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Long-term dietary shifts in a
generalist predator, the
wolverine (Gulo gulo)
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Ilpo Kojola2, Jouni Aspi1 and Jeffery M. Welker1,4,5

1Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland, 2Natural Resources Institute
Finland (Luke), Helsinki, Finland, 3Finnish Food Safety Authority (Ruokavirasto), Veterinary Bacteriology
and Pathology Research Unit, Oulu, Finland, 4UArctic, University of the Arctic, Rovaniemi, Finland,
5Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, United States
Over the last hundred years, many large carnivore species have suffered range

contractions, population losses, and habitat alterations that may be influencing

their dietary preferences. To identify shifting isotopic niches and reconstruct past

and present diets from species of high conservation concern, stable isotope

analysis (SIA) of d13C and d15N values of tissue from museum collections and

ongoing non-invasive monitoring programs offers an effective approach. Here,

we assessed the long-term alterations in the trophic structure of a generalist

large carnivore over a time of population loss and recovery. Wolverine stable

carbon (d13C) and nitrogen (d15N) isotopes were measured in hair samples

collected from 44 individuals in Finland for the period 1905–2020, and

potential dietary were quantified using isotopic niche metrics shifts in two

study areas. We provide evidence of a long-term diet shift in Finnish

wolverines, with a temporal depletion of hair’s d13C (b = −0.016‰, R² = 0.46,

p < 0.001). Correspondingly, there was a shift in the isotopic niches of the

Historical population (before the year 2000) and Recent population (after 2000),

with the niche overlap between theHistorical and Recent periods being only 33%

throughout Finland, and even lower in the two study areas (22% to 24%). The

breadth of the isotopic niche, however, did not significantly differ between the

two periods, suggesting that despite a change in diet composition, wolverines

did not specialize more. The trophic level of wolverines in Finland was stable

throughout the study period, with no significant change in d15N with time (b =

0.0055‰, R² = 0.043, p = 0.17). In summary: A) the strong trophic resilience of

this top predator was shown by the stability of its niche breadth and trophic level

feeding regime during periods of population decline and recovery as well as

during a period of major anthropogenic alterations in their environment; B) the

use of SIA methods on historical and recent hairs provided a unique tool to

unravel long-term changes in wolverine feeding strategies.
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1 Introduction

Terrestrial food webs are often considered to be structured by

large carnivores (Wilson and Wolkovich, 2011; Allen et al., 2017;

Buskirk, 2023). The top-down control of predators on prey cascades

to various taxa through multiple food-web pathways, impacting

ecosystem processes at all levels from nutrient cycling to landscape

features (Ripple et al., 2014; Winnie and Creel, 2017; Peziol et al.,

2023). Despite their crucial ecological function, large carnivore

populations have experienced a global decline and range

contractions throughout the last century (Wolf and Ripple, 2017;

Wolf and Ripple, 2018). Meanwhile, habitat alteration and

fragmentation together with climate change have led to

modifications in prey species richness and distribution (Christian

et al., 2009; Schwensow et al., 2022). The persistence of a predator in

an altered ecosystem is then partly predicted by its resilience to

changing habitats and prey populations (Hempson et al., 2017).

Given the time scale of these alterations and the long generation

time of many large carnivore species, the predator’s trophic

adaptations to changes in the food web may only be observable in

the long term, i.e. several decades (Beckmann and Berger, 2003;

Moreno et al., 2013).

Stable Isotope Analysis (SIA) is a valuable tool for studying food

web ecology, including reconstructions of large carnivores’ diets

(Rogers et al., 2015; Newton, 2016; Stanek et al., 2017; Stanek et al.,

2019). As an organism consumes and assimilates resources, the

stable isotope ratios of the food sources will be reflected in the

consumer’s tissues (DeNiro and Epstein, 1978; DeNiro and Epstein,

1981; Ben-David and Flaherty, 2012). A change in a consumer’s

carbon ratio value (d13C) is a proxy for processes such as changes in

carbon source, i.e. a diet shift toward an alternative prey (DeNiro

and Epstein, 1978; Kaczensky et al., 2017; Reynolds et al., 2019). The

nitrogen ratio value (d15N) on the other hand is typically enriched

relative to its food source, thus a high d15N value indicates a higher

trophic level (DeNiro and Epstein, 1981; Layman et al., 2007;

Jennings and Van Der Molen, 2015).

Sequentially grown tissues (e.g. hair, bone, feather) encapsulate

long-term information about a consumer’s diet by retaining the

d13C and d15N isotopic values from the time of growth and

remaining metabolically inert afterward (Rogers et al., 2020;

Hamstrom et al., 2023). Moreover, a tissue such as hair does not

degrade as fast as soft organs after death and can be preserved for

decades in museum collections, on naturalized specimens or pelts.

Hair also has the advantage of being easily sampled non-invasively

on living individuals, e.g. using hair traps (Barja et al., 2016). Yet,

only a few diet studies have seized the opportunity of using carbon

and nitrogen SIA on museum and recent hair samples in terrestrial

ecosystems (Walker et al., 1999; Dalerum and Angerbjörn, 2005).

Isotopic values measured in consumers’ hair samples can be

used as a proxy to assess and compare diet breadth at different

spatial and temporal scales (Nilsen et al., 2012). The diet breadth of

a consumer determines its position on the generalist–specialist

continuum, with generalists having a more diverse diet and thus a

larger breadth than specialists (Jedrzejewska and Jedrzejewski,

1998). The trophic niche of generalist consumers, i.e. their

position in the food web of a community, can be especially
Frontiers in Ecology and Evolution 02
dynamic (Balza et al., 2020). Generalists may switch between

alternative prey items, e.g. during a seasonal peak in food

availability (Ben-David et al., 1997; Djagoun et al., 2016), or shift

their diet in the long term to either cope with the loss of resources or

take advantage of newly available supplies (Buelow et al., 2018).

While long-term dietary studies inferred by SIA have increasingly

been used in aquatic ecosystems (Thompson et al., 1995; Farmer

and Leonard, 2011; Moreno et al., 2013; Mariano-Jelicich et al.,

2017; Reynolds et al., 2019; Carney et al., 2023), it has been sparsely

applied on terrestrial food webs (Hilderbrand et al., 1996; English

et al., 2018), and essentially at a scale of a few years to three decades

in mammalian studies (Galicia et al., 2016; Carbonell Ellgutter

et al., 2020).

The wolverine (Gulo gulo) is a large carnivore inhabiting the

tundra and boreal forest of the circumpolar north (MacDonald

et al., 2017). Like other boreal large carnivores, wolverines

disappeared from the southernmost parts of their range due to

persecution, overhunting, habitat loss, and human development

(Landa et al., 2000; Kyle and Strobeck, 2002). Wolverines are

facultative scavengers and generalist predators feeding on diverse

prey ranging from small rodents to large ungulates (Myhre and

Myrberget, 1975; Magoun, 1987; Koskela et al., 2013a). They adapt

to food scarcity by foraging opportunistically, i.e. switching their

diet toward occasionally available food sources (Samelius et al.,

2002; Shardlow, 2013). In Alaska, for example, Dalerum et al.,

(2009b) showed that wolverines switched their diet between moose

(Alces alces) and caribou (Rangifer tarandus) depending on the

ungulate’s population abundance and availability. The diet switch

happened on an annual scale and was also observed over six years

using SIA of multiple wolverine tissues (Dalerum et al., 2009a).

Despite the global range contraction, local wolverine

populations in northern Europe are currently stable or increasing

(Abramov, 2016). In Finland for example, wolverines underwent a

severe population and genetic bottleneck during the 20th century

(Lansink et al., 2020; Sugiyama et al., 2022). After a critical low in

1973, the population entered a slow recovery phase followed by

faster growth in the last decade (Mykrä and Pohja-Mykrä, 2015). In

2022, Finland counted 400 individuals split into a Scandinavian and

Karelian genetic population (Kojola et al., 2022; Lansink et al.,

2022). The species is classified as Endangered, protected nationwide,

and therefore qualifies for conservation actions (Nature

Conservation Act, 1996; Hyvärinen et al., 2019). However, In

Northern Finland where semi-domesticated reindeer (R. t.

tarandus) are herded extensively, the wolverines’ predation on

livestock results in a typical human–wildlife conflict that

negatively affects its conservation (Rasmus et al., 2020). Although

previous studies have suggested diet differences between wolverine

populations within Finland (Koskela et al., 2013a; Koskela et al.,

2013b), little is known about the long-term dynamics of their

trophic niches nor about the relevance of potential niche

variations for conservation (The Finnish Ministry of Agriculture

and Forestry, 2014; Fisher et al., 2022).

In this study, we aimed to detect possible long-term alterations

in the diet of a terrestrial generalist predator, the wolverine, by using

stable isotope analysis of d13C and d15N. We applied SIA on hair

samples from modern and museum collections, and assessed
frontiersin.org

https://doi.org/10.3389/fevo.2023.1284901
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
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changes in carbon source and trophic level over the last 100 years.

We specifically quantified isotopic niche position, breadth, and

relative overlap of historical and recent wolverine populations,

while considering their population structure. Finally, we discussed

the overall suitability of SIA for gaining information on the trophic

ecology of past and present populations of wolverines, and its

implications for large carnivores’ conservation.
2 Materials and methods

2.1 Study area

The study was conducted in Finland, covering the eastern and

northern parts of the Finnish wolverine range (Figure 1). The whole

study area was defined as Finland and further divided into Northern

and Eastern study areas, based on their distinct ecological

communities and genetic population structure. The Northern

study area is within the reindeer management area (RMA), where

about 190,000 semi-domesticated reindeer are extensively herded

(The Finnish Reindeer Herding Association, 2021). It consists of

various alpine, sub-arctic, and boreal ecosystems, with high plateaus

and hills (maximum elevation 1,365 meters above sea level). The

snow cover period extends from October/November until May/June
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(Koskela et al., 2013a). The Eastern study area, outside the RMA,

consists mainly of boreal pine forests dominated by Norway spruce

(Picea abies) and Scots pine (Pinus sylvestris), though mixed forests

can be found as a result of felling and clear-cuttings. There, the

rugged terrain reaches an elevation of 300 masl, and snow cover

usually lasts from November/December until April, with a peak in

March. In contrast to the Northern region, other large carnivores

are present in high densities in the Eastern study area (the grey wolf

[Canis lupus; Heikkinen et al., 2021a], the Eurasian lynx [Lynx lynx;

Holmala et al., 2021], and the brown bear [Ursus arctos; Heikkinen

et al., 2021b]).
2.2 Sampling

Wolverine hair samples were obtained from 44 individuals from

the period 1905–2020. All samples (N = 52) were collected using

non-invasive methods, from an ongoing DNA-monitoring project

(N = 27), museum specimens (N = 16), and individuals found dead

or legally culled independently from our research (N = 9). Baited

hair snags were used to collect hair samples over the period 2016–

2019 (Lansink et al., 2020). The hairs are plucked by metal brushes,

collected in paper envelopes and analyzed for individual

identification (see for details on the microsatellite genotyping:
A

B

FIGURE 1

Wolverine sample locations in Finland and the two study areas. (A) In the insert, Finland is coloured dark grey and the two wolverine populations of
Fennoscandia (Scandinavian and Karelian; Lansink et al., 2020) are roughly marked with ellipses. (B) Sampling sites were grouped into Northern
(green polygon) and Eastern (orange polygon) study areas within the Finnish wolverine range (dots; Abramov, 2016; Kaczensky et al., 2017; The
Finnish Natural Resources Institute, 2022). The Northern study area overlaps with the Reindeer Management Area (dashed). Samples (circles) were
either collected from museum specimens (blue), hair snags (purple), or from found dead (light green) and legally culled individuals (yellow).
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Lansink et al., 2020). While most individuals were sampled once,

four individuals were sampled on several occasions due to the

opportunistic nature of the sampling method. From three

individuals sampled three times within the same year, samples

were pooled per individual and labeled with the respective

collection year. One individual was sampled on three occasions,

each in a different year. Given the strong inter-annual variation in

wolverines’ diet (Myhre and Myrberget, 1975; Dalerum et al.,

2009b), we treated each sample from this individual as

independent. Additional hair samples were collected from one

individual found dead in 2020 and from eight legally culled

individuals in 2019–2020 (Appendix 1). Museum hair samples

from similar regions as the other individuals were taken from

skins and stuffed specimens from Finnish natural history museums.
2.3 Sample preparation

Hair samples were washed in a solution of 2:1 chloroform/

methanol overnight on an orbital shaker at 180 rpm to remove

lipids. Samples were rinsed once with fresh 2:1 chloroform/

methanol, twice with 96% ethanol, twice with distilled water, and

dried in an oven at 50°C for 24 hours. For each hair sample, 15 of

the longest guard hairs were cut with a surgical scalpel into 2 cm

sections from the follicle to the tip (Careddu et al., 2021). Each hair

sample’s section was weighed (0.8–1.2 mg) into a 5 × 9 mm tin

capsule (Elemental Microanalysis [UK]).
2.4 Stable isotope analysis

Carbon (13C:12C) and nitrogen (15N:14N) stable isotope ratios

were measured in each sample with a mass spectrometer at the

Environment and Natural Institute Stable Isotope Laboratory at the

University of Alaska Anchorage (Rogers et al., 2020). Ratios were

measured as a deviation from international reference standards

(Vienna Pee Dee Belemnite for carbon and air for nitrogen),

expressed as d in per mil (‰). The internal laboratory standards

were BWBII keratin, peach leaves, moose, and three-spined

stickleback (Gasterosteus aculeatus). Measurement errors were

found to be typically smaller than ± 0.02‰ for both d13C and

d15N. In addition, the carbon to nitrogen concentration ratio (C:N)

was measured to assess possible contamination or alteration of the

samples (DeNiro, 1985).
2.5 Data preparation

2.5.1 Suess effect
Correction of isotopic values is required on large temporal

ranges, as changes in the natural occurrence of stable isotopes can

be gradually integrated into the tissues of primary producers and

may propagate along the food web to higher-level consumers (Long

et al., 2005; Kumar, 2011; Newton, 2016). Increasing atmospheric
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CO2 emission and its associated depletion in 13C, called the ‘‘Suess

effect’’, is the main known long-term change in the isotopic baseline

(Keeling et al., 2017). As CO2 emissions accelerated after 1960, d13C
measured in hair samples was corrected using equation (1) for

samples between 1960 and 2019, and equation (2) for samples prior

to 1960 (Francey et al., 1999; Chamberlain et al., 2005; Ben-David

and Flaherty, 2012). The most recent sampling year (i.e. 2020) was

taken as the reference year and thus not corrected.

d 13Ccorrected = d 13Craw − ((2020 − Yearsampling)� −0, 022‰ (1)

d 13Ccorrected = d 13Craw − (59� 0, 022 + (½1960 − Yearsampling �
� 0, 005)) (2)

Temperature and rainfall could also influence the carbon

isotopic baseline of primary producers, but the scale of these

changes is far smaller than the Suess effect (Marshall et al., 2007)

and becomes negligible when moving up in the food web (English

et al., 2018). Values were not corrected as there is no strong

evidence of global atmospheric NO3
− depletion being integrated

into the ecosystem (Felix and Elliott, 2013). Moreover, local

processes of soil d15N depletion due to agricultural fertilization

(Bol et al., 2005) are likely irrelevant in the soils of the boreal forest

(Liu et al., 2022).

2.5.2 Periods
Samples from before the year 2000 were grouped as Historical

(N = 13), and samples taken after 2000 as Recent (N = 33). The

Historical-Recent division reflected the wolverine population

history in Finland (i.e. the bottleneck and a period of low

population densities vs. population recovery and growth; Lansink

et al., 2020; Kojola et al., 2022) as well as the carnivores guild

recolonization history in Finland (i.e. absent or in low numbers

during the Historical, and rapidly increasing or stabilizing during

the Recent period; Pohja-Mykrä et al., 2005; Heikkinen et al., 2021b;

Holmala et al., 2021). Moreover, the groups ensured that the sample

sizes were large enough for the later analysis (N ≥ 3; Jackson et al.,

2011). The sample size of Recent individuals was larger than the

Historical one in the Eastern region (N = 26 and N = 6,

respectively). Any bias attributed to this difference in sample size

was ruled out by running all analyses with equal Historical and

Recent sample sizes (N = 6). Six Recent individuals from the Eastern

study region were randomly selected, with replacement, and the

process was repeated 10 times. Results from the random samplings

were similar to the original results (Appendix 2).
2.6 Data analysis

Long-term shifts in isotopic niches between the Recent and

Historical wolverine populations were evaluated for the study areas

(Northern and Eastern) and pooled together as Finland. The

isotopic niches were reconstructed for each group by fitting

ellipses encompassing 95% of the data using the R package SIBER
frontiersin.org
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(Stable Isotope Bayesian Ellipses in R package; version 2.1.6;

Jackson et al., 2011). The similarity in isotopic niches between the

two groups was quantified by their overlap, expressed as a

percentage of the overlapping area over the total area covered by

the two ellipses (Krumsick and Fisher, 2019). Niche breadths were

quantified by their Bayesian standard ellipse area (SEAB), calculated

by fitting Bayesian multivariate normal distributions to the data

(Catry et al., 2016). We used JAGS (Just Another Gibbs Sampler)

parameters as: iterations = 130.000, burn-in = 5.000, thin = 50,

chains = 4, and applied a correction for small sample size (Jackson

et al., 2011). To compare the niche breadth extent between the two

periods, the posterior probability of Historical’s SEAB being larger

than Recent’s SEAB was calculated (PPH>R). Historical’s SEAB was

considered significantly larger where PPH>R ≥ 0.95.
3 Results

The d13C stable isotopes values of wolverine hairs in Finland

ranged from −24.7 to −21.3 ‰ (mean= −23.3‰, SD = 0.8, Suess

corrected) and d15N values fell between 5.1 and 8.8‰ (mean = 6.5‰,

SD = 0.9). The carbon to nitrogen ratio was consistent throughout the

study period (max = 3.1, min = 2.8, mean = 2.9, SD = 0.1), falling in

the expected range for unaltered tissue samples (DeNiro, 1985).

Detailed isotopic values are given for each sample in Appendix 1.
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During the last century (1905–2020), the d13C values of

wolverine hairs became depleted in Finland (Figure 2A; estimated

slope b = −0.016‰, R² = 0.46, p-value < 0.001), and within both

study areas (Figure 2B;Northern: b = −0.015‰, R² = 0.76, p < 0.001;

Eastern: b = −0.012‰, R² = 0.17, p = 0.031). For the d15N, although
the Eastern study area showed a slight temporal enrichment with a

minor correlation (b = −0.013‰, R² = 0.12, p = 0.046), no

significant correlation between years and the d15N values was

found in the Northern study area (Figure 2D, R² = 0.085,

p = 0.31) nor overall in Finland (Figure 2C, R² = 0.043, p = 0.17).

The isotopic niche of the overall Historical population was

significantly different from the Recent populations (OverlapFinland =

33%, Figure 3A), though there was no significant difference in the

niche breadth extent (PPH>R = 0.32, Figure 3B). When divided

between study areas, isotopic niche overlaps between Historical and

Recent populations were small, ranging from 22% in the Eastern to

24% in the Northern region. In the Northern region, the SEAB of the

Historical population was 1.40 ‰² (95%CI: 1.08–1.95 ‰², N = 7)

and of the Recent population 2.00‰² (95%CI: 1.43–2.82‰², N = 7).

SEAB values of a similar range were found in the Eastern region

(Historical: 1.37‰², 95%CI: 1.00–1.97‰², N = 6; Recent: 1.35‰²,

95%CI: 1.17–2.57‰², N = 26). Differences in SEAB between the

Recent and Historical populations were not statistically significant

in Finland or in the regions (Northern: PPH>R = 0.60; Eastern:

PPH>R = 0.33).
A B

DC

FIGURE 2

d13C (A, B) and d15N (C, D) isotopic values over the years 1905–2020 of hair samples (N = 44) from wolverines in Finland (A, C) and per study region (B, D).
Linear regression equations are given ‘y = a+ bx’ and shown as a blue line, the coefficient of determination is given as ‘R²’, and the p-values as ‘p’.
Overlapping points are shown as darker grey. d13C values prior to 2020 were corrected to account for the Suess effect.
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Massé et al. 10.3389/fevo.2023.1284901
4 Discussion

4.1 Long-term diet shift of wolverines
in Finland

The d13C values of wolverine hairs became depleted during the

last 100 years in both Eastern and Northern study areas of Finland.

d13C shifts in generalist predators are often linked with the predator

shifting its diet toward an alternative prey type, e.g. from

planktivorous to benthic-feeding prey (Hempson et al., 2017), or

herbivorous to detritivorous prey (Wise et al., 2006). Interestingly,

our results are consistent with Dalerum et al. (2009a), who observed

similar patterns of isotopic values from various tissues of Alaskan

wolverines over a shorter period (6 years). In Alaska, this change in

d13C values was associated with a shift in their diet composition

from caribou toward moose (Dalerum et al., 2009b). Our results

suggest a possible change in the diet composition of Finnish

wolverines, shifting towards an alternative prey, though without a

change in trophic level.

Our results further support a possible diet shift by the small

overlap between the Historical and Recent wolverine population’s

reconstructed isotopic niches (Figure 3). Small overlaps in isotopic

niches have been shown to reflect for example long-term shifts in

the diet of aquatic consumers (Secchi et al., 2017; Reynolds et al.,

2019). For another boreal large carnivore, Hilderbrand et al. (1996)

found a long-term shift (1916–1994) in the diet of grizzly bears

(Ursus arctos horribilis) in North America by comparing the

isotopic values of tissues from a historical and a modern
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population. In this case, the difference in isotopic niches between

the temporal populations was linked to a change in the grizzly’s diet

from salmon toward terrestrial prey, as increased damming

negatively affected salmon availability.

In the current wolverine study, the enriched d15N values and the

variance observed were typical of a generalist consumer at a high

trophic level (DeNiro and Epstein, 1981). Nonetheless, the absence

of a clear trend in d15N values indicates a lack of a significant diet

switch towards an alternative trophic level during the study period

(Stanek et al., 2017). Thus, the trophic level of wolverines in Finland

during the last century was likely stable despite an alteration of

habitat, climate and an associated change in prey community. This

is consistent with SIA of Alaskan wolverines (Dalerum et al., 2009a)

and has also been observed in other generalist consumers, such as

marine birds or fur seals (Ceia et al., 2012; Vales et al., 2020).

Despite the shift in the isotopic and dietary niche, there was no

significant temporal variation in the niche breadth of wolverines. In

Norway, Van Dijk et al. (2008) suggested that the niche breadth of

wolverines would decrease with grey wolf recolonization, as wolves

provide moose carrion which the wolverine can specialize on.

However, in our Eastern study area, where wolves recolonized

their former range after 1990 (Kojola et al., 2006; Mykrä et al.,

2017; Heikkinen et al., 2021b), we did not observe a significant

difference between the isotopic niche breadth of the Historical and

Recent wolverine populations. A possibility is that coexistence with

wolves might not be the sole driver of the wolverine niche breadth

extant, especially in a community of several other large carnivores.

The Eurasian lynx also recolonized its former range and acts as a
A

B

FIGURE 3

Reconstructed isotopic niches for ellipses and standard ellipses area (SEA) of Historical and Recent wolverine hair samples throughout Finland and
divided over two study areas. (A) Bivariate plots of d13C and d15N showing the SIBER 95% standard ellipse areas surrounding the reconstructed
isotopic niche spaces of Historical (dark grey) and Recent (light grey) wolverines in Finland and in the study areas. Overlap between Historical and
Recent population’s ellipses are given as percentages. d13C values prior to 2020 were corrected to account for the Suess effect. (B) Boxplots of the
posterior predictive estimates of the Bayesian standard ellipse areas (SEAB) modeled in SIBER comparing Historical (dark grey) and Recent (light grey)
wolverines in the study areas. Sample sizes are given in brackets for each period and study area.
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carrion provider throughout Fennoscandia, making carcasses of

diverse prey species available for wolverines (Sunde and Kvam,

1997; Andrén et al., 2011; Mattisson et al., 2011). Thus, the overall

long-term stability of the wolverine niche breadth might be partly

caused by wolverines scavenging from carrion made available by

several coexisting large carnivores (Magoun, 1987).

Considering other generalist consumers and predators, long-

term diet shifts have typically been associated with changes in prey

communities (Farmer and Leonard, 2011; Secchi et al., 2017)

resulting from multiple factors such as overharvesting (Reynolds

et al., 2019), habitat degradation (Hempson et al., 2017), or

anthropogenic disturbances (Hilderbrand et al., 1996). The

Finnish boreal forest in our study areas is known to have largely

lost its ecosystem integrity over the past century (Grantham et al.,

2020). Factors such as climate change (Fraixedas et al., 2015), the

intensification of forestry practices (Järvinen et al., 1977; Vasander,

2006), urbanization (Scrafford et al., 2018), and fluctuation in

ungulate populations (Nygrén, 1987; Luoma, 2002) could all have

led to changes in the wolverine’s prey communities, resulting in the

observed diet shift. In any case, the remarkable stability of the

Finnish wolverine’s niche breadth through a century of habitat

modification and dietary shift may indicate the resilience to trophic

alteration (Jenkins and Davoren, 2021), with subsequent

conservation implications for wolverines.
4.2 Implications for wolverine conservation

Generalists often respond the most successfully to trophic

disturbances (Berumen and Pratchett, 2008; Peers et al., 2014),

especially in cases of alterations of their prey community (Wilmers

and Post, 2006; Christian et al., 2009). As the persistence of a

consumer in a changing ecosystem is partly conditioned to its

dietary plasticity (Silver and Marsh, 2003; Dunham, 2017), the

wolverine might be particularly resilient to fluctuations in prey

abundance and availability. The diet shift of wolverines in Finland

over the last century confirms the versatility of this generalist

consumer to adapt to long-term changes in its environment.

Although our results indicate trophic resilience, preserving the

boreal ecosystem remains highly important as food-web

alterations can reach a tipping point after which the survival of

consumers is put at risk (Llope et al., 2011; Griffith et al., 2019).

At a local scale, our results show that the current diet niche of

wolverines in the Northern area is not smaller than the niche of the

Eastern area. These results indicate that wolverines living within the

reindeer herding area are as generalist predators as the wolverines

living outside of it. Somewhat surprisingly the degree of

specialization of wolverines in the Northern study area did not

significantly change over time, even though the abundance of semi-

domestic reindeer varied greatly (Helle and Kojola, 2006; Uboni

et al., 2016). Previously, Koskela et al. (2013a) detected that reindeer

accounts as a significant part of the wolverine diet. Additional

wolverine diet studies in the RMA are thus necessary to assess if the

current generalist population is composed of a few individuals that

specialize on reindeer, i.e. specific individuals taking a
Frontiers in Ecology and Evolution 07
disproportionate reindeer toll, or if the majority of wolverines are

generalists (Mcaulay et al., 2021).
4.3 SIA for diet studies of large carnivores

While the causality between diet shifts and observed long-

term shift in stable isotopes values is supported by many studies

(Chamberlain et al., 2005; Kaczensky et al., 2017; Mariano-Jelicich

et al., 2017; Reynolds et al., 2019), there are other factors that

could explain the changes in isotopic values. Metabolic processes,

for example, can cause short-term and seasonal variation in

isotopic values (Ben-David and Flaherty, 2012; Newton, 2016).

However, our study encompasses 44 individuals sampled over a

century, so the short-term and individual-specific variations are

most likely not affecting the observed long-term trend (Post, 2002;

Dalerum and Angerbjörn, 2005). Given this long study period, our

results could be affected by background fluctuations in isotopic

ratios. For example, the observed trend in carbon isotopic values

of the wolverine tissues could be impacted by long-term changes

in the isotopic values of the prey items themselves (Dalerum et al.,

2009a). Nevertheless, the scale of this shift at a prey species level

would not significantly impact the isotopic values of a predator at

a higher trophic level (Calandra et al., 2015). Hypothetically, even

if there were a strong shift in the isotopic values of a dietary

source, its effect on the consumer’s values would likely be reduced

by the diverse diet composition of wolverines. Although a

unidirectional shift in isotopic values across all dietary sources

cannot be ruled out, this explanation is of little parsimony and is

not supported by long-term SIA studies to our knowledge

(Balčiauskas and Balčiauskienė, 2022). Therefore, the observed

shift in isotopic niche and trend in hair isotopic values are best

explained by the hypothesis of a long-term diet shift of

the wolverine.

Our study further demonstrates the potential of using SIA on

museum and recent samples to infer changes in the trophic ecology

of large carnivores, particularly in the long term. Fisher et al. (2022)

noted that as research on wolverines started decades after their

range collapse, ecological investigations are limited to the remaining

present populations. Our results nonetheless suggest that SIA can

shed light on the trophic ecology of past and extinct populations of

wolverines, and could easily be extended to other species with key

trophic roles. For extinct populations with only museum samples

left, SIA provides the only record of dietary change over historical

time scales of range contraction and population collapse.

Remarkably, the samples collected for SIA studies also open up

ways for complementary studies, e.g. on population genetics

(Lansink et al., 2020).
5 Conclusion

We were able to identify a long-term diet shift of wolverines in

Finland. There was, however, no change in the degree of

specialization nor in the trophic level of the wolverine, thus
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suggesting a high dietary resilience and adaptation to multiple

alterations in their food web. Overall, SIA proved to be a suitable

tool to study long-term diet trends in top consumers of terrestrial

food webs, especially when hair samples from both museum

collections and modern studies are available. We thus encourage

further long-term stable isotope analysis on large carnivores to

assess their past diet niches and to provide a better understanding of

their ecological context for the conservation of present populations.

Finally, as the diet of carnivores is considered an indicator of the

overall status of biodiversity within an area (Sergio et al., 2008;

Reynolds et al., 2019), reconstructing their past and present trophic

niches could help to detect signs of temporal changes

in biodiversity.
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