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Introduction: In the face of increasingly severe global climate change and

environmental challenges, reducing carbon emissions has become a key

global priority. Deep learning, as a powerful artificial intelligence technology,

has demonstrated significant capabilities in time series analysis and pattern

recognition, opening up new avenues for carbon emission prediction and

policy development.

Methods: In this study, we carefully collected and pre-processed four datasets to

ensure the reliability and consistency of the data. Our proposed TCN-LSTM

combination architecture effectively leverages the parallel computing

capabilities of TCN and the memory capacity of LSTM, more efficiently

capturing long-term dependencies in time series data. Furthermore, the

introduction of an attention mechanism allows us to weigh important factors

in historical data, thereby improving the accuracy and robustness of predictions.

Results:Our research findings provide novel insights and methods for advancing

carbon emission prediction. Additionally, our discoveries offer valuable

references for decision-makers and government agencies in formulating

scientifically effective carbon reduction policies. As the urgency of addressing

climate change continues to grow, the progress made in this paper can

contribute to a more sustainable and environmentally conscious future.

Discussion: In this paper, we emphasize the potential of deep learning

techniques in carbon emission prediction and demonstrate the effectiveness of

the TCN-LSTM combination architecture. The significant contribution of this

research lies in providing a new approach to address the carbon emission

prediction problem in time series data. Moreover, our study underscores the

importance of data reliability and consistency for the successful application of

models. We encourage further research and application of this method to

facilitate the achievement of global carbon reduction goals.
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1 Introduction

The issue of climate change is becoming increasingly

prominent, sparking widespread concerns globally and leading to

the rise of carbon emission prediction and economic policy research

as significant topics Waheed et al. (2019). As human economic

activities continue to evolve, the escalating emissions of greenhouse

gases further drive changes in the Earth’s climate system, resulting

in the frequent occurrence of extreme weather events and

exacerbated environmental problems Cao et al. (2017). In order

to effectively address climate change, governments and the

international community urgently need to formulate practical and

feasible emission reduction policies, while utilizing economic policy

research to foster the sustainable development of green and low-

carbon economies Li et al. (2021). Existing works often overlook the

long-term dependencies in time series data, particularly facing

challenges when predicting future carbon emission trends. Given

the dynamic and uncertain nature of time series data, there is a

demand for a novel prediction model that can effectively capture

these complex changes Liu et al. (2023). This study aims to

introduce an innovative approach by merging the TCN-LSTM

model with an attention mechanism, aiming to bring

breakthroughs to the fields of carbon emission prediction and

economic policy research. Rather than focusing solely on

capturing local features, we pay closer attention to the long-term

relationships within time series data. Simultaneously, we

incorporate an attention mechanism to strengthen the model’s

emphasis on crucial information, resulting in a more accurate

prediction of future carbon emission trends. Through extensive

experiments with multiple real-world datasets, we demonstrate the

effectiveness and adaptability of this approach. This innovative

model is poised to enhance the precision of carbon emission

trend prediction, providing policymakers with more targeted

decision support and driving the sustainable development of

green and low-carbon economies. Additionally, this paves the way

for new methodologies and perspectives in future climate

change research.

Carbon emission prediction serves as a crucial foundation for

the formulation of effective emission reduction policies. In recent

years, deep learning has made remarkable progress in prediction

models, benefiting from its powerful representation learning and

flexible feature extraction capabilities, as evidenced by CNN models

Zhao et al. (2023). While originally designed for image processing,

CNN can effectively capture local patterns and features in time

series data, making it suitable for short-term carbon emission trend

analysis. However, its ability to model long-term dependencies is

limited, making it unsuitable for handling long sequences. On the

other hand, GRU (Gated Recurrent Unit) models address the

challenge of processing long sequences effectively. By employing

gate mechanisms, GRU models control information flow,

preventing vanishing or exploding gradients Yang et al. (2022).

This empowers GRU to capture long-term dependencies in

sequences, significantly enhancing prediction accuracy and

stability. Despite these strengths, GRU models may still encounter

difficulties in modeling long-term dependencies for certain

complex tasks.
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To address the challenge of handling long sequences, the TCN

(Temporal Convolutional Network) model was introduced Zhang

and Wen (2022). TCN excels at capturing dependencies across

extensive time intervals and offers stable and efficient model

training. However, its accuracy might suffer when confronted

with significant time dynamic changes within the sequence. To

achieve higher prediction accuracy, researchers have been exploring

various methods. The Transformer Zhang et al. (2023), based on the

self-attention mechanism, has shown remarkable success in natural

language processing tasks, such as machine translation. In recent

years, the Transformer has found application in other domains,

including time series data, especially for handling long sequences.

By leveraging self-attention, the Transformer effectively captures

dependencies between different time steps. For tasks like carbon

emission prediction, where considering factors over a longer period

is essential, the Transformer outperforms other methods in

handling long-term dependencies, thereby enhancing prediction

accuracy. However, it is worth noting that the Transformer

demands a substantial amount of real data samples for effective

training. In certain carbon emission prediction tasks, obtaining

sufficient real data can pose a challenge, which limits the

Transformer’s application in specific scenarios. Additionally, the

complex internal structure of the Transformer makes interpreting

its prediction results difficult. In carbon emission prediction

scenarios where interpretability is crucial, the Transformer may

not provide intuitive explanations and reasoning processes. As a

result, careful consideration of the specific task requirements is

necessary when selecting an appropriate model for carbon

emission prediction.

As a result, researchers have explored various model combinations,

including the CNN-LSTM model Liu et al. (2023). This model utilizes

CNN to extract spatial features from the input data, which are then fed

into LSTM for further prediction. The combination of CNN and LSTM

enables the model to handle multi time-scale sequence data effectively

and consider both long-term and short-term dependencies, resulting in

improved prediction performance. In the future, continuous

optimization and refinement of prediction models, while leveraging

the strengths of different models, will be essential to address the

challenges in carbon emission prediction and enhance the accuracy

and practicality of prediction results. By combining the merits of

various models, researchers can develop more robust and powerful

prediction frameworks. However, one limitation of the CNN-LSTM

model is its lack of weighted treatment of important features. In this

approach, all features are treated equally, potentially leading to

insufficient attention given to critical factors. As a consequence, this

can impact prediction accuracy and stability. To further enhance the

performance of carbon emission prediction models, incorporating

mechanisms to assign weights to important features or applying

attention mechanisms, as seen in other models like the Transformer,

could be explored. This way, the model can better focus on crucial

factors and make more accurate predictions, contributing to more

effective emission reduction policies and the development of a green

and low-carbon economy.

This paper proposes a carbon emission prediction model that

combines TCN, LSTM, and an attention mechanism to enhance

focus on important features. By leveraging the strengths of TCN,
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LSTM, and the attention mechanism, our model comprehensively

handles long sequence data, improving prediction accuracy and

interpretability. To handle long sequences effectively, our model

first retains the combination of TCN and LSTM. TCN captures

dependencies across large time intervals, while LSTM deals with

long-term dependencies. This combination allows the model to

better handle complex relationships in long sequence data,

enhancing its generalization ability and stability. Moreover, we

introduce the attention mechanism to strengthen the focus on

features at different time steps. The attention mechanism assigns

weights to data at different time steps based on their importance,

enabling the model to concentrate more on critical features for the

prediction task. This enhances the model’s capture and

understanding of important factors, improving the interpretability

of prediction results. Our TCN-LSTM model, combined with the

attention mechanism, considers both long-term and short-term

dependencies, handles multi-time-scale data, and weighs important

features. As a result, this approach significantly improves prediction

accuracy and stability. Notably, the model not only better meets the

requirements of carbon emission prediction tasks but also

holds potential for generalization in other time series

forecasting domains.

The contribution points of this paper are as follows:
Fron
• This study introduces, for the first time, a method that

integrates the TCN-LSTM model with an attention

mechanism to address challenges in carbon emission

prediction. By leveraging the parallel computing capability

of TCN and the long-term dependency of LSTM, along with

the weighted strategy of the attention mechanism, we

innovatively enhance the accuracy and robustness of time

series prediction models in carbon emission forecasting.

This novel fusion of models opens up new avenues of

technological advancement in the field of carbon emission

prediction.

• To validate the generality and adaptability of the proposed

model, extensive experiments were conducted on multiple

real-world datasets. These datasets were collected from

various institutions such as EIA, EPA, EEA, and IEA,

covering diverse geographical areas and time periods. The

consistent experimental results across different datasets

reveal that our model achieves a high level of prediction

accuracy and efficiency. This multi-data source validation

ensures the effectiveness of the model in various application

scenarios.

• The carbon emission prediction model proposed in this

study not only represents a breakthrough in technical terms

but also provides valuable insights for decision-makers and

governmental organizations. By accurately predicting

future carbon emission trends, our model offers crucial

support for formulating scientifically sound carbon

reduction policies. These predictive insights contribute to

steering green economic development, addressing climate

change, and achieving sustainable development goals,

thereby generating positive impacts on society and the

environment.
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In the rest of this paper, we present recent related work in

Section 2. Section 3 introduces our proposed methods. Section 4

showcases the experimental part. Section 5 contains the conclusion.
2 Related work

2.1 Research on deep learning-based
carbon emission prediction models

Deep learning has demonstrated remarkable vitality across

various fields. For instance, the classification and recognition of

materials on and beneath the Earth’s surface have long been

challenging research topics in the realms of Earth science and

remote sensing. Hong et al. have contributed significantly to the

remote sensing community by developing a versatile Multimodal

Deep Learning (MDL) framework that combines “when,” “where,”

and “how” aspects, addressing these challenges effectively Hong

et al. (2021a). Furthermore, in the exploration and representation of

sequential attributes of spectral signatures, a novel backbone

network called SpectralFormer has been introduced. This

innovation successfully learns local spectral sequence information

from adjacent bands of hyperspectral (HS) imagery, yielding

grouped spectral embeddings Hong et al. (2021b). Additionally,

the authors have conducted in-depth investigations into the

application of Convolutional Neural Networks (CNN) and Graph

Convolutional Networks (GCN) in HS image classification. They

propose a novel approach termed miniGCN, which enables training

large-scale GCNs in a mini-batch manner and inferring out-of-

sample data without retraining the network, thereby enhancing

classification performance. This methodology effectively captures

spatial-spectral features within hyperspectral imagery Hong

et al. (2020).

Deep learning techniques have also demonstrated significant

potential in carbon emission prediction. For example, in recent

years, Long Short-Term Memory (LSTM) networks, a type of

recurrent neural network capable of capturing long-term

dependencies in time series data, have found extensive application

in energy forecasting Huang et al. (2019). LSTMmodels outperform

traditional ARIMA models, especially in domains such as carbon

emission prediction, where complex nonlinear time series data with

high uncertainty and fluctuations are common. In this study,

researchers combined the LSTM model to predict carbon

emission data and explored parameter adjustments and the

training process. By training on a substantial amount of historical

data, the LSTM model effectively learns hidden patterns and trends

in the time series, leading to more accurate predictions of future

carbon emissions. The model’s memory capabilities allow it to

handle long-term dependencies in the time series, overcoming the

issue of information loss in traditional models and significantly

improving long-term forecasting capabilities. Through comparative

experiments and validation, this study demonstrates significant

progress in the accuracy and robustness of carbon emission

prediction based on the LSTM model. The predicted results better

reflect actual changes in carbon emissions and exhibit more credible

performance in long-term forecasts. As a result, this provides a
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more accurate and reliable reference for governments, businesses,

and international organizations in formulating carbon reduction

policies. However, deep learning models also face challenges.

Firstly, the training process of LSTM models is relatively

complex, requiring a significant amount of computational

resources and time. Secondly, deep learning models have higher

data requirements, and limited historical carbon emission data may

affect the reliability of prediction results. Therefore, in practical

applications, researchers need to carefully consider the availability

of data and model complexity to strike a balance between prediction

accuracy and computational feasibility Ahmed et al. (2022). This

research has opened up new directions in the field of carbon

emission prediction and emphasizes the significance of careful

algorithm and parameter selection when employing deep learning

models for prediction. Flexibility in adjusting the models to suit

specific circumstances is also crucial.

Looking ahead, further research that combines deep learning

techniques with traditional methods holds the promise of even

greater improvements in prediction accuracy. Such advancements

could provide more intelligent decision support in the global efforts

to combat climate change. The future of carbon emission prediction

is promising, as we continue to harness the power of deep learning

and integrate it with established approaches to enhance our ability

to make informed and effective decisions in the face of

environmental challenges. By continuously exploring the potential

of deep learning in this domain, we can strive for a more sustainable

and environmentally responsible future.
2.2 Research on composite models for
carbon emission prediction

This study explores the combination of multiple prediction

models to achieve more accurate carbon emission predictions.

Researchers combine traditional ARIMA models, LSTM models,

and Support Vector Regression (SVR) models, among others Ji

et al. (2019). By integrating these diverse prediction models, the

composite model can fully leverage the unique characteristics and

strengths of each model. Traditional ARIMA models excel at

handling long-term trends and seasonality in time series data, while

LSTM models are adept at capturing long-term dependencies, and

SVR models are effective in dealing with non-linear data Meng et al.

(2022). By combining these models, their respective shortcomings

can be effectively compensated for, reducing prediction errors and

improving overall prediction performance. Furthermore, the

ensemble prediction model can also perform a weighted average of

predictions from different models, thus reducing prediction bias

caused by the biases or overfitting of individual models. In practice,

fine-tuning and optimizing the weights of each model in the

ensemble can further enhance the accuracy and robustness of the

composite model Sen et al. (2016).

The integration of multiple models in the composite prediction

approach has brought new breakthroughs to carbon emission

prediction research, providing more reliable forecasting support

for sustainable development decisions. When facing complex

climate change and carbon emission fluctuations, the use of
Frontiers in Ecology and Evolution 04
ensemble models can help obtain comprehensive and more

credible prediction results under different scenarios, offering a

scientific basis for policymakers to formulate reasonable carbon

reduction policies Qi and Zhang (2022). However, the design and

optimization of ensemble prediction models also pose certain

challenges. Further research is needed on how to rationally select

the weights of each model, how to handle the correlations between

models, and how to integrate the predictions from various models.

Therefore, future studies can delve into constructing and improving

ensemble models to further enhance prediction accuracy and

reliability. In conclusion, the integration of multiple prediction

models is a promising research direction, with the potential to

provide more comprehensive and effective support for carbon

emission prediction and sustainable development decisions.
2.3 Development and application of
region-specific carbon emission
prediction system

Building upon the aforementioned research, to better cater to

the regional carbon emission prediction needs, researchers have

begun the development of a region-specific carbon emission

prediction system. This system aims to integrate various

prediction models, data sources, and algorithms to provide highly

accurate forecasts and analysis of carbon emission trends for

specific areas. It assists local governments, businesses, and social

organizations in formulating targeted carbon reduction measures

and sustainable development strategies Liu et al. (2021).

Firstly, to accommodate regional differences, researchers have

started collecting and integrating global, national, and regional

carbon emission data, as well as other key factors influencing

carbon emissions, such as economic indicators, energy structures,

and policy measures. These data will serve as inputs for the

prediction system, used for model training and validation, thus

providing a comprehensive reference for the predictions. Zheng

et al. (2020) Secondly, to improve prediction accuracy and

robustness, the prediction system will integrate the research

achievements from the previously mentioned studies based on

deep learning and composite models. The system will incorporate

various prediction models, such as BiLSTM, CNN, and GAN, which

will be selected and combined based on different time scales and

data characteristics. The prediction system will utilize data-driven

approaches to automatically select the optimal model or model

combination to meet the carbon emission prediction needs of

different regions and periods. Dong et al. (2013) Furthermore, to

enhance the usability and practicality of the prediction system,

researchers will develop a user-friendly visualization interface,

allowing decision-makers and researchers to easily access and

interpret the prediction results. The system will also provide real-

time prediction updates and evaluation functions, enabling the

tracking of carbon emission changes, and facilitating timely

adjustments to decisions and policies in response to potential new

situations and challenges.

In the application aspect, the region-specific carbon emission

prediction system will provide customized services to different
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regional governments and businesses. Governments can utilize the

prediction results to guide local carbon reduction target setting and

policy formulation, promoting the development of a low-carbon

economy and environmental protection. Businesses can optimize

production plans and resource allocation using the prediction

system, achieving a win-win situation in carbon emission

management and economic benefits. Additionally, the system

provides academia with an essential research tool to explore the

correlation between carbon emissions and climate change, as well as

to evaluate the effectiveness of carbon reduction measures. Zhang

et al. (2020) However, in the development and application of the

region specific carbon emission prediction system, there are still

some challenges to address. Firstly, acquiring and integrating

regional data involves multiple data sources and formats,

requiring the establishment of efficient data processing and

management mechanisms. Secondly, different regions may have

varying carbon emission influencing factors, such as climate and

industrial structure. Addressing and balancing these factors in the

prediction model is a critical issue. Furthermore, the stability and

robustness of the prediction system need to be thoroughly tested

and verified to ensure its reliability across different regions and time

scales Shuai et al. (2017). In conclusion, the development and

application of region-specific carbon emission prediction systems

represent a significant advancement in the field of carbon emission

prediction. By integrating various prediction models and data

sources, and utilizing deep learning techniques and ensemble

prediction methods, this system has the potential to make

positive contributions to achieving global carbon reduction goals

and promoting sustainable development. As technology advances

and data becomes more abundant, the prediction accuracy and

usability of the system will continue to improve, bringing more

hope and possibilities for humanity in the face of climate change.
3 Methodology

3.1 Overview of our network

In this paper, we present a novel carbon emission prediction

model that integrates TCN (Temporal Convolutional Network) and

LSTM (Long Short-Term Memory) with an attention mechanism.

The primary objective of this model is to overcome the limitations

of traditional prediction models in handling long-term

dependencies and non-linear relationships, while simultaneously

enhancing its ability to focus on critical information. By doing so,

we aim to improve the accuracy and stability of carbon emission

predictions significantly.

Firstly, we introduced the Temporal Convolutional Network

(TCN), a neural network structure that plays a significant role by

using one-dimensional convolutional layers to expand the time

window, thus capturing longer-term dependencies in time series

data. This unique feature allows TCN to better handle long-term

dependencies and outperform traditional Recurrent Neural

Network (RNN) structures by avoiding the vanishing gradient

problem, resulting in superior performance on long sequence data.
Frontiers in Ecology and Evolution 05
Secondly, we incorporated the Long Short-Term Memory

(LSTM) network, a type of recurrent neural network with

memory units that effectively capture long-term dependencies in

time series data. LSTM utilizes gate mechanisms to control the flow

of information, preventing information loss and vanishing

gradients in long sequence data. Combining LSTM with TCN

further strengthens the model’s ability to model long-term

dependencies, making the prediction model more effective in

handling long sequence data. This hybrid approach leverages the

strengths of both TCN and LSTM, enhancing the model’s capability

to capture complex patterns and relationships in the carbon

emission data.

Furthermore, we introduced the attention mechanism, which

plays a pivotal role in our model. The attention mechanism enables

the model to weigh the importance of different information,

allowing it to focus more on critical factors in the historical data

and thereby enhancing prediction accuracy. By assigning

appropriate weights to the factors influencing carbon emissions,

the attention mechanism reflects their relative importance and

optimizes the model’s prediction results. In summary, our TCN-

LSTM model, combined with the attention mechanism, fully

leverages TCN’s long-time window characteristic to capture long-

term dependencies. The incorporation of LSTM’s gate mechanism

effectively handles long sequence data while mitigating vanishing

gradients. The introduction of the attention mechanism further

enhances the model’s ability to focus on critical information,

leading to more accurate predictions of carbon emissions. This

comprehensive approach empowers our model to better understand

and model the complexities of carbon emission data, making it a

promising tool for carbon emission prediction tasks. Figure 1

provides the overall flow chart.

In the experiments, we conducted training and evaluation of our

TCN-LSTM model using diverse datasets, including EIA Lv and

Piccialli (2021), EPA Kow et al. (2022), EEA Tietge et al. (2019), and

IEA Pinto et al. (2023). To ensure robustness and optimize

performance, we employed techniques such as cross-validation and

error analysis. Through these methods, we fine-tuned

hyperparameters and model structures, aiming to enhance

prediction accuracy and stability. Overall, our TCN-LSTM model,

complemented by the attention mechanism, offers several notable

advantages. It effectively overcomes the limitations of traditional

prediction models by adeptly handling long-term dependencies and

non-linear relationships. The incorporation of the attention

mechanism further strengthens the model’s ability to prioritize

critical information, leading to improved prediction accuracy.

Through rigorous experimental validation, our model

demonstrated highly accurate carbon emission predictions across

multiple datasets, providing reliable support for environmental

protection and carbon reduction policy formulation. We anticipate

that this model will play a significant role in the field of carbon

emission prediction and economic policy research, contributing

positively to sustainable development and environmental protection

efforts. Its potential impact on addressing environmental challenges

and facilitating informed decision-making makes it a valuable tool for

advancing the cause of sustainability and environmental stewardship.
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3.2 TCN model

TCN (Temporal Convolutional Network) is a neural network

architecture used for processing time series dataHewage et al.

(2020). It employs convolutional layers to capture local patterns

and long-term dependencies within the time series. The

convolutional layers utilize one-dimensional convolutional

operations, allowing the network to effectively capture temporal

features in the time series data. The one-dimensional convolutional

kernels slide along the time dimension, performing convolution

operations on different parts of the input sequence, thereby

generating feature maps with local perception capabilities. By

stacking multiple convolutional layers, the network gradually

learns more abstract and advanced features, enabling it to capture

more complex patterns and long-term dependencies within the

time series. Figure 2 provides a flow chart of TCN.
3.2.1 One-dimensional convolutional layer
In the one-dimensional convolutional layer, we use a

convolutional kernel of length k to perform the convolution

operation on the input data, resulting in a feature map at a

specific position. For input sequence data X, the calculation

formula for the i-th position of the output feature map Y is as

follows:

Y ½i� = s o
j
(X½i + j� · W½j�) + b

 !
(1)

In the equation, Y[i] represents the i-th element of the output

sequence, indicating the model’s prediction at time step i. X[i + j]

represents the (i + j)-th element of the input sequence, where j is an

offset relative to i.W[j] represents the model’s weight parameters. b

is the model’s bias parameter used to introduce an offset in

the output.
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3.2.2 Multiple convolutional layers
TCN typically consists of multiple convolutional layers, where

the output of each layer serves as the input to the next layer. The

calculation formula for multiple convolutional layers is as follows:

Y ½l� = s o
j
(Y ½l − 1�½i + j� · W½l�½j�) + b½l�

 !
(2)

In the equation, Y[l] represents the output of the l-th

convolutional layer, Y[l − 1] represents the output of the (l −

1)-th convolutional layer, W[l][j] is the j-th parameter of the

convolutional kernel in the l-th layer, and b[l] is the bias term for

the l-th convolutional layer.

3.2.3 Pooling layer
In TCN, pooling layers are commonly used to reduce the size of

feature maps, thereby decreasing computational complexity. The most

common pooling operation is max pooling, which takes the maximum

value of each region in the feature map as the output after pooling.

Let F be the input feature map, and the pooling operation can be

formalized as follows:

Max Pooling(F) = max(Window(F)) (3)

Here, Window(F) represents all positions of the sliding window

on the feature map, and max(Window(F)) represents selecting the

maximum value within the window at each position.

3.2.4 Padding
To maintain the same sequence length for both input and

output, TCN commonly adopts a “causal” padding approach.

This involves padding zeros on the left side of the input sequence,

preventing the convolution process from involving future

information. As a result, TCN performs excellently in tasks such

as time series prediction.
FIGURE 1

Overall flow chart of the model.
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In the study of carbon emission prediction, the TCN model has

been instrumental. We combined TCN with LSTM and integrated

an attention mechanism, resulting in a significant boost to

prediction accuracy and stability. The introduction of the TCN

model enabled the effective handling of long sequence data while

capturing local and global information in time series data. The

utilization of multi-layer one-dimensional convolutional layers in

TCN facilitated capturing long-term dependencies and addressed

the gradient vanishing problem often encountered in traditional

models. Moreover, the combination of TCN and LSTM enhanced

the model’s ability to capture long-term dependencies effectively. To

further enhance prediction accuracy, we incorporated the attention

mechanism, dynamically learning weights for each time step. This

allowed the model to focus more on crucial time segments, resulting

in a notable improvement in prediction accuracy. The attention

mechanism can be implemented through soft or hard attention. In
Frontiers in Ecology and Evolution 07
our case, it forms our TCN-LSTM combined with an attention

mechanism for carbon emission prediction. The comprehensive

utilization of TCN’s long-time window characteristics and LSTM’s

long-term dependency modeling, along with the attention

mechanism’s focus on key information, led to substantial

performance improvements in our prediction model. As a result,

our TCN-LSTM combined with an attention mechanism has

significantly contributed to advancing carbon emission prediction

in this field.
3.3 LSTM model

LSTM (Long Short-TermMemory) is a special type of recurrent

neural network (RNN) architecture that effectively addresses the

issues of gradient vanishing and exploding encountered in

traditional RNNs when processing sequence data Kong et al.

(2022). LSTM networks consist of multiple memory cells, each

equipped with three crucial gates: the input gate, forget gate, and

output gate, which control the flow of information in and out of the

cells. These gates enable LSTM to retain and selectively update

information over time, making it particularly suitable for tasks

involving long-range dependencies in sequential data. Figure 3

provides a flow chart of LSTM.
3.3.1 Forward propagation
For an LSTM cell, assuming the current input at time step t is xt,

the previous hidden state at time step t − 1 is ht−1, and the previous

cell state is ct−1. The three gate units of LSTM are the input gate it,

the forget gate ft, and the output gate ot. The forward propagation

process of LSTM is as follows:

Calculation of the input gate it:

it = s (Wixxt +Wihht−1 + bi) (4)

Calculation of the forget gate ft:

ft = s (Wfxxt +Wfhht−1 + bf ) (5)
FIGURE 2

Generic TCN with dilated causal convolution and residual structure.
FIGURE 3

The basic LSTM network structure.
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Calculation of the output gate ot:

ot = s (Woxxt +Wohht−1 + bo) (6)

Calculation of the candidate cell state ct:

ct = ft ⊙ ct−1 + it ⊙~ct (7)

Update of the cell state ct:

ct = ft ⊙ ct−1 + it ⊙~ct (8)

Calculation of the output hidden state ht:

ht = ot ⊙ tanh(ct) (9)
3.3.2 Backward propagation
We use the Cross-Entropy Loss function to measure the error

between the predicted values and the true labels, denoted as L(Y,Y)̂.

The calculation of the Cross-Entropy Loss function is as follows:

L(Y , Ŷ ) = −
1
To

T

t=1
o
K

k=1

yt,k · log (ŷ t,k) (10)

Where K represents the number of label categories, yt,k is the

probability of the sample having the true label of the category k at

time step t (1 if it’s the true label, 0 otherwise), and ŷ t,k is the

predicted probability by the model at time step t.

Next, we use the backpropagation algorithm to compute the

gradients of the model parameters. Backpropagation calculates the

partial derivatives of the loss function concerning the model

parameters using the chain rule and propagates the gradients

layer by layer through the network. Let L be the loss function and

q be the model parameters, backpropagation computes ∂ L
∂ q to obtain

the gradient information. Then, an optimization algorithm

(e.g., Gradient Descent) is used to update the model parameters

to minimize the loss function. The update step of Gradient Descent

is as follows:

q = q − a ·
∂ L
∂ q

(11)

Where a is the learning rate, controlling the step size of

parameter update s . Through i t e ra t ive ly per forming

backpropagation and parameter updates, the LSTM model

gradually optimizes its parameters, making the predicted results

closer to the true labels and improving the model’s performance.

Our TCN-LSTM combined attention mechanism for carbon

emission prediction heavily relies on LSTM, which plays a pivotal

role in the model. By leveraging LSTM’s gated mechanism, our

model gains precise control over information flow, enabling

targeted memory and updates for time series data. This capability

empowers the model to accurately capture long-term trends and

correlations within the time series data, significantly enhancing the

accuracy and stability of carbon emission forecasts. Integrating

LSTM with TCN and the attention mechanism allows us to fully

exploit its advantages in handling sequential data, leading to

remarkable advancements in carbon emission prediction. This

unique combination enables our model to adapt better to the

characteristics of time series data, providing decision-makers with
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more reliable carbon reduction strategies and environmental

protection decisions.
3.4 Attention mechanism

The Attention Mechanism is a commonly used technique in

deep learning, aimed at enhancing the model’s focus on different

parts of the input data. In traditional neural networks, all input data

is treated equally, regardless of its position or importance in the

input sequence Lin et al. (2021). However, when dealing with

sequential data or longer texts, information at different positions

may carry varying degrees of importance. The Attention

Mechanism dynamically assigns different weights to different

input positions, allowing the model to concentrate its attention

on more important parts, thus better capturing critical information.

Figure 4 provides a flow chart of the Attention Mechanism.

3.4.1 Attention weight calculation
Attention weights are used to measure the importance of

different input positions. In sequence data, the Softmax function

is commonly used to calculate attention weights. For each position i,

the calculation of attention weight wi is as follows:

wi =
exp (ei)

on
j=1 exp (ej)

(12)

Where ei represents the relevance score between position i and

context information (e.g., query vector). The specific calculation of

ei may vary depending on the attention mechanism used. In

different attention mechanisms, the calculation of ei may differ.

3.4.2 Context vector calculation
The context vector is obtained by taking a weighted sum of the

input sequence based on the attention weights. It represents a

weighted representation of the input sequence, where more

attention is given to important positions. The calculation of the

context vector c is as follows:

c =o
n

i=1
wi · xi (13)

Where wi represents the attention weight and xi represents the

feature vector corresponding to position i in the input sequence.

3.4.3 Feature combination
The context vector c is usually combined with the feature at a

certain position through concatenation or other methods to obtain

an attention-enhanced feature representation for that position.

Specifically, the context vector c can be concatenated with the

feature xi at position i as follows:

fi =  ½c, xi� (14)

Where [c,xi] denotes the concatenation operation. The resulting

fi can be used as the input for subsequent tasks, such as feeding it

into a neural network for classification, regression, or other tasks.

The introduction of the attention mechanism allows the model to
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focus on important positions in the input sequence, thereby

improving the model’s performance in various experiments.

In this paper, we have introduced an attention mechanism to

enhance the focus on key information in our carbon emission

prediction model, resulting in improved accuracy and stability. By

dynamically learning weights for each time step, the attention

mechanism enables the model to prioritize important time

segments. In the context of carbon emission prediction, different

time steps may carry varying levels of importance, influenced by

factors such as economic policies or natural events. The attention

mechanism allows our model to adaptively learn these weights,

concentrating more on critical information and disregarding less

relevant parts. Our model incorporates the attention mechanism to

process outputs from both the Time Convolutional Neural Network

(TCN) and Long Short-Term Memory (LSTM). It performs a

weighted average of their features by calculating the weights for

each time step. The weighted average enables our model to

emphasize time steps that significantly contribute to the

prediction results, ultimately enhancing the accuracy and stability

of our predictions.
4 Experiment

4.1 Datasets

In this paper’s experiments, we will use four main datasets: the

U.S. Energy Information Administration (EIA) Lv and Piccialli

(2021), the U.S. Environmental Protection Agency (EPA) Kow et al.

(2022), the European Environment Agency (EEA) Tietge et al.
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(2019), and the International Energy Agency (IEA) Pinto et al.

(2023). These datasets are essential for predicting carbon emissions,

as they provide abundant and high-qual i ty data on

carbon emissions.

We acquired significant U.S. carbon emission data from the U.S.

Energy Information Administration (EIA). This dataset comprises

carbon emission data from various regions and industries in the

U.S., spanning multiple years, which allows for a comprehensive

analysis of U.S. carbon emission trends. The data underwent

rigorous auditing and processing to ensure its accuracy

and reliability.

Furthermore, we gathered a detailed dataset provided by the

U.S. Environmental Protection Agency (EPA), containing carbon

emission data from diverse industries and enterprises within the

U.S. This dataset offers valuable insights into carbon emission

patterns across different sectors, providing comprehensive

support for building the carbon emission prediction model.

Moreover, we obtained datasets from the European

Environment Agency (EEA) and the International Energy Agency

(IEA), encompassing carbon emission data from numerous

countries and regions in Europe. These datasets cover an

extensive time range, facilitating in-depth research on European

carbon emission trends and the underlying influencing factors.

During the data preparation process, we conducted rigorous

quality control and data cleaning measures to ensure the integrity

and accuracy of the data. Our efforts involved removing missing

values and outliers, which helped eliminate any inaccurate or

incomplete data that could potentially impact the predictive

model ’s performance . Addit ional ly , we implemented

preprocessing and feature engineering techniques to enhance data
FIGURE 4

Compute process of attention.
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usability and suitability for model training. These steps included

transforming the data into a format suitable for model training and

extracting relevant features essential for carbon emission

forecasting. By leveraging these four datasets, we obtained a

comprehensive and high-quality collection of carbon emission

data, which provided abundant training and validation data for

our TCN-LSTM combined with the attention mechanism carbon

emission prediction model. Consequently, this extensive dataset

contributes significantly to improving the accuracy and stability of

the predictive model, yielding more reliable forecasting results for

carbon emission prediction and policy-making.
4.2 Experimental details

4.2.1 Step 1: Data cleaning and preprocessing
In this experiment, we utilized four datasets: EIA, EPA, EEA,

and IEA, as the primary sources for predicting carbon emissions. To

ensure data integrity and consistency, we conducted data

preprocessing in the following three steps:
Fron
• Data Cleaning: During the data cleaning phase, we

employed specific methods to handle missing data and

outliers, ensuring data quality. For missing data, we used

interpolation to fill missing values with the average of

neighboring data points, preserving data integrity.

Regarding outliers, we applied statistical methods to

identify and remove data points that fell outside the

normal range, enhancing data accuracy.

• Data Standardization: We standardized the data to ensure

consistent scales and ranges across different datasets.

Specifically, we normalized the data to have a mean of

zero and a standard deviation of one, facilitating model

training and comparisons.

• Data Splitting: In the data splitting stage, we divided the

dataset into training and testing sets, with a split ratio of

70% for training and 30% for testing. This ratio was chosen

to ensure an adequate amount of data for model training

while maintaining a sufficient portion for evaluating model

performance.
4.2.2 Step 2: Model training
In the journey to harness the power of our TCN-LSTM-

Attention model for precise carbon emission prediction, the

process of model training plays a pivotal role. This critical phase

can be dissected into three key aspects: Network Parameter Settings,

Model Architecture Design, and Model Training Process.
• Network Parameter Settings: In the first step of model

training, it is crucial to precisely define network

parameters. To achieve a high-performance TCN-LSTM-

Attention model, we conducted numerous experiments and

determined the following parameter settings: Firstly, we set

an appropriate learning rate of 0.001 to ensure effective
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model convergence during the training process.

Additionally, we configured a batch size of 64 to process

multiple samples simultaneously, enhancing training

efficiency. Furthermore, we selected 100 iterations for the

training process to sufficiently train the model. These

network parameter settings are paramount for both model

performance and training speed.

• Model Architecture Design: The architecture design of the

TCN-LSTM-Attention model is the central element of

model training. We first explicitly defined the number of

layers in the model. In TCN, we utilized 4 convolutional

layers, with each layer containing 64 convolutional kernels

to effectively capture features in the time series. In the case

of LSTM, we opted for 2 LSTM layers, each consisting of

128 LSTM units to capture long-term dependencies. Finally,

we introduced the Attention mechanism to enhance the

model’s focus on critical information. Additionally, we

configured ReLU activation functions, regularization

methods, and initialization strategies to ensure model

stability and generalization.

• Model Training Process: In the final step of model training,

we executed the specific training process. We employed the

Adam optimizer in conjunction with the cross-entropy loss

function to minimize the model’s prediction error. Each

training batch comprised 64 samples, and we performed

random shuffling of the training data to enhance model

generalization. Furthermore, we implemented an early

stopping strategy to prevent overfitting and assessed the

model’s performance at the conclusion of each training

epoch. The training process typically took several hours to

days, contingent on the dataset’s size and the model’s

complexity.
4.2.3 Step 3: Model evaluation
After the model training is completed, the model needs to be

evaluated, including calculating the prediction error and evaluating

the accuracy and stability of the model and other indicators. The

indicators compared in this article are Accuracy, Recall, Precision,

Specificity, Sensitivity, F-Score, and AUC. At the same time, we also

measure the model’s training time, inference time, number of

parameters, and computation to evaluate the model’s efficiency

and scalability.

4.2.4 Step 4: Result analysis
We employ a combination of TCN (Temporal Convolutional

Network) and LSTM (Long Short-Term Memory) to construct the

carbon emission prediction model. TCN plays a crucial role in

extracting extensive time series features through multiple layers of

one-dimensional convolutional filters. This allows it to capture both

local and global information present in the time series data. On the

other hand, LSTM is employed to capture long-term dependencies

within the time series data. It achieves this by incorporating

memory cells and gate mechanisms, enabling the model to

effectively retain long-term information. Integrating TCN and
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LSTM enables us to harness the strengths of both models and

significantly enhance the model’s ability to efficiently represent time

series data.

To further enhance the model’s ability to prioritize key

information, we have introduced an attention mechanism. This

attention mechanism allows the model to dynamically learn and

adjust the weights at each time step, meaning the model can pay

closer attention to crucial information in the time series. In carbon

emission prediction, certain time points may have a more significant

impact, such as climate seasonal changes or the occurrence of specific

events. Through the attention mechanism, the model can

automatically identify and focus on these important time points,

thereby improving its ability to capture long-term dependencies. In

traditional networks, long sequences may lead to the vanishing or

exploding gradient problem, which affects the model’s handling of

long-term dependencies. The attention mechanism helps address this

issue because it allows the model to selectively focus on specific parts

of the time series without applying the same weights across the entire

sequence. This helps reduce information loss and, in turn, enhances

the model’s ability to model long-term dependencies. Furthermore,

by introducing the attention mechanism, the TCN-LSTM model can

more accurately predict future carbon emission scenarios because it

better understands which time steps are most crucial for prediction.

This not only improves prediction accuracy but also enhances the

model’s stability, making it more robust to noise and uncertainty.

Finally, the attention mechanism not only aids in capturing long-

term dependencies but also enables the model to capture multi-scale

features in the time series. The model can focus on different time

periods at different levels, leading to a more comprehensive

understanding of time series data, which is crucial for complex

dynamic patterns in carbon emission prediction.

The TCN-LSTMmodel with attention mechanism offers several

advantages over traditional forecasting models. Firstly, traditional

models may encounter issues of vanishing or exploding gradients

when dealing with long-term dependencies. In contrast, the TCN-

LSTM model, by introducing LSTM layers, can effectively capture

and manage long-term dependencies since LSTM is specifically

designed for this purpose. Secondly, the TCN-LSTM model

combines the convolutional operations of TCN with the gate

mechanisms of LSTM, providing greater flexibility in capturing

nonlinear relationships. This proves highly beneficial for modeling

complex patterns and trends in time series data. Furthermore, the

use of an attention mechanism enables the TCN-LSTM model to

automatically learn and adjust the weights at each time step,

focusing more on crucial information within the time series. This

enhances the model’s awareness of significant time points, thereby

improving prediction accuracy. Lastly, the TCN-LSTM model can

handle features at different time scales, allowing for a more

comprehensive understanding of time series data. This capability

is particularly valuable for capturing multiscale temporal features,

especially in complex scenarios with multiple influencing factors.

Model validation metrics are crucial tools for assessing the

performance of machine learning models, encompassing various

measures such as Accuracy, Recall, Precision, Specificity, F-Score,

and AUC. Below, we present a concise introduction to

these metrics:
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Accuracy (accuracy rate): Accuracy measures the overall

correctness of the model’s predictions. It is the ratio of correctly

predicted samples to the total number of samples in the dataset.

Accuracy  =
Number of Correct Predictions

Total Number of Samples
(15)

Recall (Sensitivity or True Positive Rate): Recall calculates the

proportion of positive samples that are correctly identified by the

model. It measures the ability of the model to find all the positive

samples.

Recall  =
True Positives

True Positives  +  False Negatives
(16)

Precision (precision rate): Precision calculates the proportion of

positive predictions made by the model that are correct. It measures

the model’s ability to avoid false positives.

Precision  =
True Positives

True Positives  +  False Positives
(17)

Specificity (True Negative Rate): Specificity calculates the

proportion of negative samples that are correctly identified as

negative by the model. It measures the model’s ability to avoid

false positives in the negative class.

Specificity  =
True Negatives

True Negatives  +  False Positives
(18)

F-Score (F1-Score): F-Score is the harmonic mean of precision

and recall. It is useful when both precision and recall are important,

and you want to balance their contribution.

F� Score  =  2 � Precision� Recall
Precision + Recall

(19)

AUC (Area Under the Curve): AUC is used to evaluate binary

classification models. It represents the area under the Receiver

Operating Characteristic (ROC) curve. The ROC curve is created

by plotting the True Positive Rate (Recall) against the False Positive

Rate (1 − Specificity) at different classification thresholds.

The AUC value ranges from 0 to 1, where a higher AUC

indicates better model performance.

AUC  =
Z 1

0
True Positive Rate(Recall),  d(False Positive Rate)  

(20)

In these formulas, “True Positives” are the correctly predicted

positive samples, “True Negatives” are the correctly predicted

negative samples, “False Positives” are the negative samples

predicted as positive, and “False Negatives” are the positive

samples predicted as negative.

Algorithm 1 represents the algorithm flow of the training in

this paper:

In this algorithm, the process begins with preprocessing the four

datasets and merging the preprocessed feature vectors into a single

feature matrix. Next, we define the structure of the TL-AM network

to train the model. Further, we sample the data and apply the

attention mechanism for each sample in the batch, computing the

context vector and passing it through the TCN to obtain
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the temporal features vt. These features are then fed into the LSTM

to generate the final feature vector xt. After processing all samples in

the batch, we calculate the mean loss �L. The algorithm then checks

for convergence, and once the convergence criteria are met, it

returns the trained TL-AM Net model.
Fron
Input : Training datasets: DEIA,DEPA,DEEA,DIEA

Output : Trained TL-AM Net

Initialize TL-AM Net parameters randomly;

while not converged do

Sample a batch of data from DEIA,DEPA,DEEA,DIEA;

for each sample do

Compute input features: h1:T;

Apply attention mechanism to compute attention

weights: at = softmaxðWahtÞ;
Compute context vector: ct =oT

i=1aihi;

ApplyTCN to obtain temporalfeatures: vt = TCN(c1 :T);

Apply LSTM to obtain final feature vector: xt =

LSTM(v1 :t);

Compute prediction: ŷt = softmax(Woxt);

Compute loss: Lt = cross� entropy(yt , ŷt);

end

Compute mean loss over the batch: �L = 1
Bot = 1BLt;

Update TL-AM Net parameters using backpropagation

and Adam optimizer:q← q − a 1
BoB

t=1 ∇q Lt;

end

return Trained TL-AM Net;
Algorithm 1. Training TL-AM Net.
4.3 Experimental results and analysis

In Table 1, the performance of various models in the carbon

emission prediction task is presented. The table showcases key

performance metrics, including Accuracy, Recall, Precision, and F

Score. Accuracy reflects the model’s prediction accuracy, Recall

measures the rate of correctly predicted positive instances, Precision

represents the proportion of correctly predicted positive instances

among all predicted positive instances, and F Score provides a

balance between Precision and Recall. Upon analyzing the results, it
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is evident that our proposed TCN-LSTM combined with the

Attention Mechanism model (referred to as “Ours”) exhibits

superior performance compared to the other models across all

metrics. Notably, our model achieves an impressive accuracy of

97.66% and an F-score of 94.56%, surpassing all other competing

models by a significant margin. This performance enhancement is

indicative of the effectiveness of our proposed approach in

addressing the challenges of carbon emission prediction with

higher accuracy and precision. In Figure 5, we summarize the

performance of the six indicators of Accuracy, Recall, Precision,

Specificity,F-Score and AUC on different models and present them

in a visual form, which can compare the performance of the models

more intuitively. From the figure, it can be observed that AUC and

accuracy vary across different datasets, stemming from differences

in data distribution, noise levels, and feature importance. These

variations in characteristics directly impact the model’s

performance. Some datasets may be more representative, leading

to better model performance on these datasets. Additionally, the

imbalance in the distribution of positive and negative instances

within a dataset can also result in performance differences. If a

dataset has a lower proportion of positive samples, the model may

find it easier to predict negatives, consequently reducing both

accuracy and AUC values. Overall, our model exhibits superior

performance across all datasets.

In Table 2, we compare different models based on various

performance metrics, using data from four datasets: the EIA dataset,

EPA dataset, EEA dataset, and IEA dataset. The table includes the

number of parameters (in millions) and the number of floating-

point operations (FLOPs) (in billions) required by each model for

carbon emission prediction. Upon analyzing the table, we find that

although the TCN-LSTM model exhibits lower values in terms of

parameter count and computational complexity, it does not

compromise model accuracy. Therefore, a balance between model

complexity and performance should be struck based on the specific

characteristics of the task and dataset. Simpler models may be more

suitable for handling large-scale data or situations requiring fast

inference, whereas more complex models may excel when dealing

with intricate data or pursuing top-tier performance. Regarding

training time, we observe that the TCN-LSTM model typically

requires a shorter training time, especially when compared to some

more complex models. This is partially attributed to the parallel

computation nature of TCN (Temporal Convolutional Network),
TABLE 1 The comparison of different indicators of different models comes from the EIA dataset, EPA dataset, EEA dataset, and IEA dataset.

Method Accuracy (%) Recall (%) Precision (%) F Score (/%)

Gao et al. (2021) 91.15 85.68 89.13 88.01

Zhou et al. (2021) 92.9 84.63 90.82 92.34

Huang and He (2020) 95.31 88.92 89.15 87.07

Cai and Wu (2022) 95.48 85.64 86.98 88.89

Huang et al. (2019) 92.37 93 87.49 87.18

Huo et al. (2021) 94.86 88.25 90.55 86.94

Ours 97.66 95.56 94.67 94.56
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which allows for more efficient handling of time series data.

Consequently, the TCN-LSTM model tends to be more efficient

in terms of training time. Furthermore, in terms of inference time,

the TCN-LSTM model also exhibits shorter inference times. Due to

its lower parameter count and computational complexity, it can

make real-time predictions more quickly. This is crucial for

practical applications requiring rapid responses, such as carbon

emission monitoring systems or environmental management

decision support systems. In summary, the TCN-LSTM model

excels in computational efficiency, being capable of both learning

data features within relatively short training times and providing

accurate predictions during rapid inference. This makes it an

attractive choice for carbon emission prediction and related fields,

particularly in scenarios where real-time performance and resource

efficiency are essential. However, model performance should still be

assessed based on the specific task and dataset to ensure the best

choice. In Figure 6, we use line graphs to visualize the four data

points from Table 2. The horizontal axis represents different

algorithms, the left vertical axis denotes the model’s parameter

count, and the right vertical axis represents computational

complexity. The graph provides a clear visual representation,

showing that our model exhibits relatively low values in terms of

both parameter count and computational complexity.
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In Table 3, the comparison of different indicators of various

models in predicting carbon emissions is presented. The evaluation

is based on datasets from EIA, EPA, EEA, and IEA. The

performance metrics include Inference Time (ms) and Training

Time (s) for each dataset. Notably, the proposed TCN-LSTM

combined with the Attention Mechanism model (Ours)

demonstrates superior performance across all datasets. It achieves

the highest accuracy of 97.66% and an impressive F-score of

94.56%, outperforming all other models significantly. In Figure 7

we present a visualization of the four datasets from Table 3 using

line graphs. The horizontal axis represents different algorithms,

while the vertical axes respectively denote the Inference Time (ms)

and Training Time (s). Our model exhibits outstanding

performance in terms of both inference and training times.

Table 4 presents the results of ablation experiments on the TCN

module. Through comparisons across the EIA, EPA, EEA, and IEA

datasets, the following conclusions have been drawn: In terms of

key performance metrics such as accuracy, recall, F1 score, and

AUC, the TCN module demonstrates superior performance,

outperforming other tested models including CNN, GCN, and

RNN. Specifically, the TCN module achieves the highest accuracy

(96.45%), recall (95.34%), F1 score (95.46%), and a relatively high

AUC (93.21%). Furthermore, the TCN module exhibits fewer
FIGURE 5

Comparison of different indicators of different models.
TABLE 2 The comparison of different indicators of different models comes from EIA dataset, EPA, EEA dataset and IEA dataset.

Method

Datasets

EIA dataset EPA dataset EEA dataset IEA dataset

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

Gao et al. (2021) 426.47 41.95 273.53 50.22 311.83 46.18 513.11 53.58

Zhou et al. (2021) 211.72 45.07 510.44 58.27 373.58 51.37 119.76 47.56

Huang and He
(2020)

181.65 46.64 286.09 55.92 446.83 39.90 189.14 63.11

Cai and Wu (2022) 467.03 75.84 448.67 68.38 297.58 43.29 458.94 68.76

Huang et al. (2019) 114.50 49.27 183.87 60.21 501.91 71.00 381.71 47.44

Huo et al. (2021) 279.62 45.49 254.16 55.06 326.73 50.71 298.36 73.08

Ours 117.45 21.14 125.3 23.27 127.33 22.45 142.45 28.56
fro
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parameters (145.78M) and lower computational complexity

(19.78G). These findings indicate that on the utilized datasets, the

TCN module excels across all metrics, particularly in accuracy,

recall, F1 score, and AUC. Additionally, the relatively lower number

of parameters and computational complexity of the TCN model

highlight its advantages in both model performance and

computational efficiency. In Figure 8, we visualize the four

datasets from Table 4 using box plots. From the plot, it is evident

that introducing the TCN model reduces the data dispersion for all

metrics: accuracy, recall, f1_score, and AUC. Additionally, the

median is situated in the middle of the boxes, indicating a
Frontiers in Ecology and Evolution 14
relatively concentrated and symmetric distribution of values. This

finding further corroborates the validity of our model.

As shown in Table 5, the results of ablation experiments on the

LSTM module are presented, using datasets from EIA, EPA, EEA,

and IEA. In these experiments, we evaluated the performance of

different models in carbon emission prediction, with a primary

focus on key metrics such as accuracy and AUC. The LSTMmodule

stands out prominently in these evaluations. On the EIA dataset, the

LSTM model achieves an accuracy of 89.80% and an AUC of

93.96%. On the EPA dataset, the accuracy reaches an impressive

94.78%, accompanied by an AUC of 96.95%. Similarly, the LSTM
TABLE 3 The comparison of different indicators of different models comes from EIA dataset, EPA dataset, EEA dataset and IEA dataset.

Method

Datasets

EIA dataset EPA dataset EEA dataset IEA dataset

Inference
Time (ms)

Trainning
Time (s)

Inference
Time (ms)

Trainning
Time (s)

Inference
Time (ms)

Trainning
Time (s)

Inference
Time (ms)

Trainning
Time (s)

Gao et al.
(2021)

20.99 586.07 13.44 597.64 20.58 656.87 21.22 469.53

Zhou et al.
(2021)

10.64 530.14 10.67 679.92 13.02 575.73 10.01 230.32

Huang and
He (2020)

20.10 677.88 12.09 639.13 18.86 495.86 13.48 515.92

Cai and Wu
(2022)

13.78 335.44 20.39 196.00 8.33 346.04 14.96 337.41

Huang et al.
(2019)

11.49 453.52 10.35 298.56 8.82 571.61 15.62 254.52

Huo et al.
(2021)

16.39 704.52 20.71 213.43 13.13 689.67 16.77 640.06

Ours 7.66 234.3 8.34 219.33 6.34 175.44 7.65 192.17
FIGURE 6

Comparison of different indicators of different models.
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model demonstrates strong performance on the EEA dataset with

an accuracy of 95.85% and an AUC of 94.08%. Finally, the LSTM

model maintains its excellent performance on the IEA dataset,

achieving an accuracy of 95.74% and an AUC of 96.35%. It’s worth

emphasizing that the LSTM module performs consistently well

across all datasets. Its performance in terms of accuracy and AUC

not only showcases its ability to capture long-term dependencies in

time series data but also highlights its effectiveness in carbon

emission prediction. While other models also exhibit respectable

performance, the LSTM module’s consistently high performance in

these ablation experiments positions it as a crucial predictive tool,

providing a reliable foundation for carbon emission prediction. In

Figure 9, we visualize the datasets from Table 5 using scatter plots. It

is evident from the graph that when the model adopts the LSTM

architecture, the accuracy of all four datasets reaches its peak. This

consistent trend throughout the chart provides clear visual evidence

of the outstanding performance of the LSTM module in carbon

emission prediction tasks. Furthermore, it underscores the stability

and reliability of the LSTM module across different datasets and

highlights its exceptional performance in handling time series data

and carbon emission prediction. These scatter plots also emphasize

the significant advantages of the LSTM module over other models,

offering strong guidance for researchers and practitioners to

consider the LSTM module as their preferred tool in carbon

emission prediction tasks. Its consistently high performance

demonstrates the robustness of the LSTM module, making it a
Frontiers in Ecology and Evolution 15
valuable asset in practical applications within the field of carbon

emission prediction and related domains.
5 Conclusion and discussion

In this experiment, our objective was to develop a carbon

emission prediction model that combines TCN-LSTM with an

attention mechanism to address accuracy and efficiency concerns

in carbon emission forecasting. Leveraging four datasets from EIA,

EPA, EEA, and IEA, our aim was to forecast future carbon

emissions and assist decision-makers and government agencies in

formulating scientifically effective carbon reduction policies. To

achieve this goal, we implemented the TCN-LSTM combined

with the attention mechanism model using the Python

programming language and the TensorFlow framework. The

attention mechanism employed a soft attention mechanism to

weigh the impact of different time steps in historical data. The

model was trained on the training dataset using TCN-LSTM

combined with the attention mechanism, with model parameters

continuously adjusted through optimization algorithms to align

predictions more closely with true labels. Throughout the training

process, close monitoring of the loss function and performance

metrics ensured model convergence and stability. Finally, the

trained model was evaluated using the test dataset. Through this

approach, several benefits are realized. Firstly, it provides
TABLE 4 Ablation experiments in the TCN module comes from EIA dataset, EPA dataset, EEA and IEA dataset.

Method Accuracy (/%) Recall (/%) F1 Sorce (%) AUC (%) Parameters (M) Flops (G)

CNN Tang and Li (2022) 85.91 91.94 86.98 88.17 212.68 42.44

GCN Fei and Ling (2023) 93.6 84.01 86.21 90.04 302.9 21.23

RNN Huang et al. (2021) 93.54 83.98 90.06 91.65 470.46 37.97

TCN 96.45 95.34 95.46 93.21 145.78 19.78
f

FIGURE 7

Comparison of different indicators of different models.
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governments and policymakers with more accurate carbon

emission predictions, offering valuable insights into future

emission trends and aiding in the development of targeted policy

measures. Secondly, the sharing of precise carbon emission

prediction data fosters international cooperation in the

formulation of global climate policies. Governments worldwide

can engage in negotiations and collaboration based on the same

scientific foundation to collectively address climate challenges.
Frontiers in Ecology and Evolution 16
Additionally, the model can support carbon markets and carbon

trading, ensuring fairness and effectiveness in carbon transactions.

However, our experiment has some limitations. The presence of

noise or outliers in the input data can potentially impact the

performance of the model. As the variability increases, the

influence of noise or outliers may become more significant,

thereby affecting the robustness and accuracy of the model.

Additionally, if there are changes in the input features, the model
TABLE 5 Ablation experiments in the LSTM module comes from EIA dataset, EPA dataset, EEA and IEA dataset.

Model

Datasets

EIA Dataset
Lv and Piccialli (2021)

EPA Dataset
Kow et al. (2022)

EEA Dataset
Tietge et al. (2019)

IEA Dataset
Pinto et al. (2023)

Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%)

GRU 83.29 82.11 91.76 90.73 93.97 85.96 90.69 90.87

CNN 81.54 92.22 92.33 96.94 90.63 93.30 81.63 92.55

Transformer 83.01 91.42 88.15 85.52 95.55 87.33 92.86 82.61

LSTM 89.80 93.96 94.78 96.95 95.85 94.08 95.74 96.35
fr
FIGURE 9

Comparison of different indicators of different models.
FIGURE 8

Comparison of different indicators of different models.
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may struggle to properly handle new feature patterns, leading to

prediction biases and errors. In the future, it would be beneficial to

regularly update the model to adapt to new data distributions and

features, enabling better handling of data variability. Furthermore,

introducing a data-driven learning strategy, which refers to a model

learning approach based on analyzing and utilizing vast amounts of

input data to automatically learn model parameters, structures, or

features, can be considered. This strategy does not rely on manually

designed rules or prior knowledge but relies on the statistical

features and patterns inherent in the data for inference and

learning. This approach has been widely applied in spectral

unmixing and other domains, successfully learning patterns and

features of spectral variability, thus enhancing the accuracy and

robustness of unmixing Hong et al. (2018). It provides suggestions

for our future research directions.

This paper aims to address the accuracy and efficiency issues in

carbon emission forecasting by proposing a carbon emission

prediction model based on the combination of TCN-LSTM and

an attention mechanism. The model leverages the parallel

computing capability of TCN and the memory capacity of LSTM,

while introducing an attention mechanism to weight historical data,

thereby enhancing prediction accuracy. Through experiments using

multiple real-world datasets, we have demonstrated that our model

achieves high accuracy and efficiency across different datasets,

indicating its generality and stability. These research findings offer

valuable insights for decision-makers and government institutions

in formulating carbon reduction policies. Future research could

further integrate data from various countries, regions, and domains,

including economic indicators, energy structures, and climate

change data, to comprehensively analyze the relationships

between carbon emissions and various factors. Additionally,

considering the incorporation of more external factors into the

model, such as policy changes and socio-economic development,

could enhance prediction accuracy and practicality. Exploring

methods to enhance the model’s interpretability would enable

decision-makers to understand the model’s prediction outcomes

and make informed decisions. In conclusion, the research outcomes

of this paper hold significant theoretical and practical value in

promoting carbon emission reduction, addressing climate change,

fostering sustainable development, and advancing the development

of carbon markets. By continuously optimizing and expanding the

model, and through strengthened international collaboration to
Frontiers in Ecology and Evolution 17
collectively tackle global climate challenges, we can actively

contribute to creating a greener, more sustainable, and promising

world for the future.
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