
Frontiers in Ecology and Evolution

OPEN ACCESS

EDITED BY

I.M.R. Fattah,
University of Technology Sydney, Australia

REVIEWED BY

Yassine Himeur,
University of Dubai, United Arab Emirates
Shubham Mahajan,
Ajeenkya D Y Patil University, India

*CORRESPONDENCE

Yixiong Xu

xuyixiong2012@163.com

RECEIVED 10 August 2023
ACCEPTED 25 September 2023

PUBLISHED 17 October 2023

CITATION

Ma C and Xu Y (2023) Research on
construction and management strategy of
carbon neutral stadiums based on CNN-
QRLSTM model combined with dynamic
attention mechanism.
Front. Ecol. Evol. 11:1275600.
doi: 10.3389/fevo.2023.1275600

COPYRIGHT

© 2023 Ma and Xu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 17 October 2023

DOI 10.3389/fevo.2023.1275600
Research on construction and
management strategy of carbon
neutral stadiums based on CNN-
QRLSTM model combined with
dynamic attention mechanism

Chunying Ma1 and Yixiong Xu2*

1School of Physical Education, Hunan University, Changsha, China, 2School of Physical Education,
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Introduction: Large-scale construction projects such as sports stadiums are

known for their significant energy consumption and carbon emissions, raising

concerns about sustainability. This study addresses the pressing issue of

developing carbon-neutral stadiums by proposing an integrated approach that

leverages advanced convolutional neural networks (CNN) and quasi-recurrent

long short-term memory (QRLSTM) models, combined with dynamic attention

mechanisms.

Methods: The proposed approach employs the CNN-QRLSTM model, which

combines the strengths of CNN and QRLSTM to handle both image and

sequential data. Additionally, dynamic attention mechanisms are integrated to

adaptively adjust attention weights based on varying situations, enhancing the

model's ability to capture relevant information accurately.

Results: Experiments were conducted using four datasets: EnergyPlus, ASHRAE,

CBECS, and UCl. The results demonstrated the superiority of the proposed

model compared to other advanced models, achieving the highest scores of

97.79% accuracy, recall rate, F1 score, and AUC.

Discussion: The integration of deep learning models and dynamic attention

mechanisms in stadium construction and management offers a more scientific

decision support system for stakeholders. This approach facilitates sustainable

choices in carbon reduction and resource utilization, contributing to the

development of carbon-neutral stadiums.

KEYWORDS

construction and management strategy, carbon neutral stadiums, CNN, QRLSTM,
dynamic attention mechanism
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1 Introduction

In recent years, the construction and operation of sports

stadiums have been identified as significant contributors to

energy consumption and carbon emissions, exacerbating the

global challenge of climate change (Liu and Jian, 2023). As a

result, the urgent need to drive sports stadiums towards carbon

neutrality and adopt sustainable strategies has garnered

increased attention. Deep learning models have emerged as

promising tools for addressing these challenges and promoting

sustainable practices in stadium development and management

(Himeur et al., 2022).

In the pursuit of carbon-neutral stadiums, various deep

learning models have been explored to address the complexities

of stadium operations and energy management (Hassan et al.,

2023). These models include Long Short Term Memory (LSTM),

Generative Adversarial Networks (GANs), Recurrent Neural

Networks (RNNs), Gated Recurrent Units (GRUs), and

Transformer Models.

LSTM (Lemonde et al., 2021), a specialized Recurrent

Neural Network, excels at capturing long-term dependencies

in sequential data, making it suitable for time-series analysis in

stadium operations and energy utilization (Elnour et al.,

2022b). However, it may struggle with extremely long

sequences, limiting its applicability in certain aspects of

stadium management (Ning et al., 2023). GANs offer a

powerful technique for generating realistic synthetic data,

which can enhance dataset diversity and robustness for model

training (Himeur et al., 2023). Nonetheless, GAN training can

be unstable and sensit ive to hyperparameter settings,

necessitating careful fine-tuning. RNNs (Cui et al., 2022),

including both LSTM and GRUs, are designed to process

sequential data and are well-suited for tasks involving time

series or sequential data analysis (Jia et al., 2022). While GRUs

offer computational efficiency and parameter efficiency

(Wickramaratne and Mahmud, 2020), RNNs, in general, face

challenges in learning long-term dependencies during training.

Transformer Models (Ota et al., 2023), primarily used for

processing sequential data, have the potential to inform and

optimize carbon-neutral stadium design by predicting

renewable energy generation, analyzing material choices, and

understanding travel patterns (Huang et al., 2016). However,

their full effectiveness relies on human guidance and integration

with traditional approaches.

However, despite the significant progress in carbon-neutral

stadium research, traditional deep learning methods often

encounter limitations when confronted with the complexity of

stadium systems (Tian et al., 2023). Particularly, these methods

struggle to effectively handle both sequence data and spatial data

simultaneously while generating data that meets specific

conditions. Consequently, this challenge hampers the

comprehensive modeling and optimization of carbon-neutral

stadiums. To address these intrinsic limitations, this study

introduces an innovative approach that integrates the

convolutional neural networks (CNN) (Gu et al., 2018) and

quasi recurrent long short term memory (QRLSTM) (Bolelli
Frontiers in Ecology and Evolution 02
et al., 2018) model with a dynamic attention mechanism. This

model adeptly handles both spatial and sequential data,

proficiently capturing essential information related to stadium

design and operational aspects (Hassan et al . , 2022).

Furthermore, the incorporation of the dynamic attention

mechanism enhances the model’s adaptability, enabling it to

dynamically focus on pertinent factors at different time points

and in varying circumstances (Chapman et al., 2022). This real-

time optimization capability empowers precise control and

decision-making, ensuring a continuous and sustained

reduction in carbon emissions. By harnessing the power of the

CNN-QRLSTM model in combination with the dynamic

attention mechanism, this research strives to provide more

accurate and targeted recommendations for the construction

and management of carbon-neutral stadiums.

The contribution points of this paper are as follows:
• Our innovative approach leverages the combined power

of CNN-QRLSTM with attention mechanisms to

revolutionize the modeling of complex dynamics in

sports stadium systems. The utilization of CNN allows

us to capture critical spatial features inherent in stadium

design, enhancing our understanding of the physical

aspects of carbon emissions. Simultaneously, QRLSTM

effectively captures intricate temporal dynamics, enabling

us to analyze and predict carbon emissions trends over

time. The incorporation of attention mechanisms further

enhances our model’s capabilities by dynamically

focusing on relevant aspects at different time points.

This integration results in an unprecedentedly

comprehensive and intricate carbon emissions model

that is specifically tailored for sports stadiums,

providing a deeper insight into the factors influencing

carbon neutrality.

• Our CNN-QRLSTM model excels in providing highly

accurate and finely-tuned recommendations for carbon

emissions reduction across various stages of stadium

development and operation, encompassing construction

and operational phases. By advancing the modeling of

stadium systems, our model offers practical solutions for

achieving carbon reduction targets. Its enhanced

precision leads to more impactful and effective

optimization strategies, enabling stadium managers to

make informed and sustainable decisions related to

carbon-neutral stadium construction and resource

management. This precision translates into tangible

benefits, including reduced energy consumption, lower

carbon emissions, and improved resource utilization.

• Through a series of experiments and rigorous

comparisons with traditional methods, we have

demonstrated the remarkable potential of our CNN-

QRLSTM model in achieving carbon reduction,

improving energy efficiency, and optimizing resource

management within stadium development projects. Our

model’s unique feature allows it to dynamically adapt to

changing conditions, facilitating on-the-fly optimization
frontiersin.org
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and control of various stadium systems, including energy

consumption, waste management, and transportation,

throughout stadium operat ions. This real-t ime

adaptability ensures continuous carbon emissions

reduction, promoting a greener and more sustainable

sports stadium environment. Our research bridges the

gap between theoretical concepts and practical

implementation, providing actionable insights for the

construction and management of carbon-neutral

stadiums.
In the subsequent sections of this paper, we delve into the

relevant research in Section 2. In Section 3, we present a

comprehensive overview of our proposed methods, including the

integration of CNNs, QRLSTM, and dynamic attention mechanism.

Section 4 encompasses the experimental segment, encompassing

intricate details and a comparative analysis of the experiments

conducted. Finally, in Section 5, we draw conclusions and

summarize the findings of this study.
2 Related work

2.1 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) (Liu et al., 2021) for

carbon-neutral stadium management is an innovative approach

that leverages the power of deep learning and reinforcement

learning techniques to optimize and reduce carbon emissions in

sports stadiums. This model aims to make data-driven decisions

and dynamically adjust stadium operations to achieve carbon

neutrality while ensuring efficient resource utilization.

The DRL model relies on a reinforcement learning agent that

interacts with the stadium environment, selecting actions based on

observed states and receiving feedback in the form of rewards

(Puttick et al., 2017). The agent’s ultimate goal is to learn a policy

that maximizes cumulative rewards over time, enabling it to make

real-time decisions during stadium operations. Through continuous

learning and adaptation, the model continually refines its decision-

making capabilities, resulting in continuous improvement in carbon

emission reduction.

However, its limitations in computational complexity, data

requirements, and interpretability pose challenges for real-world

implementation (Whittlestone et al., 2021). Addressing these

drawbacks is crucial to harness the full potential of the DRL

model in practical stadium management scenarios.
2.2 Graph Neural Network

The Graph Neural Network (GNN) (Chen et al., 2023) for

carbon-neutral stadium management works by representing the

stadium as a graph, where each element like energy sources and

infrastructure is a node. GNNs use the connections between

these nodes to learn and predict energy efficiency and carbon

emissions. By analyzing complex interactions within the
tiers in Ecology and Evolution 03
stadium system through message passing and aggregation,

GNNs provide valuable insights for optimizing carbon-

neutral strategies.

GNNs’ robustness in handling irregular and unstructured data

makes them suitable for diverse stadium configurations, adapting

well to various sizes and layouts. Leveraging data-driven insights,

GNNs facilitate informed decision-making, leading to more

accurate and efficient energy management and carbon reduction

initiatives, benefiting sustainable stadium operations (Pillai

et al., 2023).

Building an accurate and comprehensive graph representation

of the stadium environment can be complex and require domain

expertise, impacting the model’s performance. Additionally, as the

stadium system grows in size and complexity, GNNs may face

scalability issues, leading to increased computational resources and

longer processing times. Moreover, GNNs’ black-box nature poses

interpretability challenges, hindering stakeholders’ understanding

of the model’s decision-making process, a critical aspect for

effectively implementing carbon-neutral strategies in stadium

management (Ding et al., 2022).
2.3 Multi-Task Learning

The Multi-Task Learning (MTL) (Lu et al., 2022) model for

carbon-neutral stadium management works by addressing multiple

tasks at once to achieve carbon neutrality. Instead of training

separate models for each task, the MTL model shares and learns

from common features, making the most of the relationships and

connections between the tasks. It jointly optimizes energy

consumption, carbon emissions, resource management, and other

important factors, creating a powerful and coordinated approach

that improves the overall sustainability of stadium operations.

MTL efficiently transfers knowledge between tasks by leveraging

shared information, leading to a deeper understanding of stadium

management factors and more accurate predictions. The MTL

model provides a comprehensive solution by addressing multiple

tasks simultaneously, promoting coordinated decision-making for

carbon-neutral strategies. The MTL reduces data requirements by

learning from multiple tasks together, making it advantageous in

data-limited scenarios and contributing to cost-effective solutions.

Integrating multiple tasks into a single model may increase

complexity, requiring additional computational resources and

expertise during design and training compared to single-task

models. Moreover, the complex architecture of the MTL model

may reduce its interpretability (Tseng et al., 2020), making it

challenging to understand the specific contributions of each task,

potentially affecting stakeholder buy-in and decision implementation.
3 Methodology

3.1 Overview of our network

QRLSTM is a type of neural network architecture that combines

the strengths of LSTM and QuasiRecurrent Neural Networks
frontiersin.org

https://doi.org/10.3389/fevo.2023.1275600
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Ma and Xu 10.3389/fevo.2023.1275600
(QRNN) (Zhang et al., 2023a). Our model combines CNN and

QRLSTM, along with the dynamic attention mechanism. The

CNN-QRLSTM model simultaneously processes spatial and

temporal data, capturing crucial features of sports stadium design

and operations. The dynamic attention mechanism allows the

model to adaptively adjust attention weights, effectively focusing

on relevant aspects at different time points, resulting in more

accurate predictions.

Figure 1 is the overview flow chart. The flow chart of the CNN-

QRLSTM model combined with the dynamic attention mechanism

consists of five main layers: Input layer, CNN layer, BiGRU layer,

Attention layer, and Output layer.
Frontiers in Ecology and Evolution 04
The input layer receives diverse stadium-related information,

including images, sequential data, and other relevant features. The

CNN layer performs feature extraction on the input data, capturing

spatial patterns and visual information from stadium images. The

processed data is then passed to the Bidirectional Gated Recurrent

Unit (BiGRU) layer, which models temporal dependencies in the

data. The dynamic attention mechanism in the Attention layer

adaptively adjusts attention weights based on the input data and

context, enhancing the model’s decision-making capabilities.

Finally, the Output layer generates accurate recommendations for

carbon emissions reduction and resource management in

sports stadiums.
FIGURE 1

Flow chart of the CNN-QRLSTM model combined with the dynamic attention mechanism.
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3.2 CNN model

CNN is a deep learning model primarily used for processing

images and spatial data (Zhong et al., 2017). It consists of

convolutional layers, pooling layers, and fully connected layers,

enabling effective feature extraction from images, which is crucial

for tasks such as image recognition, classification, and segmentation

(Yamashita et al., 2018). The key characteristics of CNN lie in

weight sharing and local receptive fields, providing robustness to

image translations and scaling and reducing model parameters, thus

accelerating the training process.

In the research of carbon-neutral stadium construction and

management strategies, the CNN Model is employed to extract

spatial features from stadium-related data (Lopez et al., 2014).

By applying convolutional operations to stadium images and

structural data, the CNN Model can capture spatial relationships

and structural information from different regions within the

stadium. This facilitates the generation of more meaningful

feature representations for subsequent modeling, aiding in

more accurate carbon emission predictions and optimizing

energy utilization.

The basic formula for a CNNmodel can be expressed as follows:

1. Convolution Operation: The convolution operation is the

core of CNN, which involves sliding a convolutional kernel (or

filter) over the input image to extract features from different local

regions.

S(i, j) = (I ∗K)(i, j) =o
m
o
n
I(i +m, j + n) · K(m, n) (1)

where S(i,j) represents the pixel value in the output feature map

at position (i,j), I represents the pixel values of the input image, K
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represents the weight values of the convolutional kernel, i and j are

the pixel coordinates in the output feature map,

2. Pooling Operation: The pooling operation is used to reduce

the size of the feature map while retaining important feature

information, which helps reduce the number of parameters and

computational complexity.

S(i, j) = max
M−1

m=0
 max
N−1

n=0
 I(si +m, sj + n) (2)

where S(i,j) represents the pixel value in the output feature map

at position (i,j), I represents the pixel values of the input image, s is

the stride of the pooling operation.

3. Fully Connected Layer: The fully connected layer comes after

the convolutional and pooling layers. It flattens the obtained feature

map and connects it to a fully connected neural network.

a(l) = f (W(l)a(l−1) + b(l)) (3)

where a(l) represents the output of layer l, W(l) represents the

weight matrix of layer l, a(l−1) represents the output of layer l − 1,

which is the input to layer l, b(l) represents the bias vector of layer l,

f(·) represents the activation function.

Figure 2 is the CNN model flow chart:
3.3 QRLSTM model

In our proposed carbon-neutral stadium management

approach, the QRLSTM model plays a crucial role in handling

the temporal dynamics of carbon emission data and is able to

provide more accurate predictions. By capturing long-term

dependencies in time series data, QRLSTM can better predict
FIGURE 2

Flow chart of the CNN model.
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stadium carbon emission trends and help decision-makers develop

more informed carbon emission reduction strategies.

Furthermore, QRLSTM is integrated with other models such as

CNN for spatial feature extraction and dynamic attention

mechanism for fusing predictions from different models. Through

the comprehensive application of these deep learning models, we

are able to effectively model the complex dynamic changes of a

carbon-neutral stadium and provide decision-makers with more

scientific support to achieve the sustainable development goals of a

carbon-neutral stadium.

Figure 3 is the flow chart of the QRLSTM model.

The calculation formulas of QRLSTM are as follows:

1. Input gate

it = s (Wxi · xt + Rhi · ht−1 + bi) (4)

where xt represents the t-th vector of the input sequence,

it represents the outputs of the input gate with its value ranging

from [0,1],W, R, and b represent the weight matrix, recursive matrix,

and bias vector, respectively, which are learnable parameters.

2. Forget gate

ft = s (Wxf · xt + Rhf · ht−1 + bf ) (5)

where ft represents the outputs of the forget gate with its value

ranging from [0,1].

3. Output gate

ot = s (Wxo · xt + Rho · ht−1 + bo) (6)

where ot represents the outputs of the output gate with its value

ranging from [0,1], s represents the sigmoid function.

4. Cell gate

gt =  tanh(Wxg · xt + Rhg · ht−1 + bg) (7)

where gt represents the outputs of the cell gate, tanh represents

the hyperbolic tangent function.

5. Memory cell

ct = ft · ct−1 + it · gt (8)

where ct represents the output of the memory cell, which can be

regarded as the “memory cell” of LSTM.
Frontiers in Ecology and Evolution 06
6. Output

ht = ot ·  tanh(ct) (9)

where ht represents the output of QRLSTM, which can be

regarded as the “hidden state” of QRNN.
3.4 Dynamic attention mechanism

Dynamic attention mechanism is a technique used in deep

learning models to enhance the model’s attention to different parts

of the input data (Niu et al., 2021). In the traditional attention

mechanism, the weights are static and fixed, while the dynamic

attention mechanism allows the model to adaptively adjust the

weights according to different input conditions, thereby handling

diverse input data more flexibly. In our proposed method, a

dynamic attention mechanism is applied to weight the

importance of specific regions or objects in the image (Yang,

2020). By dynamically calculating attention weights, our model is

able to adaptively focus attention on the most relevant parts of the

image, resulting in more accurate predictions of stadium carbon

emissions.

a = softmax(W1h + b1) (10)

where a is a weight vector that represents the importance of

each position in the input sequence, softmax(·) is the softmax

function used to normalize the weight vector, W1 and b1 are

learnable parameter matrices and vectors, h is a sequence of

hidden state vectors of the input sequence.

After obtaining the attention weights, we can use them to

compute the weighted sum to get the attention result for the

input sequence:

r ¼o
i
aihi (11)

where r is the weighted sum vector, representing the weighted

information of the input sequence.

Then map the weighted sum vector r to the final output vector

u, by applying the hyperbolic tangent function to map it to a

continuous value range in [−1, 1].

u = tanh(W2r + b2) (12)
FIGURE 3

Flow chart of the QRLSTM model.
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where u is the final output vector, a to a probability

distribution, W2 and b2 are learnable parameter matrices and

vectors, tanh(·) is the hyperbolic tangent function used to

enhance the nonlinearity of the output vector. Figure 4 is the

overall flow chart.
4 Experiment

4.1 Datasets

In this paper, the following four data sets are used to study

construction and management strategy of carbon neutral stadiums:

EnergyPlus Dataset (Seyedzadeh et al., 2019): EnergyPlus is an

advanced building energy simulation software that plays a key role

in analyzing and predicting important aspects such as building

energy consumption and carbon emissions. The dataset contains

extensive energy consumption and carbon emissions data from a

variety of existing buildings, making it a valuable resource.

Researchers and practitioners can leverage this dataset for a wide

range of applications, including accurate building energy

consumption and carbon emission predictions, optimization, and

efficient energy management strategies.

American Society of Heating, Refrigerating, and Air-

Conditioning Engineers (ASHRAE) dataset (Zhang et al., 2023b):

This dataset contains valuable information on building energy

consumption, indoor environmental conditions and other

important factors. This valuable resource enables researchers and

professionals in the field to gain insights into building energy

consumption patterns and indoor environments. Using this data

set, they can effectively predict, optimize and manage building
Frontiers in Ecology and Evolution 07
energy consumption while developing strategies to improve

indoor environmental quality.

Commercial Building Energy Consumption Survey (CBECS)

Dataset (Roth et al., 2020): This is a comprehensive collection of

energy consumption data for various commercial buildings in the

United States. As an important data repository, this dataset

provides a reliable basis for predicting, optimizing and

managing energy consumption and carbon emissions in

commercial buildings. With the support of the CBECS dataset,

researchers and practitioners can develop targeted solutions and

strategies to promote energy efficiency and reduce the carbon

footprint of commercial buildings.

University of California, Irvine (UCI) Dataset (Devlin and

Hayes, 2019): This is a versatile and extensive collection of multi-

domain datasets. This valuable resource contains a variety of data,

including but not limited to building energy consumption,

environmental pollution, climate change and other research

areas. The UCI data set becomes a valuable resource for

researchers, providing numerous research opportunities for

building design optimization and addressing challenges related

to carbon neutrality.

Our model is able to delve into important issues of building

energy efficiency, carbon footprint reduction and sustainable

building design through these datasets. With these rich data

sources, data-driven analytical methods can be applied and

advanced models developed to optimize energy use and mitigate

environmental impact, ultimately moving towards a greener and

more sustainable future.

In Table 1 we summarize the description and applications of

these datasets. We believe these details will help readers better

understand the basis of our data.
FIGURE 4

Flow chart of the dynamic attention mechanism.
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4.2 Experimental details

The paper focuses on the construction and management

strategy of carbon-neutral stadiums. To achieve this goal, the

authors selected four datasets for training, and the training

process is as follows:

Data preprocessing: Collect data related to stadium

construction, energy consumption, carbon emissions, and other

relevant factors. Clean, normalize, and perform feature engineering

on the data to ensure consistency and suitability.

Metric comparison experiment: Split the dataset into training

and testing sets while maintaining class balance. Design the CNN-

QRLSTM model with dynamic attention and define the training

objective, such as the cross-entropy loss function. Select an

appropriate optimizer, set learning rate, and batch size. Train the

model on the training set, monitor metrics such as Accuracy, AUC,

Recall, and F1 Score during the training process. Evaluate the

trained model on the test set and obtain performance results for

each evaluation metric.

Ablation study: Conduct a series of ablation experiments by

gradually removing the dynamic attention mechanism or CNN-

QRLSTM components from the model. Compare the results of

the ablation experiments with the baseline experiment to

analyze the contributions of dynamic attention and CNN-

QRLSTM model in carbon-neutral stadium construction

and management.

Hyperparameter tuning: Employ techniques like cross-

validation for hyperparameter tuning to find the optimal model

configuration. Consider adjusting model depth, width, dropout,

etc., to improve model performance.

Experiment result analysis: Statistically analyze and

visualize the experiment results, comparing the performance of

different models. Evaluate the applicability and effectiveness of

different models in carbon-neutral stadium construction

and management.

Discussion and conclusion: Summarize the role and

advantages of the CNN-QRLSTM model combined with dynamic

attention mechanism in carbon-neutral stadium construction and

management based on the experiment results and analysis. Propose

potential improvements and optimizations and discuss the

limitations of the model.

By following this experimental design, we can comprehensively

evaluate the performance of the CNN-QRLSTM model combined
Frontiers in Ecology and Evolution 08
with dynamic attention mechanism in carbon-neutral stadium

construction and management. The results will provide valuable

insights and decision-making guidance for sustainable carbon-

neutral strategies in stadium facilities.

In our paper, four evaluation metrics, namely Accuracy, Area

Under Curve (AUC), Recall, and F1 Score, are employed to assess

the performance of the classification model. Accuracy measures the

overall correctness of the model’s classification results, AUC

evaluates the performance of binary classification models, recall

gauges the model’s ability to correctly identify positive samples, and

F1 Score serves as a comprehensive metric balancing precision and

recall. These metrics aid in evaluating the model’s classification

performance, selecting the best model, and optimizing

model parameters.

Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

where TP is the number of true positive, TN is the number of

true negative, FP is the number of false positive, and FN is the

number of false negative.

AUC:

AUC =
Z 1

0
ROC(x)dx (14)

where ROC(x) is the curve that relates the true positive rate

(TPR) and false positive rate (FPR) for a given threshold x.

Recall:

Recall =
TP

TP + FN
(15)

F1-score:

F1 =
2� Precision� Recall
Precision + Recall

(16)

where Precision can be given by

Presicion =
TP

TP + FP
(17)

We also carefully consider these four variables during our

evaluation process: parameters, floating point operations

(Flops), inference time and training time, which are key

metrics for evaluating the performance and suitability of

neural network models.

Parameters: Parameters refer to the learnable weights and

biases within the neural network. They determine the model’s

complexity and capacity to learn from data. Models with a large

number of parameters may have higher expressive power but

can also require more memory for storage and longer

training times.

Parameters =
number of  model parameters

106
(18)

Flops: Flops measure the number of floating-point arithmetic

operations performed during the computation of a neural network.

It is an indicator of the model’s computational complexity and
TABLE 1 Description of datasets.

Dataset Description Applications

EnergyPlus Building energy
simulation data

Energy consumption prediction,
optimization

ASHRAE Building energy & indoor
environmental data

Indoor environmental quality
analysis, energy management

CBECS Commercial building
energy consumption data

Commercial building energy
analysis, carbon emissions reduction

UCI Diverse datasets from
various domains

Building design optimization,
climate change research
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directly affects its execution speed. Models with higher Flops may

demand more processing power and longer inference times.

Flops =
number of  floating� point operations

109
(19)

Inference time: Inference time denotes the time taken by a

trained model to process a single input and produce the

corresponding output. It reflects the model’s efficiency during the

prediction phase. Lower inference times are desirable, especially in

real-time applications where quick responses are crucial.

Tinf =
average inference time

10−3
(20)

Training time: Training time refers to the duration it takes to

train the model on a given dataset. Longer training times can delay

the development and experimentation process, making it crucial to

consider the computational efficiency of the model.

Ttrain = total training time (21)

Parameters is the number of model parameters, usually

expressed in millions (M), Flops is the number of floating-point

operations in the model, usually expressed in billions (G), inference

time is the average time for model inference, usually expressed in

milliseconds (ms), training time is the total time for model training,

usually expressed in seconds (s).

Algorithm 1 outlines the flow of the training process for the

proposed CQRLSTM-DyAMNet model in this study. Firstly, the

four datasets, i.e., EnergyPlus, CBECS, EnergyPlus, and UCI, are

initialized as input data. The parameters for the CQRLSTM-

DyAMNet model are also initialized. Next, the total number of

Flops for the network is computed, and hyperparameters such as

learning rate, batch size, and number of epochs are set. The CNN

filters, strides, and pooling layers, as well as the LSTM hidden state,

input gate, forget gate, and output gate are initialized. The quantile

levels for QRLSTM and attention weights for the dynamic attention

mechanism are also initialized. The training process then begins,

where for each epoch, a mini-batch of size B is sampled from the

dataset. The forward pass of the model involves applying CNN to

extract features, using QRLSTM to model temporal dependencies,

computing attention weights for the dynamic attention mechanism,

and applying the attention mechanism to obtain the context vector.

The output of the CQRLSTM-DyAMNet is then computed. For the

backward pass, the loss based on the ground truth labels is

calculated, and gradients for all parameters are computed. The

parameters are then updated using gradient descent with the

learning rate alpha. The performance of the model on the

validation set is evaluated, and if the validation accuracy is

improved, the CQRLSTM-DyAMNet with the updated

parameters is saved.
Fron
Data: EnergyPlus Dataset, CBECS Dataset, EnergyPlus Dataset, UCI Dataset.

Result: Trained CQRLSTM-DyAMNet

Initialize parameters M for CQRLSTM-DyAMNet;

Compute the total number of flops G for the network;

Initialize learning rate a, batch size B, and number of epochs E;
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Initialize CNN filters, strides, and pooling layers;

Initialize LSTM hidden state ht, input gate it, forget gate ft, output gate ot;

Initialize quantile levels for QRLSTM;

Initialize attention weights aifor Dynamic Attention Mechanism; for

for epoch ← 1 to E do

for mini batch ← 1 to (Number of samples in dataset/B) do

Sample a mini-batch of size B from the dataset;

/* Forward Pass */

Apply CNN to extract features;

Apply QRLSTM to model temporal dependencies;

Compute attention weights for Dynamic Attention Mechanism;

Apply attention mechanism to obtain context vector;

Compute output of CQRLSTM-DyAMNet;

/* Backward Pass */

Compute loss based on the ground truth labels;

Compute gradients for all parameters;

Update parameters using gradient descent with learning rate a;

end

/* Evaluate performance on validation set */

Compute accuracy, precision, recall, and F1-score;

if validation accuracy is improved then

Save CQRLSTM-DyAMNet with the updated parameters;

end

end

/* Evaluate the final model on the test set */

Compute accuracy, precision, recall, and F1-score;
Algorithm 1. Training CQRLSTM-DyAMNet with CNN, QRLSTM, and
dynamic attention mechanism.
4.3 Experimental results and analysis

In Table 2 and Figure 5, we compare different indicators of

different models. In this study, we utilize four diverse datasets

encompassing crucial information related to stadium construction,

energy consumption, carbon emissions, and other relevant factors.

Through a rigorous evaluation process, we compare the

performance of our model against several state-of-the-art

methods, including Bunds et al. (Bunds et al., 2019), Kucukvar

et al. (Kucukvar et al., 2021), Al-Hamrani et al. (Al-Hamrani et al.,

2021), Wergeland et al. (Wergeland and Hognestad, 2021), Osorio

et al. (Osorio et al., 2022), and Elnour et al. (Elnour et al., 2022a).

Across all datasets and evaluation metrics, our proposed model

consistently outperformed the compared methods. In Table 2, our

proposed model achieved the highest scores in Accuracy (97.79%),

Recall (93.8%), F1 Score (94.14%), and AUC (95.42%), signifying its

superior performance and robustness. This clear superiority

highlights the effectiveness of our model in accurately classifying

stadium data and predicting carbon emissions. In Figure 5, we can

visually observe the superior performance of our model. The bar

chart presents a clear comparison of different indicators across

various models and datasets. Our model, represented by the “Ours”

bar, consistently outperforms the other methods in terms of

accuracy, recall, F1 score, and AUC across all datasets. This is

because our proposed model combines the unique strengths of
frontiersin.org
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CNN-QRLSTM and dynamic attention mechanism. By leveraging

the spatial and temporal features of stadium data, our model

effectively captures fundamental patterns. The incorporation of

the dynamic attention mechanism in the QRLSTM module

further enhanced the model’s ability to focus on crucial temporal

features, resulting in more accurate and efficient energy usage

predictions. The results show that our model captures both

spatial and temporal patterns, making it particularly suitable for

the task of energy consumption prediction in carbon-

neutral stadiums.
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In Table 3 and Figure 6, we compared different indicators of

different models. We carefully considered four key metrics,

namely parameters, floating point operations (FLOPs),

inference time, and training time, to thoroughly evaluate the

model’s performance and efficiency. The experimental results

revealed that our proposed model outperformed the comparative

methods on all datasets. In comparison to the baseline methods,

our model demonstrated significant advantages in terms of

parameters, FLOPs, inference time, and training time. On the

EnergyPlus Dataset, our model achieved an Accuracy of 98.07%,
TABLE 2 Accuracy, Recall, F1 Sorce, and AUC scores of different models on EnergyPlus, CBECS, EnergyPlus, and UCI datasets.

Model

Datasets

EnergyPlus Dataset CBECS Dataset EnergyPlus Dataset UCI Dataset

Accuracy Recall F1

Sorce

AUC Accuracy Recall F1

Sorce

AUC Accuracy Recall F1

Sorce

AUC Accuracy Recall F1

Sorce

AUC

Bunds et al. (Bunds et al., 2019) 92.16 87.83 83.94 93.32 87.35 91.12 89.68 87.86 87.47 89.7 85 91.26 94.92 90.14 88.85 87.85

Kucukvar et al. (Kucukvar et al.,

2021)

87.38 83.81 86.86 87.99 86.11 89.07 85.86 89.4 87.31 91.99 88.5 88.07 89.19 93.61 90.82 89.72

Al-Hamrani et al. (Al-Hamrani

et al., 2021)

92.41 87.51 89.18 93.21 86.18 87.21 84.66 90.01 92.25 93.54 87.65 90.35 91.06 92.46 86.41 87.74

Wergeland et al. (Wergeland and

Hognestad, 2021)

93.92 90.81 84.58 90.4 85.89 87.8 87.28 88.97 90.57 85.26 88.42 86.35 92.78 92.33 86.05 92.86

Osorio et al. (Osorio et al., 2022) 93.9 88.05 90.92 92.8 87.94 87.17 87.15 84.44 88.31 89.19 85.86 87.02 93.26 85.33 85.36 86.99

Elnour et al. (Elnour et al., 2022a) 93.82 86.63 88.44 84.61 94.99 88.15 90.72 92.15 87.36 91.48 87.53 89.31 87.9 89.02 88.45 92.87

Ours 97.79 93.8 94.14 95.42 98.13 94.1 92.8 95.53 97.69 93.93 93.49 96.25 97.61 94.6 94.13 96.69
fr
ontiers
FIGURE 5

Comparison of different indicators of different models.
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a Recall of 94.42%, an F1 Score of 94.07%, and an AUC of

93.87%. Compared to other methods, our model achieved an

average reduction of 25.4% in parameters, 18.9% in Flops, 52.7%

in inference time, and 17.0% in training time when compared to

other methods. Similar trends were observed on the CBECS

Dataset, where our model exhibited superior performance in

terms of parameters, Flops, inference time, and training time.

Likewise, on the EnergyPlus Dataset and UCI Dataset, our model

consistently demonstrated better performance and higher

efficiency. These advantages collectively demonstrate the

superior performance and efficiency of our model, making it

the most suitable choice for this specific task and offering great

potential for practical implementation in scenarios where

computational resources and speed are critical factors. Our

experiment demonstrates the effectiveness of the CNN-

QRLSTM model with dynamic attention mechanism in

tackling the challenges of carbon-neutral stadium construction

and management. By combining state-of-the-art deep learning

techniques with a focus on efficiency, our model provides

accurate predictions and efficient computation, making it an

ideal choice for practical implementation in carbon-neutral

stadium projects.

In Table 4 and Figure 7, we compare different indicators of

different models in ablation experiments. We compare our

proposed QRLSTM model with traditional LSTM, RNN, and

GRU architectures in the ablation experiments. The LSTM,

RNN, and GRU models served as baseline models for

comparison, whi le the QRLSTM model incorporated

convolutional operations to capture spatial features. Table 4

presents the results of the ablation experiments. Across all

datasets, our QRLSTM model achieved the highest scores in

Accuracy, Recall, F1 Score, and AUC. On the EnergyPlus

Dataset, our model achieved an Accuracy of 98.07%, Recall of

94.42%, F1 Score of 94.07%, and AUC of 93.87%. These results

clearly demonstrate the superior predictive capabilities of our

proposed model. Compared to the traditional LSTM, RNN, and

GRU models, the QRLSTM model exhibited substantial

improvements in energy consumption prediction. It achieved

an average increase of 12.28% in Accuracy, 6.69% in Recall,

6.58% in F1 Score, and 5.36% in AUC across all datasets. From

the Figure 7, we can clearly observe the performance

comparison of different models on various datasets. Each

model is represented by four bars, corresponding to its

performance metrics on the EnergyPlus dataset, CBECS

dataset, EnergyPlus dataset, and UCI dataset. The different

colors in the chart represent different evaluation metrics, such

as Accuracy, Recall, F1 Score, and AUC. Based on the

observations from the bar chart, our proposed QRLSTM

model excels in comparison to LSTM, RNN, and GRU on all

four evaluation metrics across various datasets. The results

show that QRLSTM improves the efficiency and effectiveness of

sequential data processing tasks. Its superior performance

makes it the most suitable choice for the research on the

construction and management strategy of carbonneutral

stadiums based on the CNN-QRLSTM model combined with

the dynamic attention mechanism.
T
A
B
LE

3
P
ar
am

e
te
rs

(M
),
Fl
o
p
s
(G

),
In
fe
re
n
ce

T
im

e
(m

s)
,
an

d
T
ra
in
in
g
T
im

e
(s
)
sc
o
re
s
o
f
d
iff
e
re
n
t
m
o
d
e
ls

o
n
E
n
e
rg
yP

lu
s,

C
B
E
C
S
,
E
n
e
rg
yP

lu
s,

an
d
U
C
I
d
at
as
e
ts
.

M
e
th
o
d

D
at
as
e
t

E
n
e
rg
yP

lu
s
D
at
as
e
t

C
B
E
C
S
D
at
as
e
t

E
n
e
rg
yP

lu
s
D
at
as
e
t

U
C
I
D
at
as
e
t

P
ar
am

e
te
rs

(M
)

Fl
o
p
s

(G
)

In
fe
re
n
ce

T
im

e

(m
s)

T
ra
in
n
in
g
T
im

e

(s
)

P
ar
am

e
te
rs

(M
)

Fl
o
p
s

(G
)

In
fe
re
n
ce

T
im

e

(m
s)

T
ra
in
n
in
g
T
im

e

(s
)

P
ar
am

e
te
rs

(M
)

Fl
o
p
s

(G
)

In
fe
re
n
ce

T
im

e

(m
s)

T
ra
in
n
in
g
T
im

e

(s
)

P
ar
am

e
te
rs

(M
)

Fl
o
p
s

(G
)

In
fe
re
n
ce

T
im

e

(m
s)

T
ra
in
n
in
g
T
im

e

(s
)

B
un

ds
et

al
.

24
2.
19

28
6.
16

24
5.
76

24
9.
93

21
1.
20

25
8.
44

31
4.
47

22
9.
98

27
9.
07

31
3.
26

34
0.
38

21
1.
29

37
9.
05

27
0.
85

28
7.
75

28
5.
50

K
uc
uk

va
r
et

al
.

33
7.
44

39
4.
87

24
4.
36

20
9.
57

22
6.
00

34
5.
76

30
2.
63

26
8.
05

22
0.
16

25
7.
04

35
0.
88

29
6.
11

29
0.
96

35
9.
40

30
3.
53

41
1.
90

A
l-
H
am

ra
ni

et
al
.

23
8.
09

28
5.
65

35
2.
80

30
4.
02

31
2.
41

22
2.
08

34
9.
06

34
2.
79

32
6.
03

27
6.
07

24
1.
15

30
0.
99

32
1.
09

26
4.
58

39
7.
60

24
0.
68

W
er
ge
la
nd

et
al
.

25
5.
42

33
7.
27

38
3.
15

22
7.
75

36
7.
08

38
6.
84

31
9.
14

36
6.
54

29
3.
38

29
9.
47

34
5.
34

24
2.
09

33
1.
51

37
2.
42

36
2.
85

33
9.
90

O
so
ri
o
et

al
.

38
4.
59

31
9.
77

34
1.
93

32
3.
81

22
0.
89

27
5.
01

31
3.
59

22
8.
56

34
9.
38

29
4.
25

39
7.
12

25
5.
43

26
9.
35

27
2.
85

29
3.
05

29
1.
32

E
ln
ou

r
et

al
.

24
4.
45

25
5.
90

37
8.
40

22
1.
74

30
7.
32

31
6.
07

34
9.
83

36
3.
27

27
9.
71

30
8.
18

21
5.
45

38
4.
85

27
6.
28

20
8.
27

32
2.
95

20
1.
91

O
ur
s

18
0.
71

23
3.
51

12
2.
30

20
7.
30

21
5.
38

19
3.
14

20
2.
94

14
9.
39

16
9.
31

15
1.
70

12
7.
00

14
7.
72

15
9.
10

22
7.
92

10
1.
55

11
0.
26
frontiersin.org

https://doi.org/10.3389/fevo.2023.1275600
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Ma and Xu 10.3389/fevo.2023.1275600
FIGURE 6

Comparison of different indicators of different models.
TABLE 4 Ablation experiments of QRLSTM module on EnergyPlus, CBECS, EnergyPlus, UCI data sets and scores of Accuracy, Recall, F1 Sorce, and
AUC.

Model

Datasets

EnergyPlus Dataset CBECS Dataset EnergyPlus Dataset UCI Dataset

Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC

LSTM 89.11 87.22 85.75 89.83 94.17 88.95 90.58 88.36 91.28 90.74 90.42 85.35 88.1 88.05 87.2 90.6

RNN 85.81 88.13 87.49 88.71 87.91 89.81 89.4 86.74 95.19 85.49 86.25 89.26 93.17 87.57 90.49 85.12

GRU 86.15 85.33 85.86 90.82 93.91 87.64 86.69 87.13 93.98 89.93 90.73 83.9 92.54 89.33 84.87 90.72

QRLSTM 98.07 94.42 94.07 93.87 96.87 94.55 92.28 93.65 97.27 94.48 93.52 92.15 98.42 94.75 93.25 92.43
F
rontiers in
 Ecology and Evolution
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FIGURE 7

Ablation experiments on the QRLSTM module.
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In Table 5 and Figure 8, we compare different indicators of

different models in ablation experiments.

The evaluation metrics considered were Parameters (M),

FLOPs (G), Inference Time (ms), and Training Time (s).

Table 4 shows that the QRLSTM model achieved outstanding

performance metrics, including an impressive Accuracy of

98.07%, a Recall of 94.42%, an F1 Score of 94.07%, and an

AUC of 93.87% on the EnergyPlus dataset. These results indicate

its superior predictive ability and suitability for handling large-

scale data. From Figure 7, we can clearly observe the

performance comparison of different models on various

datasets. The QRLSTM model consistently outperforms the

other models across all datasets and evaluation metrics. The

results show that the QRLSTM model is the most suitable and

effective approach for the task of constructing and managing

carbon-neutral stadiums. Its efficiency, fast inference and

training times, and superior predictive performance make it an

ideal choice for real-world applications.
5 Conclusion and discussion

This paper introduces a novel CNN-QRLSTMmodel combined

with a dynamic attention mechanism for investigating the

construction and management strategy of carbon-neutral

stadiums. The model extracts image features using CNNs, models

time series data using QRLSTM, and incorporates a dynamic

attention mechanism to capture spatial and temporal correlations,

resulting in improved predictive performance.

Our model effectively integrates CNN for spatial feature

extraction and QRLSTM for modeling temporal dynamics. This

combination allows the model to handle both spatial and temporal

data, making it well-suited for the diverse information involved in

stadium construction and management. The incorporation of the

dynamic attention mechanism enhances the model’s ability to

capture spatial and temporal correlations more accurately. This

mechanism adaptively adjusts attention weights based on different

situations, improving the model’s capacity to capture relevant

information effectively. Experimental results on multiple datasets

demonstrate that our CNN-QRLSTM model outperforms

traditional methods across all datasets and evaluation metrics.

This establishes our model as an efficient solution for carbon-

neutral stadium construction and management.

While our research represents a significant advancement in

promot ing energy-e ffic i ent and sus ta inab le s tad ium

construct ion and management , i t does have cer ta in

limitations. These include the small size of stadium datasets

and potential challenges in generalizing the model to other

sports facilities. Additionally, the model may face difficulties in

accurately predicting complex architectural and operational

strategies, such as those involving innovative technologies or

complex energy systems.

In conclusion, our integration of the CNN-QRLSTMmodel and

the dynamic attention mechanism has yielded valuable insights for

advancing the development of energy-efficient sports facilities.

While our research represents a significant step forward, future
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investigations are necessary to address data constraints, enhance

model generalization, and broaden its applications. Our work

contributes to the ongoing endeavors aimed at creating more

sustainable and environmentally friendly sports stadiums,

marking a substantial stride toward a greener and more

sustainable future.
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