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As earth surface human activities become more frequent, global ecosystem

service functions and especially biodiversity maintenance functions are

challenged. This study aimed to analyze spatiotemporal changes in Xi‘an section

of the northern foothills of the Qinling Mountains from 1990 to 2020. Temporal

and spatial changes in habitat quality in the study areawere visualized using InVEST

model and land use data, and factors affecting habitat quality were analyzed using

Geodetector. The results showed that during the study period, the cultivated land,

grassland, and water decreased by 16.40%, 74.37%, and 35.39%, respectively, while

the area of forest land and construction land increased, among which the

construction land increased by 117.70%, the largest increase, and the forest land

increased by 8.47%. The main changes in land use are the conversion of cultivated

land into forest land and construction land, and the conversion of grassland into

forest land and cultivated land. During the period 1990–2020, the average habitat

quality index in the study area changed from 0.8617 to 0.8585, showing a slow

decreasing trend. The spatial distribution of habitat quality showed a trend of “high

in the south, moderate in the north, and low in the northwest”. The high habitat

quality was mainly concentrated in the southern forest land, the middle habitat

quality was mainly distributed in the northern cultivated land, and the low

habitat quality was mainly distributed in the northwest construction land. The

land use type has a great influence on habitat quality, and the interaction between

any two factors is stronger than that of a single factor. The temporal and spatial

variation of habitat quality is influenced by both natural and human factors. This

study provides a theoretical basis for ecological protection and nature reserve

planning in the Qinling Mountains region.
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Introduction

Habitat quality (HQ) can represent the supply capacity of

ecosystem services and biodiversity in a region and is an

important basis for ensuring ecological security and reflecting the

pros and cons of the human living environment (Silvis, 2012; Zhang

et al., 2020). In recent years, with the rapid growth of population

and the continuous development of the social economy, the

excessive occupation of land resources and the rapid change of

land use mode has caused a series of environmental problems,

resulting in serious damage to ecosystem service functions and

endangering human welfare (Newbold et al., 2015; Sallustio et al.,

2017; Li et al., 2020a; Li et al., 2020b). Therefore, it is of great

practical significance for realizing sustainable development of

resources and maintaining ecosystem security to analyze and

study the habitat quality in the region and evaluate the changing

trend of the ecosystem service function.

The methods of habitat quality assessment are mainly divided

into the quantitative index method and model method. The

quantitative index method is to obtain the relevant parameters of

habitat quality through field investigation and construct an

evaluation index system for comprehensive evaluation (Wynne

and Côté, 2007; Yang et al., 2021a). Due to the large amount of

human and material resources invested in the evaluation process

and the lack of universality, it is not suitable for large-scale regional

and long-term time series research (Chen et al., 2019; Muñoz-Barcia

et al., 2019). The model rule uses mathematical models to

quantitatively assess habitat quality, which has the advantages of

convenience, speed, and low cost (Moreina et al., 2018). ARtificial

Intelligence for Ecosystem Services (ARIES), Social Values for

Ecosystem Services (SoIVES), and Integrated Valuation of

Ecosystem Services and Trade-offs (InVEST) are widely used in

related research (Bagstad et al., 2011; Mushet et al., 2014; Sherrouse

et al., 2014; Huang et al., 2020). Among these models, the InVEST

model jointly developed by Stanford University, the World Wide

Fund for Nature, and The Nature Conservancy is the most well-

developed, with advantages such as easy access to data and strong

visibility of results (Huang et al., 2020).

Qianqian et al. (2022) analyzed the habitat quality and degree of

degradation in the Ebinur Lake Basin of Xinjiang from 1990 to

2020, and predicted the spatiotemporal changes in habitat quality in

the Ebinur Lake Basin under inertial development and ecological

protection scenarios. Cao et al. (2017) studied the impact of the

urbanization process on ecosystem service function in Zhoushan

Island and revealed the response relationship between urban

expansion encroachment on other land use types and temporal

and spatial changes in habitat quality. Pan et al. (2022) explored the

temporal and spatial changes in habitat quality in the source region

of the Yellow River and analyzed the effects of vegetation cover

change and human activities on habitat quality combined with

NDVI and land use data. Wang and Cheng (2022) conducted a

study on the spatial aggregation characteristics of habitat quality

under different topographies using DEM, and analyzed the

distribution patterns of habitat quality in different altitude areas.
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At present, a large number of studies mainly explore the

characteristics of habitat quality changes based on different land

use, climate types, geomorphic features, and altitude (Arunyawat

and Shrestha, 2016; Wu et al., 2021; Zhang et al., 2022a). However,

there are relatively few studies on the spatiotemporal evolution of

habitat quality in complex areas in geographical transition regions.

As an important natural geographical transition area in China,

the Qinling Mountains plays a key role in water conservation and

biodiversity maintenance, has important ecological service value,

and is an indispensable natural ecological barrier in China (Li et al.,

2013; Zhang et al., 2017; Zhang et al., 2019). However, the climate,

terrain, and biological species of Qinling Mountain are complex and

varied, and its ecological environment has obvious spatial differences

under the dual influence of climate change and human activities

(Shu-Yan, 2002), which has become the main focus of most studies

at present (Ma et al., 2019; Zhao et al., 2021; Zhang et al., 2022b).

Ting et al. (2014) evaluated the ecological benefits of soil and water

conservation in the Qinling Mountains region using the InVEST

model. Ning et al. (2020) analyzed the spatiotemporal changes in the

water conservation function of the Qinling Mountains. These studies

mostly focus on the evaluation of ecosystem service functions in the

Qinling Mountains, lacking research on the spatiotemporal changes

of habitat quality over a long time series. Xi’an, at the northern

foothills of the QinlingMountains, has always had a large population

and high intensity of human activities, which have a profound

impact on the natural environment. Especially in recent years,

with the continuous advancement of urbanization and the rapid

increase of urban construction land, the natural ecosystem and

ecological functions in the region have been affected (Zhou and Li,

2017; Li et al., 2019). Therefore, based on NDVI, land use, night

light, and other data, this paper uses InVEST model to analyze the

temporal and spatial changes of habitat quality in the Xi’an section of

the northern foothills of the Qinling Mountains from 1990 to 2020

and discusses the impact of urban expansion on habitat, to provide

the scientific basis for ecological civilization construction in the

Qinling Mountains.
Materials and methods

Study area

Referring to the narrow definition of the Qinling Mountains as

defined in the “Overall Plan for Ecological Environment Protection in

Qinling Mountains, Shaanxi Province” (http://www.shaanxi.gov.cn/

zfxxgk/zfgb/2020/d17q/202009/t20200921_1728563.html), the

northern and southern slopes of Qinling Mountain and the eastern

and western borders of Shaanxi Province are defined as Qinling

boundary. Combined with the administrative division of Xi’an City,

the Xi’an section at the northern foothills of the QinlingMountains was

selected as the study area (Figure 1). The geographical range was 107°

24′–109°49′E, 33°45′–34°22′N, the climate type is the warm temperate

semi-humid climate, and the vegetation is mainly warm temperate

deciduous broad-leaved forest.
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Data source

The land use raster datasets with 30 m resolution ratio of the

Qinling mountains in 1990, 2000, 2010 and 2020, the Normalized

Differential Vegetation Index (NDVI), night light, temperature, and

precipitation data resolution ratio were acquired from the Resource

and Environment Science and Data Center (http://www.resdc.cn).

Among them, land use data is obtained from the visual

interpretation of landSat 8 remote sensing images, The annual

dataset of night light is processed based on DMSP/OLS and NPP-

VIIRS satellite night light remote sensing image data, precipitation

and air temperature grid data is generated based on the spatial

interpolation of Anuspl interpolation software, and NDVI data is

obtained by the maximum synthesis method of remote sensing

images. DEM data is downloaded from Geospatial data (http://

www.gscloud.cn/). The population density data with 1 km

resolution ratio are derived from the worldpop database

(www.worldpop.org.uk). Traffic data are from the National

Geographic Information Center of China (https://www.ngcc.cn).

All raster data unified the resolution to 30 m using resampling and

clipped by the study area for Geodetector analysis.
Methods

Assessment of habitat quality
Referring to the principle of InVEST model, the calculation

formula of habitat quality is as follows:
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Where: Dxj is the degree of habitat degradation in the grid cell x

with habitat type j, and R is the number of potential threats. Yr is the

grid number of r on the grid plot; ry is the strength of the grid cell y;

w r represents the weight of the threat source; the distance between

the habitat and the threat source is represented by irxy. bx represents
the antiinterference level of the grid cell x; Sjr indicates the relative

sensitivity of habitat type j to the threat source r; dxy represents the

distance between grid cells x and y; and dr max represents the

maximum impact distance of the threat source.

Qxj=HJ 1� Dxj
z

Dxj
z+Kz

 !" #
(4)

Where: Qxj is the habitat quality of pixel x in land-use/cover

type j, Dxj is the threat level of pixel x in land-use/cover type j, Hj is

the habitat suitability of land-use/cover type j, and K is half the

saturation constant (which is half of the maximum value of Dxj). z is

a default parameter in the model and is set as 2.5 (Chen et al., 2021).

InVEST’s habitat quality model is based on land use data,

habitat threat source data, habitat threat source weights,

sensitivity of different land classes to threat sources, and habitat

suitability of local classes. Many studies have selected different

threats factors and related parameters, this study referred to the

InVEST model manual (Sharp et al., 2020) and other relevant

studies (Fan et al., 2021; Cui et al., 2022; Qianqian et al., 2022),

based on the spatial scale of this study and expert consultation, the

relevant parameters are determined as follows (Tables 1, 2):
FIGURE 1

The map of study area.
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Where: The max distance of influence is defined as the maximum

range of the threats factors on the quality of surrounding habitats, the

weight represents the relative destructiveness of threats factors to all

habitats, which the value range is [0,1]. Decay type is used to describe

the attenuation of environmental threats by threats factors as distance

increases, divided into linear attenuation and exponential attenuation

(Sharp et al., 2020).

Where: The sensitivity parameters included habitat suitability

parameters for each land use type and sensitivity parameters of each

land use type to stressors, all ranging from 0 to 1.

Geodetector
Geodetector is a model used to detect the spatial heterogeneity of

geographical elements and identify the interaction between multiple

factors. Through the analysis based on the spatial stratification

characteristics of variables rather than linear relationships, the

explanatory power and mutual relationship of different factors on

habitat quality can be truly and accurately reflected (Ma et al., 2022;

Chen et al., 2023). Detectors are divided into four types: factor

detector, ecological detector, interaction detector, and risk detector,

which are widely used in the ecological research field (Jing et al., 2017;

Sun et al., 2021; Qu et al., 2022). In this study, an interaction detector

was used to analyze the interaction between different factors. The

calculation formula is as follows:

q = 1�
o
m

i=1
nis

2
i

ns 2 = 1 − SSW
SST

SSW =o
m

i=1
nis

2
i ,

SST = ns 2

(5)
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where i (i = 1, 2,…, l) is the stratification of dependent variable y

or independent variable %, i.e., classification or partition; ni and n are

the unit numbers of layer i and the whole region, respectively; s 2
i and

s2 are the variances of layer i and region Y, respectively; SSW and SST

are the sum of variances within the layer and the total variances of the

whole region, respectively; and the value range of q is [0, 1], where the

larger the value, the stronger the explanatory power of independent

variable % to dependent variable y.

The interaction detector is to determine the interaction between

various factors and assess whether multiple factors work together to

increase or reduce the driving force of HQ, or whether there is an

interaction between these factors (Table 3). The habitat quality of the

ecosystem is the result of the interaction of multiple factors. In terms of

natural factors, considering the influence of topography and climate, the

distribution of vegetation is closely related to topography, and the

distribution of vegetation in different land forms is quite different,

which affects the habitat quality. Therefore, elevation are selected as

influence factors in terms of topographic factors. Land use type

influences the spatial distribution of habitat quality, so land use data

was chosen as the influence factor. Climate factors on land cover affect

habitat quality, so precipitation and temperature are selected as influence

factors; vegetation can reflect habitat quality to some extent, and

vegetation growth through the vegetation normalization index

(NDVI). In terms of socioeconomic factors, population density and

the night light index are important indicators of the intensity of human

activity, which can also have an impact on habitat quality. The habitat

quality is used as the dependent variable, and the natural break point

method is used as the independent variable. Habitat quality was treated

as dependent variable and each driver as independent variable and

discretized by natural break point method. The ArcGIS software was

used to create fishing nets, and the sampling interval was set at 1 km after

multiple debugging. The spatial analyst-extraction analyst-sampling tool

was used to input the independent variable and dependent variable layer.

The sampling point was the fishing net point in the study area, and the

values of the independent variables and dependent variables were

extracted and input into the geographic detector model.

Results

Land-use change in the northern foothills
of the Qinling Mountains

Land use changed dramatically during 1990–2020 as in Table 4. The

cultivated land and grassland showed a continuous decreasing trend,
TABLE 1 Threat factors and maximum effect distances, weights of threat
factors, and decay types identified in the study area.

Threats
factor

Max distance of
influence (km)

Weights Decay
type

Cultivated
land

4 0.4 linear

Construction
land

8 1 exponential

Highway 3 0.6 linear

Main road 2 0.5 linear

Railway 5 0.9 linear
TABLE 2 Habitat suitability and sensitivity of land use types to each threat factor.

Land-use
Habitat
suitability

Cultivated
land

Construction
land

Highway Main road Railway

Cultivated land 0.6 0.0 0.9 0.7 0.4 0.6

Woodland 1 0.5 0.8 0.7 0.5 0.8

Grassland 0.9 0.2 0.5 0.5 0.4 0.5

Water area 0.8 0.4 0.7 0.6 0.4 0.5

Construction land 0.0 0.0 0.0 0.0 0.0 0.0
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decreasing by 16% and 74% respectively. Forest land and construction

land showed a trend of continuous growth, increasing by 8% and 118%

respectively. Water area shrank significantly during 1990 to 2000,

however, it has increased between 2000 to 2020. As shown in the

graph below, the major types of land use in the study are forest land and

cultivated land. In the study cultivated land is mainly distributed in the

north of the study area which account for about 24% of the total area;

where forest land is primarily distributed in the southern part of the

study area and it account for about 70% of the total area; The remainder

grassland and water area is distributed dismissively. Lastly, the

construction land ismainly distributed in the northwest of the study area.

This research is based on the four stages land use data (Figure 2),

combined with the land use transfer matrix. From 1990 to 2020, land use

transformation in the study area mainly involves cultivated land, forest

land, grassland, and construction land (Table 5). The cultivated land was

mainly changed into forest land of 240.22 m2, indicating that the project

of returning farmland to forest was implemented in the local area during

the study period. In addition, 90.35 km2 of cultivated land has been

transformed into construction land, indicating that the urbanization of

urban suburbs is relatively significant. The forestland mainly flows into

cultivated land, which accounts for about 77% of the forestland outflow

area. 190.05 km2 and 38.64 km2 of grassland were mainly converted into

forest land and cultivated land. The water area is mainly converted into

cultivated land and construction land, both of which are 4.87 km2.

Construction land was mainly converted into cultivated land, with an

area of 8.23 km2, accounting for 79% of the transferred area.
Temporal and spatial variation of
habitat quality

Natural break-point method is often used for grading the results of

habitat quality, most studies generally classify the habitat quality level into

3 or 5 levels (Fan et al., 2021; Yang et al., 2021b; Cui et al., 2022; He et al.,
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2023). Using the natural breakpoint method, based on the calculation

results of the habitat quality and the range of the study area, the habitat

quality retention at 1 decimal point from 1990 to 2020 was divided into

three levels: low (0–0.4), medium (0.4–0.8), and high (0.8–1.0). Habitat

area and percentage at each level in the four periods are summarized

below (Table 6). From the perspective of time scale, the mean value of

habitat quality in the study area decreased slightly during 1990–2020, but

the range of change was small. The mean values were 0.8617, 0.8629,

0.8604, and 0.8585. Overall, the area proportion of high-quality habitat

increased, the area of medium-quality habitat gradually decreased, and

the area of low-quality habitat increased slowly.

From a spatial perspective (Figure 3), regions with high habitat

quality were mainly distributed in the southern mountains of the

study area, where regions with low habitat quality were mainly

distributed in the northwestern part of the study area, and regions

with medium habitat quality were mainly distributed in the

northern part of the study area. The habitat quality of

construction land is low. The land type of the region with high

habitat quality is mainly forest land, the land type of the region with

medium habitat quality is mainly cultivated land, and the land type

of the region with low habitat quality is mainly construction land.

To further understand the spatiotemporal variation characteristics

of habitat quality in the study area, the arcgis10.8 software was used to

make the spatiotemporal variation map of habitat quality levels in the

study area from 1990 to 2020 (Figure 4). During 1990–2020, habitat

quality levels in most areas of the study area remained stable (Table 7).

About 93% of the total area of the habitat quality grade remained

unchanged, about 5% of the total area of the habitat quality grade

increased, and about 2% of the total area of the habitat quality grade

decreased. medium to high area accounts for about 3% of the total area,

showing an east-west zonal distribution in space, mainly distributed in

the area of human production and living and the border zone of high-

altitude mountains. Low to medium areas are mainly distributed in the

northeast of the study area, and High to medium areas account for

about 2% of the total area, mainly distributed in the eastern part of the

study area and scattered in the southern mountain settlements. The

area of Medium to low is mainly distributed in the northern part of the

study area where the altitude is lower and the population is denser.
Factors influencing spatial variations in HQ

Single factor analysis
The results of the geographic detector analysis (Table 8) show

that there are differences in the driving forces (q values) of various
TABLE 4 Variations in the areas of different land types in study area (km2) from 1990 to 2020.

LULC 1990 2000 2010 2020 Change (km2) Change (%)

Cultivated land 1577.63 1533.27 1459.43 1318.83 −258.8 −16.40

Woodland 4519.47 4647.54 4755.28 4902.09 382.62 8.47

Grassland 276.70 183.23 115.21 70.92 −205.78 −74.37

Water area 12.84 3.76 6.22 8.27 −4.57 −35.59

Construction land 73.52 92.37 124.03 160.05 86.53 117.70
TABLE 3 Types of interactions between two Covariates to HQ.

Judgments based Interaction

q(x1∩x2)<min(q(x1),q(x2)) Non-linear weaken

Min(q(x1),q(x2))<q(x1∩x2)<max(q(x1),
q(x2))

Single-factor
nonlinearity weaken

q(x1∩x2)>max(q(x1),q(x2)) Two-factor enhancement

q(x1∩x2)=q(x1)+q(x2) Independent

q(x1∩x2)>q(x1)+q(x2) Nonlinear enhancement
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factors affecting the change of HQ. The order of q value is land use

type (X3) > NDVI (X5) > altitude (X4) > temperature (X6) >

precipitation (X7) > population density (X2) > night light index

(X1). Thus, land use type was identified as the key factor affecting HQ

change (q = 0.788), followed by NDVI (q = 0.467). Temperature,

rainfall, population density, elevation, and night light index are weak
Frontiers in Ecology and Evolution 06
in explaining the spatial variation of habitat quality, but these factors

need to be considered. In general, natural factors (land use type,

NDVI) had a significant impact on the spatial distribution pattern of

habitat quality, and its q value was greater than that of terrain

(altitude), meteorological (precipitation, temperature), and social

economy (night light index, population density).
TABLE 5 Land-use change transfer matrix of the study area (km2) from 1990 to 2020.

Land-use type Cultivated land Woodland Grassland Water area Construction land

Cultivated land 1229.41 240.22 14.94 2.72 90.35

Woodland 37.68 4471.34 9.66 0.31 0.48

Grassland 38.64 190.05 46.17 0.58 1.27

Water area 4.87 0.25 0.08 2.78 4.87

Construction land 8.23 0.23 0.08 1.89 63.09
A B

C D

FIGURE 2

Land use type in 1990 (A), 2000 (B), 2010 (C), 2020 (D).
TABLE 6 Areas and proportions of HQ levels in study area from 1990 to 2020.

HQ grade
1990 2000 2010 2020

km2 % km2 % km2 % km2 %

Low 113.04 2 126.33 3 163.23 3 217.05 3

Medium 1810.24 28 1762.80 27 1684.46 26 1565.16 24

High 4542.57 70 4576.72 70 4618.16 71 4683.65 73

Mean 0.8617 0.8629 0.8604 0.8585
fro
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Analysis of interactions between bi-factors
The driving force of two-factor interaction on HQ was analyzed

using the interaction detector of the geographical detector. The

results (Table 9) show that the q value of two-factor interaction is

greater than that of a single factor. The interaction was

characterized by two-factor enhancement. The most significant

interaction effect on spatial variation of habitat quality is land use

∩ temperature (0.865), followed by land use ∩ altitude (0.860).

When one dominant single factor (land use type) is combined with

another factor, the interaction of dominant factors is most

significant, indicating that different land use types determine the

distribution pattern of ecosystem types. The interaction of NDVI

with precipitation, temperature, and elevation showed a

considerable driving force, indicating that natural factors such as

temperature, precipitation, and slope had a certain impact on the

change of land use type and habitat quality. While the single-factor

drivers of nighttime lighting and population density are low,

interactions with other factors outweigh the single-factor drivers.
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Discussion

In this study, the InVEST habitat quality model and interactive

detector were applied to analyze the temporal and spatial changes

and influencing factors of habitat quality in the Xi’an section of the

northern foothills of the Qinling Mountains from 1990 to 2020,

which has great practical significance in the protection of ecological

diversity and the construction of ecological civilization in the

Qinling Mountains.
The relationship of land use change and
habitat quality

Land use change is the direct reflection of the interaction between

humans and the natural environment, it is also an important reason

for changes in habitat quality (Li S. et al., 2020a). Research shows that

the land use of the northern foot of the Qinling Mountains has

changed enormously in the past 30 years; cultivated land, forest land,

and construction land are the main types of land use in the region.And

the area of cultivated land and grassland continued to decrease

between 1990 and 2020, while the area of construction land

continued to increase, the development of social economy and the

rapid expansion of cities have been the main reasons for the rapid

changes in land use in China in recent decades (Ma et al., 2022; Qu

et al., 2022).

There is a certain response relationship between the spatiotemporal

changes in habitat quality and land use changes. From 1990 to 2020,
A B

C D

FIGURE 3

Habitat quality in 1990 (A), 2000 (B), 2010 (C), 2020 (D).
TABLE 7 Habitat quality level transfer matrix from 1990 to 2020.

1990 2020

Low Medium High

Low 77.16 35.22 0.46

Medium 138.85 1457.70 210.01

High 0.99 70.6554 4469.2263
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the mean value of habitat quality in the northern foot of the Qinling

Mountains decreased slightly, showing an overall trend of first

increasing and then decreasing. The areas with improved habitat

quality are mainly concentrated in the north and central regions,

these areas are supported by a series of ecological protection policies

such as returning farmland to forests, naturally protected forest (Liu

et al., 2018). Therefore, the land use in this region has mostly shifted

from arable land to forest land. The areas with declining habitat quality

are mainly concentrated in the densely populated areas of Xi’an,

including the northern urban areas and towns in the southern

mountainous areas, during the period from 1990 to 2020, the area of

construction landmore than doubled. The rising industry of tourism in

the northern foot of the Qinling Mountains has promoted the

construction of rural infrastructure and economic development in

the area on one side; on the other side, it negatively impacted on the

local ecosystem which resulting in the decline of habitat quality (Zhang

S. et al., 2022; Han et al., 2023).

Despite the support of various government policies, the habitat

quality of the northern foothills of the Qinling Mountains

continued to decline from 1990 to 2020, mainly due to the

continuous increase in construction land. However, there is a

clear boundary between medium and high habitat quality in the

northern foothills of the Qinling Mountains, distributed in the

central region, and the habitat quality in this region is continuously

improving. This indicates that the government has to some extent

clarified the boundary between human activities and nature, and

has constrained the scope of human activities through a series of

measures such as returning farmland to forests, demolishing illegal

buildings, and establishing nature reserves (Liu et al., 2018; Chen,

2019). In addition, as the growth rate of China’s population slows
Frontiers in Ecology and Evolution 08
down, the scale of urban expansion tends to stabilize (Hou et al.,

2022), which will provide favorable conditions for the continuous

improvement of habitat quality in the region.
Driving factors of habitat quality

During the study period, land use type was the main determinant

of habitat quality, this is consistent with previous research results (Cui

et al., 2022). followed by the NDVI index, which had a strong impact

on habitat quality and was an important parameter reflecting

vegetation growth status and coverage in the region. NDVI is

closely related to habitat quality, which is different from Zhang X.

et al. (2022a). Differences in the geographical environment of the

study area led to different drivers of habitat quality. The interaction

test results show that natural factors and social factors have a

significant influence on the temporal and spatial changes of habitat

quality in the study area. The interaction of all factors enhanced the

impact on habitat quality, indicating that the interaction of two

factors was much greater than that of single factors. The interaction

between land use and other factors was significantly stronger than the

interaction between other factors, indicating that land use was the

main factor affecting habitat quality change. This indicates that

the biodiversity maintenance function of the ecosystem is affected

by many factors, but the land bearing the ecosystem is a decisive

factor for the habitat quality of the ecosystem.
Limitations

In this study, the quantitative and computational results of HQ

are visualized by the InVEST-HQ model. However, there are some

limitations to our study. First of all, the regional scale results can only

be used as a reference for the relationship between LULC changes and

HQ changes in the northern foot of the Qinling Mountains. It is

necessary to carry out large-scale and more comprehensive research

on the study area to formulate appropriate ecological protection

measures. Secondly, due to the limitation of data, this study only

considers the impact of internal threat sources on the headquarters

but does not evaluate the impact of threat sources outside the study

area, so it may affect the evaluation results of HQ. Similarly, previous

studies have shown that the internal mechanisms of habitat quality

are complex and vary greatly in different regions, which may lead to

unclear results. Further research is needed on the accuracy of regional

headquarters assessments based on field survey data parameters. In

addition, due to the limited data collected, although the resolution of

the driver layer data is unified by resampling, there are still some

uncertainties in the analysis of the geographic detector model, which

needs to be further explored in future studies.
TABLE 8 q Values of factors influencing spatial variations in HQ.

Driving factor X1 X2 X3 X4 X5 X6 X7

Driving force (q) 0.300 0.326 0.788 0.448 0.467 0.431 0.371

p Value 0 0 0 0 0 0 0
TABLE 9 The results of interactive detection.

Interaction Influence Interaction Influence

X1 ∩ X2 (0.391) Enhance,bi- X3 ∩ X4 (0.860) Enhance,bi-

X1 ∩ X3 (0.812) Enhance,bi- X3 ∩ X5 (0.845) Enhance,bi-

X1 ∩ X4 (0.501) Enhance,bi- X3 ∩ X6 (0.865) Enhance,bi-

X1 ∩ X5 (0.570) Enhance,bi- X3 ∩ X7 (0.847) Enhance,bi-

X1 ∩ X6 (0.492) Enhance,bi- X4 ∩ X5 (0.668) Enhance,bi-

X1 ∩ X7 (0.462) Enhance,bi- X4 ∩ X6 (0.484) Enhance,bi-

X2 ∩ X3 (0.822) Enhance,bi- X4 ∩ X7 (0.505) Enhance,bi-

X2 ∩ X4 (0.508) Enhance,bi- X5 ∩ X6 (0.668) Enhance,bi-

X2 ∩ X5 (0.579) Enhance,bi- X5 ∩ X7 (0.655) Enhance,bi-

X2 ∩ X6(0.497) Enhance,bi- X6 ∩ X7 (0.466) Enhance,bi-

X2 ∩ X7 (0.482) Enhance,bi- –
Enhance, bi-: means that the interaction between the two factors is a bi-factor enhancement.
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Conclusions

This research is completed using the InVEST-HQ model and

Geodetector were used to study the spatiotemporal changes of the

Xi’an section at the northern foothills of the Qinling Mountains and

the factors driving the changes of the headquarters.The main

conclusions are as follows:

During 1990–2020, themain land use types in the northern foothills of

the Qinling Mountains are forest land, cultivated land, and grassland. The

area of cultivated land, grassland, and water area decreased by 16.40%,

74.37%, and 35.39%, respectively, while the area of forest land, construction

land, and water increased by 8.47% and 117.70%, respectively.

During 1990–2020, the average habitat quality index in the

study area first increased and then decreased. The spatial

distribution of habitat quality was high in the south, moderate in

the north, and low in the northwest.

The single interactive factor detection results of the geodetic detector

show that LULC is themain driving force for the change of HQ, followed

by natural factors such as NDVI and altitude. Socioeconomic factors

such as population density and GDP are secondary drivers of HQ.
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