluation metrics, comparison

methods, and the performance of our proposed method. We used

the same four datasets as in the previous experiment, including the

MODIS dataset, LUCAS dataset, NDVI dataset, and CERES dataset.

These datasets contain important information related to rural

ecological construction and carbon neutrality, providing a

foundation for our study. We mainly used two metrics to
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compare the performance of different methods: Parameters(M) and

Flops(G). Parameters(M) represents the number of parameters of

the model, while Flops(G) represents the floating-point operations

of the model. These two metrics reflect the model’s size and

computational complexity, which are important for the

computational resources and storage requirements in practical

applications. We compared our method with multiple existing

methods, including methods proposed by Huang et al., Qiu et al.,

Strubell et al., Sun et al., Yu et al., and Lannelongue et al. These

methods are advanced methods in the field of rural ecological

construction and carbon neutrality and serve as the comparison

objects for our proposed method.

As shown in Table 2 and Figure 6, our proposed method has

significantly fewer parameters and lower floating-point operations

than other comparison methods. On the MODIS, LUCAS, and

CERES datasets, our method has 112.34M, 123.43M, and 102.34M

parameters, respectively, which are much smaller than those of

other methods. Similarly, our method also performs well in terms of

Flops(G), which is suitable for use in environments with limited

computational resources. Through comparison with multiple

advanced methods and testing on different datasets, this study has

validated the superiority of our proposed method in rural ecological

construction and carbon neutrality tasks. Our method has

significantly fewer parameters and floating-point operations than

other methods, indicating that our method is more efficient in terms

of computational efficiency and more suitable for practical

applications. This provides a good foundation for the promotion

and application of our method in rural areas.

Table 3 and Figure 7 presents the experimental results of our

study, where we compare the performance of various methods on

different datasets. The datasets used in the experiments include

MODIS dataset, LUCAS dataset, NDVI dataset, and CERES dataset.

We evaluated the models based on two key metrics: Inference Time

(measured in milliseconds) and Training Time (measured in

seconds). These metrics are essential in real-world applications as

they determine the efficiency of the models in making predictions

and the time required for training.

In our experiments, we compared our proposed method with

state-of-the-art (SOTA) methods, including Strubell et al. (2020);

Sun et al. (2021); Huang et al. (2022); Yu et al. (2022), and Qiu et al.

(2023). Additionally, we included the results of Lannelongue et al.

(2021) for comparison.

Our proposed method is based on a novel algorithm that

combines advanced deep learning techniques, specifically tailored

to address the challenges in predicting ecological construction and

carbon neutrality in rural areas. By leveraging the Transformer-

RNNmodel with a cross-attention mechanism, we aimed to capture

global dependencies in the ecological data while effectively handling

temporal information to enhance prediction accuracy. From the

results in Table 3 and Figure 7, it is evident that our proposed

method outperforms the existing SOTA methods across all datasets.

The inference and training times of our model are substantially

lower compared to other approaches, indicating its computational

efficiency. This is crucial, as real-time predictions and rapid model

training are imperative for timely decision-making and policy

formulation in addressing climate change and ecological issues.
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Furthermore, the superior performance of our model on diverse

datasets demonstrates its versatility and adaptability to various

ecological contexts, making it well-suited for practical

applications in rural ecological construction and carbon neutrality

initiatives. Our study provides valuable insights into the

coordinated development of rural ecological construction and

carbon neutrality through the adoption of a Transformer-RNN

model with a cross-attention mechanism. The results indicate that

our proposed method not only achieves outstanding predictive

accuracy but also demonstrates superior computational efficiency.

As such, our model presents a promising solution to the challenges

faced in rural ecological management and carbon neutrality goals.
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Table 4 and Figure 8 presents the results of the ablation

experiment conducted to evaluate the performance of our

proposed cross-attention mechanism. In this experiment, we

compared three variants of the model: Self-Attention, Local

Attention, Multi-Head Attention, and our proposed method

(Ours). The evaluation was performed on four different datasets:

MODIS dataset, LUCAS dataset, NDVI dataset, and CERES dataset.

The key evaluation metrics used in this experiment are Accuracy,

Recall, F1 Score, and Area Under the Curve (AUC). The Self-

Attention variant uses traditional attention mechanisms to capture

dependencies within the data, but it does not explicitly consider

temporal relationships, leading to suboptimal performance. The
FIGURE 5

Comparing different metrics with current SOTA methods.
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Local Attention variant aims to incorporate some temporal context,

but it is limited to local interactions and may not fully capture long-

range dependencies. The Multi-Head Attention variant attempts to

capture more complex interactions but may suffer from increased

computational complexity.

Our proposed method, which incorporates the novel cross-

attention mechanism, outperforms all the other variants across all

datasets in terms of Accuracy, Recall, F1 Score, and AUC. This

indicates that the cross-attention mechanism effectively captures

both spatial and temporal dependencies within the ecological data,

leading to superior predictive performance. The results clearly

demonstrate that our proposed model achieves higher accuracy,

better recall, and F1 Score, indicating its ability to make more

precise predictions and effectively identify positive instances (such

as ecological changes) while minimizing false negatives.

Additionally, the higher AUC values indicate that our model can

better distinguish between positive and negative instances, making

it well-suited for real-world applications with imbalanced datasets.

The success of our proposed method can be attributed to the cross-

attention mechanism, which enables the model to selectively attend

to relevant information across different time steps and spatial

locations. This mechanism allows the model to effectively capture

complex and non-linear relationships within the ecological data,
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making it more robust and accurate in predicting ecological changes

and carbon neutrality outcomes. The experimental results validate

the effectiveness of our proposed method in addressing the

challenges posed by ecological construction and carbon neutrality

prediction in rural areas. The superior performance of our model

across different datasets demonstrates its versatility and suitability

for a wide range of ecological contexts.

The implications of this research are significant, as accurate

prediction of ecological changes and carbon neutrality outcomes is

crucial for informed decision-making and policy formulation. By

leveraging advanced attention mechanisms, our model provides

valuable insights that can inform sustainable rural development

strategies and support global efforts to combat climate change. our

proposed model with the cross-attention mechanism proves to be

the most effective and suitable approach for the task of ecological

construction and carbon neutrality prediction. Its ability to capture

both spatial and temporal dependencies within ecological data,

coupled with its superior predictive performance, sets it apart

from other attention mechanisms. This study contributes to the

advancement of ecological research and reinforces the importance

of leveraging deep learning techniques for sustainable development

and environmental conservation. As a future direction, further

research could focus on fine-tuning the model on specific
TABLE 2 Comparing different metrics with current SOTA methods.

Method

Datasets

MODIS dataset
Boudala et al. (2022)

LUCAS dataset
Pflugmacher
et al. (2019)

NDVI dataset
Roy (2021)

CERES dataset Stengel
et al. (2020)

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

Huang et al. (2022) 219.01 50.80 300.18 40.37 200.91 48.94 339.00 66.50

Qiu et al. (2023) 370.46 49.29 205.09 64.78 260.15 55.02 473.66 44.01

Strubell et al. (2020) 300.20 50.89 160.12 71.73 516.04 52.12 458.25 68.08

Sun et al. (2021) 374.53 49.43 280.51 55.91 155.09 47.70 454.83 65.64

Yu et al. (2022) 129.76 42.87 156.02 72.49 484.77 41.06 148.73 53.62

Lannelongue
et al. (2021)

276.84 43.05 518.72 53.87 510.07 68.53 298.76 66.97

Ours 112.34 19.56 123.43 25.45 34.5 26.34 102.34 18.67
fro
FIGURE 6

Comparing different metrics with current SOTA methods.
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ecological regions and exploring the transferability of the model to

other related tasks. Additionally, conducting real-world

experiments and field validations would strengthen the practical

applicability of the proposed model in supporting rural ecological

management and carbon neutrality initiatives.

Table 5 and Figure 9 presents the results of the ablation

experiment conducted to evaluate the performance of different

Transformer-based models on various datasets, including

MODIS, LUCAS, NDVI, and CERES datasets. The key evaluation

metrics used in this experiment are Parameters (M) and FLOPs (G).

BERT, GPT, and Reformer are well-known Transformer models,

each with its unique characteristics. BERT is a bidirectional encoder

using masked language modeling, GPT is a unidirectional language

model with an autoregressive objective, and Reformer uses locality-

sensitive hashing to reduce memory requirements during self-
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attention. Additionally, we have introduced a new Transformer

model, simply referred to as “Transformer,” which is based on our

proposed modifications.

Upon analyzing the results, we observe that the Transformer

model outperforms all other Transformer variants in terms of both

Parameters and FLOPs across all datasets. This indicates that our

proposed modifications have led to a more efficient and effective

Transformer architecture for the ecological construction and

carbon neutrality prediction task. The success of our Transformer

model can be attributed to its streamlined architecture, which

achieves a good trade-off between model complexity and

computational efficiency. The lower number of Parameters

implies a more compact model that requires less memory and

storage, while the lower FLOPs indicate reduced computational

complexity, making it more feasible for real-world applications. Our
TABLE 3 Comparing different metrics with current SOTA methods.

Method

Datasets

MODIS dataset Boudala
et al. (2022)

LUCAS dataset
Pflugmacher
et al. (2019)

NDVI dataset Roy (2021) CERES dataset Stengel
et al. (2020)

Inference
Time(ms)

Training
Time(s)

Inference
Time(ms)

Training
Time(s)

Inference
Time(ms)

Training
Time(s)

Inference
Time(ms)

Training
Time(s)

Huang
et al. (2022)

13.03 355.92 21.04 666.26 10.47 666.62 11.62 579.37

Qiu
et al. (2023)

21.08 277.01 13.00 560.95 21.31 199.50 8.83 423.84

Strubell
et al. (2020)

10.19 299.78 9.39 488.90 15.52 584.61 15.11 343.67

Sun
et al. (2021)

8.57 349.28 13.37 448.97 19.37 284.69 10.47 710.81

Yu
et al. (2022)

20.48 454.23 19.69 389.00 17.67 431.33 18.20 493.52

Lannelongue
et al. (2021)

9.95 304.70 8.09 301.98 13.56 452.45 15.80 419.86

Ours 5.77 193.45 8.56 204.45 6.56 185.67 6.45 195.56
FIGURE 7

Comparing different metrics with current SOTA methods.
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proposed Transformer model’s excellent performance across

diverse datasets demonstrates its adaptability and robustness for

ecological tasks. By effectively capturing spatial and temporal

dependencies in ecological data, our model excels at predicting

ecological construction outcomes and carbon neutrality patterns.

In conclusion, the ablation experiment demonstrates the

superiority of our proposed Transformer model over popular

variants like BERT, GPT, and Reformer in terms of efficiency and

effectiveness for ecological construction and carbon neutrality

prediction. Its streamlined architecture and excellent performance

across diverse datasets make it a promising tool for supporting

evidence-based ecological decision-making and carbon

neutrality initiatives.
5 Conclusion and discussion

In recent years, rural ecological construction and carbon

neutrality have become increasingly important as strategies to

address climate change and protect the ecological environment.

Coordinated development of these two areas is crucial for the

sustainable development of rural areas. However, existing

methods for studying this relationship have certain limitations. In

this study, we proposed a new method combining the Transformer-

RNN model and cross-attention mechanism to improve the

performance of the model and provide more scientific guidance

and decision support for decision-makers. The main objective of

this study was to explore the coordinated development of rural

ecological construction and carbon neutrality by introducing the

Transformer-RNN model with cross-attention mechanism. The

Transformer-RNN model combines the advantages of the

Transformer model in processing sequence data and the RNN

model in handling temporal information of sequences. The cross-

attention mechanism enables the model to simultaneously focus on

the relationship between rural ecological construction and carbon

neutrality. The proposed method was evaluated through

experiments using real-world data. The experimental results

showed that the proposed method outperformed traditional

methods in terms of accuracy and efficiency. Specifically, the

method demonstrated its ability to capture complex nonlinear

relationships and temporal information in sequence data, and to

accurately capture the impact and feedback mechanism between

rural ecological construction and carbon neutrality. The results

suggest that the proposed method has great potential for providing

more scientific guidance and decision support for decision-makers,

promoting the realization of rural ecological construction and

carbon neutrality goals.

However, it is important to acknowledge the limitations and

challenges of our study. Firstly, the effectiveness of the proposed

framework relies on the availability and quality of data on rural

ecological construction and carbon neutrality. Adequate data

collection and preprocessing are essential for accurate model training

and analysis. Secondly, the interpretability of the deep learning models

used in our framework may pose challenges in understanding the

underlying decision-making process. Despite these limitations, our

study provides valuable insights into the coordinated development
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FIGURE 8

Ablation experiment of cross-attention mechanism.
TABLE 5 Ablation experiment of Transformer.

Method

Datasets

MODIS dataset LUCAS dataset NDVI dataset CERES dataset

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

BERT 137.82 43.56 208.29 70.21 506.47 53.87 156.22 66.38

GPT 472.99 50.03 151.02 52.16 363.12 49.09 181.24 41.88

Reformer 507.08 40.03 158.98 44.23 148.53 72.93 426.14 62.14

Transformer 111.22 18.34 138.11 19.45 123.45 25.24 101.35 21.23
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between rural ecological construction and carbon neutrality. The

integration of the Transformer-RNN model with a cross-attention

mechanism allows for a more accurate assessment of the impact of

rural ecological measures on carbon neutrality and vice versa. Moving

forward, future research should address these limitations and

challenges. Efforts should be made to enhance data collection and

quality assurance processes, ensuring reliable inputs for the deep

learning framework. Additionally, developing interpretability

techniques for deep learning models can provide decision-makers

with a clearer understanding of the model’s decision process and

increase trust in the results. Furthermore, future studies should

consider incorporating additional factors and variables that influence

rural ecological construction and carbon neutrality. Socio-economic

factors, policy interventions, and technological advancements are

among the aspects that can be explored to gain a comprehensive

understanding of the subject.

In conclusion, our study contributes to the understanding of the

coordinated development between rural ecological construction and

carbon neutrality by proposing a novel deep learning-based

approach. By acknowledging the limitations and challenges and

identifying future research directions, we pave the way for further

advancements in this field. The outcomes of our research can

provide decision-makers with scientific insights to support the

formulation of effective policies and strategies towards achieving

carbon neutrality and improving the rural ecological environment.
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