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Long-term monitoring data is central for the analysis of biodiversity change

and its drivers. Time series allow a more accurate evaluation of diversity

indices, trait identification and community turnover. However, evaluating

data collected across different monitoring programs remains complicated

because of data discrepancies and inconsistencies. Here we propose a

method for aggregating datasets using diffusion maps. The method is

illustrated by aggregating long-term phytoplankton abundance data from

theWadden Sea and Southern North Sea gathered by two institutions located

in Germany and The Netherlands. The aggregated data allowed us to infer

species traits, to reconstruct the main trait axis which drives community

functionality, ultimately quantifying functional diversity of the individual

samples, having used only the co-occurrence of species in samples.

Although functional diversity varies greatly among sampling stations, we

detect a slight positive trend in German stations, which contrasts with the

clear decreasing trend observed in most of the Dutch Wadden Sea stations.

At the Terschelling transect, in Southern North Sea, the stations also showed

contrasting estimations of functional diversity between off-shore and in-

shore stations. Our research provides further evidence that traits and

functional diversity can be robustly reconstructed from monitoring data

alone, showing that data aggregation can increase the accuracy of this

reconstruction, being able to aggregate heterogeneous datasets.
KEYWORDS

functional diversity, long-term phytoplankton monitoring, diffusion map, Wadden
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fevo.2023.1285115/full
https://www.frontiersin.org/articles/10.3389/fevo.2023.1285115/full
https://www.frontiersin.org/articles/10.3389/fevo.2023.1285115/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2023.1285115&domain=pdf&date_stamp=2023-12-15
mailto:pedro.carrasco@hifmb.de
https://doi.org/10.3389/fevo.2023.1285115
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2023.1285115
https://www.frontiersin.org/journals/ecology-and-evolution


Carrasco De La Cruz et al. 10.3389/fevo.2023.1285115
1 Introduction

The climate crisis is increasingly impacting species

distributions, changing macro-ecological patterns and reshuffling

natural communities, which highlights biodiversity quantification

as an essential task (Cardinale et al., 2012; Jonkers et al., 2019).

However, the quantification of biodiversity variation remains

challenging (Loreau et al., 2021). Most biodiversity indexes are

based on taxonomic variation (Hill, 1973; Malavasi et al., 2004;

Morin, 2009), which provides little information about species

functionality or the effects on biological community structure

(Bellwood et al., 2006; Tilman et al., 2006).

Several studies show that the importance of functional

composition and functional richness tend to be larger than the

importance of taxonomic richness in influencing ecosystem

functions (Naeem and Wright, 2003; Petchey et al., 2004;

Córdova-Tapia and Zambrano, 2015). Consequently, many

indices were developed to measure functional diversity in an

ecological community, using species traits (Petchey and Gaston,

2006). Rao’s quadratic entropy (Rao, 1982) is an important metric

of functional diversity due to its mathematical simplicity and ability

to analyze multiple traits. It is defined as:

Fk = o
n−1

i=1
o
n

j=i+1
dijp

(i)
k p(j)k (1)

where dij is the pair-wise distance between species i and j, p(i)k
and p(i)k are the relative abundance of species i and j in sample k and

the summation indices i, j run over all n species in the system

(Botta-Dukát, 2005; Pavoine and Dolédec, 2005; Ricotta and

Moretti, 2011).

The applicability of Rao’s index for functional diversity is

presently limited by the availability of trait data. The term trait

may refer to a number of closely related but subtly different

concepts. In observational studies traits are morphological

characteristics of taxa (McGill et al., 2006; Violle et al., 2007),

whereas in modeling traits mostly refer to functional characteristics

of modeled species (Huppert et al., 2002; Brännström et al., 2011).

Bridging between these is the usage in data-analysis where traits are

variables that are inferred from observational data, and thought to

be informative of species functionality (Ryabov et al., 2022). Being

able to infer species traits from observational data opens up the

possibility to use existing long-term datasets to robustly quantify

species traits (Mutshinda et al., 2017), obtaining a better species

pairwise distances reconstruction, hence a more accurate

computation of functional diversity (Botta-Dukát, 2005; Ricotta

and Moretti, 2011).

An approach to infer species traits directly from monitoring

datasets was proposed by Ryabov et al. (2022). Their approach

adapts a manifold learning method known as diffusion maps

(Coifman et al., 2005; Coifman and Lafon, 2006), which uses the

observed multi-species distribution and species abundances to infer

the functional traits that explain such distribution, turning around

the traditional assessment of functionality of traits (Thomas et al.,

2012; Kléparski et al., 2021). Once the trait space is reconstructed,

Rao’s index is used to calculate the functional diversity of the
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community. Ultimately, this methodology provides a single-

parameter algorithmic solution to identify important traits, being

able to handle the high dimensionality of ecological datasets.

The accuracy in the reconstruction of the trait space should

increase with the number of observations included in the analysis

(Barter and Gross, 2019; Fahimipour and Gross, 2020). Hence, an

important step to further develop this method is the combined

analysis of different monitoring datasets. However, aggregating

times series from different regions poses a major challenge due to

heterogeneous sampling frequencies and methodologies,

discrepancies in species taxonomic identification, or data access

limitations (Benway et al., 2019). Therefore, it becomes necessary to

develop a procedure to adequately aggregate data sets, that will

improve the diffusion maps’ results while avoiding the limitations of

individual data sets analysis.

In this work we introduce an approach for aggregating

phytoplankton monitoring datasets for the diffusion map method

proposed by Ryabov et al. (2022). The method is illustrated by the

aggregation of two phytoplankton datasets gathered in different

countries, as part of two extensive monitoring programs: one

conducted in the Southern North Sea by Rijkswaterstaat, in the

Netherlands, and the other by the Lower Saxony Water

Management, Coastal Defence and Nature Conservation Agency

(NLWKN), in Germany. Detailed description of the stations and

sampling methods is given in Hanslik et al. (1998) for the German

stations and in Prins et al. (2012) for the Dutch stations. The

proposed method increases the accuracy of trait and biodiversity

estimation for both of the datasets. Furthermore, it establishes

common scales of traits and biodiversity, making it transferable

between areas and regions.
2 Application of diffusion map to a
single dataset

We start by illustrating the diffusion mapping procedure using a

single dataset. The phytoplankton dataset analyzed here is part of

the extensive monitoring program conducted by Rijkswaterstaat, in

the Netherlands (Baretta-Bekker et al., 2009). We used harmonized

data from 18 stations, including 3691 samples and 366 species. The

data harmonization consisted of first removing all species identified

as purely heterotrophic, and second, homogenizing and updating

phytoplankton species nomenclature using the WORMS website

taxonomic database (Ahyong et al., 2023).

Following Ryabov et al. (2022) we begin the diffusion map

process by calculating the similarity score between species over the

set of samples. As our primary proxy for similarity between two

species, species i and species j, we use the Spearman correlation

(Spearman, 1987), building on the ecological principle that species

tend to co-occur under the adequate environmental conditions

(Hutchinson, 1959; Colwell and Rangel, 2009). The resulting

similarity scores are gathered in a matrix, in which high values

now indicate close similarity between the respective species.

Second, we threshold the similarity matrix to a set of ‘trusted

comparisons,’ with the purpose of discarding the small similarity
frontiersin.org
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scores of our matrix. When comparing the entries in a high-

dimensional space, a small similarity score provides very little

information on the nature of the discrepancy (de la Porte et al.,

2008; Barter and Gross, 2019). We therefore only consider such

similarities as trusted when they are in the top-10 similarities for at

least one of the compared species. As a result, we create a network in

which each species is linked to at least the ten most similar species, a

set of ‘trusted links.’

The set of species and trusted links now forms a complex network.

This leads us to a new notion of similarity: Species are similar if they are

close in the network of ‘trusted links.’ We can then define a system of

proxy traits that describes where the respective species is located in a

network. A natural coordinate system for a network is provided by the

so-called Laplacian eigenmodes. To find them we construct the

normalized Laplacian matrix as in Equation 2.

Lij =
1  for i = j

−
cij

oj
cij
 otherwise

8<
: (2)

where Lij is the normalized similarity value between species i and j,

obtained by weighting the Spearman similarity cij with the summatory

of similarities in position j. Lij is 1 when the species is compared to itself.

This specific matrix is closely related to many natural processes

such as different types of diffusion processes, heat conduction, or

the spreading of vibrations (Pires et al., 2021). While a deeper

discussion of the exact relation is beyond the scope of the current

paper, the basic idea is that if we built the network as a mechanical

object and repeatedly struck or heat random parts of it, the nodes

that would in average warm or vibrate in sync must be in similar

places (Yeakel et al., 2014; Delmas et al., 2019; Gibert and Yeakel,

2019). The actual matrix used here is not in exact correspondence to

either of these physical processes, but a compromise chosen for its

advantageous mathematical properties (Barter and Gross, 2019).

To extract the inferred proxy trait values for the species we

compute the eigenvectors of the Laplacian. The eigenvectors contain

one element for each of the species. Hence we can interpret the

elements of an eigenvector as trait values of the species. Thus each

eigenvector defines a trait axis, while the individual eigenvector
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elements are the respective trait values assigned to the individual

species. Mathematically an eigenvector can be scaled arbitrarily.

Common algorithms scale eigenvectors such that the length of the

eigenvector is one. However, in a diffusion map, we want to scale the

eigenvectors to reflect their respective importance. This importance is

inversely proportional to the corresponding eigenvalue of L.

Laplacian matrices are positive semi-definite matrices, thus the

eigenvalues are either positive or zero. The number of zero

eigenvalues is identical to the number of components in the

network of data points. If more than one zero eigenvalue exist,

the network has become disconnected in the thresholding step. In

that case, the analysis must be repeated with an increased number of

threshold links. As the importance of an eigenvector is inversely

related to the eigenvalue we could think that the zero-eigenvector is

of infinite importance. However, in this eigenvector all elements are

identical, the information that it tells us is just that all nodes are part

of the same network component. We can hence ignore it in our

analysis. Each of the remaining eigenvectors gives us a new trait axis

for which the trait values of the individual species are given by the

eigenvector elements (Ryabov et al., 2022).

To get an understanding of the results we consider two-

dimensional plots of the eigenvector entries (Figure 1). The plot

shows the traits constructed from eigenvector 1 and 2 (EV1 and EV2

respectively) and each dot represents a phytoplankton species used in

the analysis. Diffusion mapping does not provide a biological

interpretation of the eigenvectors, however, we can uncover such an

interpretation by analyzing additional data. We used environmental

data which were gathered during sampling (e.g., day of year, sea

surface temperature, total NO3
− concentration, total PO4

3−

concentration, salinity, Dissolved Inorganic Nitrogen (DIN),

Dissolved Inorganic Phosphorus (DIP), suspended particles), to

estimate the species-specific environmental condition. We compute

a weighted average of the gathered environmental parameters

(Equation 3), using the abundance of species i in sample k, or a(i)k ,

as a statistical weight of the sample

Ê (r,i) = o
m
k=1a

(i)
k E(r)

k

om
k=1a

(i)
k

(3)
FIGURE 1

Inferred traits from the monitoring dataset. Color coded are environmental conditions under which the species were observed with high relative
abundance. The EV1 aligns well with salinity (left) and DIN concentrations, displayed in logarithmic scale (right). This EV probably separates species
by their adaptation to salinity levels or their nitrogen requirements.
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where E(r)
k is the environmental factor in sample k, and m

represent the number of samples. In this way we obtain the species-

specific environmental value for each phytoplankton species.

Color coding the species in the reconstructed trait space

(Figure 1) shows that the first i-trait aligns well with salinity and

DIN concentrations, suggesting that this trait might represent

adaptation to different levels of nutrient availability and water

masses. This does not imply causality, but demonstrates the

feasibility of our method to unveil the possible functional traits

driving diversity in this phytoplankton community.
3 Diffusion mapping two datasets:
failure of simple aggregation

The analysis of individual datasets may limit our ability to

construct a reliable network if the number of samples or the number

of species is small. When this happens, we are forcing a comparison

between dissimilar species, degrading the quality of trait space

reconstruction (Barter and Gross, 2019; Fahimipour and Gross,

2020). Therefore, a recommended solution is to increase the data

used in the analysis, which can be done by aggregating multiple

long-term datasets.

Our goal is now to demonstrate that datasets cannot be

aggregated directly. For this purpose we use the previously

introduced data set by Rijkswaterstaat, in the Netherlands (Baretta-

Bekker et al., 2009), and the dataset collected from the monitoring

program of the Lower Saxony Water Management, Coastal Defence

and Nature Conservation Agency, in Germany (NLWKN, 2013),

both gathered in the coastline of the Southern North Sea. Data was

harmonized, according to the previous section, and phytoplankton

abundance observations were added subsequently.

As a result, the EV1, which represents the primary pattern

detected by the method in the data, clustered the species into two

groups: those only observed in the Netherlands and those only

observed in Germany (Figure 2). This is not the desired result but

rather an artifact from the data gathering. Plankton monitoring is a

difficult task, and attribution of different taxonomic identities, for

similar observations, might happen due to the high number of taxa
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or their sometimes very high morphological similarity. Although a

certain degree of local endemism is possible (de Jonge et al., 1993;

Tillmann et al., 2000; Cadée and Hegeman, 2002; Loebl and van

Beusekom, 2008; van Walraven et al., 2015), the geographical

context makes this only a partial explanation. Consequently, what

we see here is that the diffusion map picks up on an artefact that is

rooted in the nature of the data collection and then exacerbated by

the naive aggregation. This defines the need for an aggregation

procedure that avoids such artefacts.
4 Successful aggregation of
phytoplankton datasets

To find a better procedure for aggregation, let us analyze why

the separation into Dutch and German species occurred in the naive

attempt. When considering different monitoring datasets, the list of

observed species in the respective areas may be different because

some species are genuinely absent in one of the areas, however more

likely the respective agencies have different equipment, procedures,

and institutional cultures, which determine what can be observed

and what taxonomic name is assigned to a given observation. It is

easy to lament these differences between datasets, and call for more

standardization. However, different cultures and capabilities may

also open up different angles on a complex system that, when

properly taken into account, reveal additional information.

We now recognize that if a species is not observed in a given

sample this may indicate the actual absence of the species or it may

signal that the species, while objectively present, was not able to be

identified or was assigned a different name (Petchey and Gaston,

2002; Legras et al., 2020). In our naive merging procedure we

interpreted the absence of an observation as evidence for the

absence of the species from the respective sample. This

assumption leads to an erroneous matrix of similarities which

biases makes species that occur in only one of the regions appear

different from the others.

We propose a more careful approach to dataset merging, which

fixes the epistemological shortcomings of the naive procedure. We

illustrate this approach using the datasets gathered by
FIGURE 2

Reconstructed trait space from the aggregated monitoring dataset using the simple aggregation method (left panel) and our proposed aggregation
method (right panel). Applying a naive aggregation makes the species (dots) cluster in species observed only in Germany (blue) and observed only in
The Netherlands (black). The species (dots) that are common to both datasets are colored in red. Applying our aggregation method breaks the
cluster, providing a better reconstructed trait space and avoiding data artefacts.
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Rijkswaterstaat (Baretta-Bekker et al., 2009) and by NLWKN

(NLWKN, 2013) (Figure 3). After basic data harmonization each

of these datasets can be considered as internally consistent

regarding its identification of taxa. Thus, we can safely construct

and threshold the similarity matrices for the individual datasets as

described above.

We then merge the processed similarity matrices as follows: We

consider all possible pairs of species. For some of these pairs both

species exist in both matrices. We interpret that as a sign that the

corresponding species are reliably identified by both agencies and

hence average the value of the respective similarities. For some pairs

one or both of the species exist only in one of the matrices. We

interpret this as an indication that only one of the agencies can

make this comparison reliably and hence accept the value from the

matrix where the comparison is possible. Finally, some comparisons

cannot be made in either of the matrices because one species exists

only in one of the matrices while the other species exists only in the

other. In this case we set the similarity of the species to zero as no

reliable comparison is possible.

The final choice means that we may assign some zeros to

comparisons between similar species (or even between the same

species which were identified by different taxonomic IDs). However,

setting some comparisons wrongly to zero does not degrade the

quality of the diffusion map result (Ryabov et al., 2022). The

reconstructed trait space shows that the EV1 does no longer

cluster the species into country of observation, rather we observe

that they spread indistinctly over the manifold (Figure 2).

The first i-trait aligns well with DIN as well as with the water

salinity (Figure 4). We conclude that this i-trait could represent

adaptation to different water basin conditions (nutrient availability

and salinity), which are different for the Wadden Sea and the

Southern part of the North Sea (van Beusekom et al., 1999; van

Beusekom and de Jonge, 2002). Such interpretation is likely, as it is
Frontiers in Ecology and Evolution 05
being considered in the scientific literature (Carstensen et al., 2015;

Jung et al., 2017).
5 Functional diversity status of
Southern North Sea and Wadden Sea

Once the i-trait space has been successfully reconstructed for

the aggregated data sets, we can use it to first calculate the distance

in trait space for each species pair, i and j (Equation 4). Such

distance, defined as dij, is calculated by using the euclidean distance

in the reconstructed trait space, where the species traits are now

given by the eigenvector elements corresponding to the species, re-

scaled by the respective eigenvalue, as in:

dij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
k

υk,i − υk,j
lk

� �2s
(4)

where vk,i and vk,j are the species corresponding eigenvectors, lk
is their corresponding eigenvalue and k is the respective trait.

For each sample, we then use the distances between the species

in the i-trait space to compute the Rao index (F), introduced

previously in Equation 1.

Multiple fluctuations can be observed in functional diversity

estimations of samples, having dramatic inter-annual, as well as

inter-station variations. However, when considered over the entire

period, clearer patterns emerge. On the one hand, significant

functional diversity losses occur at most Dutch Wadden Sea

stations, with fastest decrease observed at the Marsdiep basin

(MARSDND and DOOVBWT stations) and off the coast of

Groningen, Lauwers basin (ZUIDOLWOT station). On the other

hand, there is a mild increase of functional diversity in the German
FIGURE 3

Schematic of proposed method for aggregating monitoring datasets. In step 1, we calculate similarities of German and Dutch phytoplankton
abundance data separately. In step 2 we choose the 10 highest similarities (known as threshold). In step 3, after identifying the common species-
pairs, we average their similarities and store them in a new matrix. The rest of the species-pairs are stored with their original similarity values. In step
4 we construct a Laplacian matrix, which is finally used to calculate the eigenvectors in step 5.
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Wadden Sea stations, with the fastest increase at the Weser estuary,

WeMu_W_1 station (Figure 5).

Once catalogued as a ‘Changed Ecosystem’ (de Jonge et al.,

1993), the Wadden Sea experienced a consistent decreasing

trend in eutrophication starting in the 1990s (Cadée and

Hegeman, 2002). However, contrasting recent reports have

found significant signs of increasing eutrophication, persistent

algal blooms, and phytoplankton diversity alteration in the

Western Wadden Sea (Wolff et al., 2010; Carstensen et al.,

2015; van Beusekom et al., 2019; Jacobs et al., 2020; Dajka

et al., 2022). The declining diversity in the Marsdiep basin is

likely explained by the dominance of Phaeocystis globosa spring

and summer blooms (Cadée and Hegeman, 2002; Niu et al.,

2015). The inter-annual variability among stations also suggests

a blooming limitation by nutrients or light, which triggered the

prevalence of fast-growing nutrient opportunist, C-strategist or

R-strategist phytoplankton species such as Micromonas pusila,

Thalassiosira sp., Chaetoceros sp., particularly in the second half
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of last decade (Smayda and Reynolds, 2001; Reynolds, 2006;

Zhang et al., 2022).

Stations at the Terschelling transect, in the Southern North Sea,

also showed contrasting estimations of functional diversity between

off-shore stations (TERSLG235 to TERSLG100) and in-shore

stations (TERSLG50, TERSLG10 and TERSLG4). Whereas off-

shore stations had no significant trend variation, the in-shore

stations had a clear negative trend (Figure 6). A possible

explanation for this is the existence of a ‘line-of-no-return’ off the

sand barrier islands of the Wadden Sea (Postma, 1984), which

decreases the exchange between water masses and increases the

accumulation of suspended matter in the coastal zone (de Jong and

de Jong, 2002). Jung et al. (2017) recently estimated this line

somewhere between 10 and 100 km at the Terschelling transect,

thus having stations inside the ‘line-of-no-return’ highly influenced

by the Wadden Sea dynamics and its environmental conditions.

Therefore, the negative trend in functional diversity observed in the

in-shore stations, as well as in the ROTTMP transect stations,
FIGURE 5

Phytoplankton functional diversity in the Wadden Sea. A decrease in functional diversity (% Fdiv per year) is observed over the measurement period
at all Dutch stations (circles), whereas a mild increase (warmer colors) can be observed at the German stations (triangles). The fastest decrease rate
(colder colors) is found at coastal stations on the Marsdiep and off Groningen. German Wadden Sea stations are in average the most functionally
diverse (larger diameter).
FIGURE 4

Inferred traits from the monitoring datasets. Color coded are environmental conditions under which the species were observed with high relative
abundance. The EV1 aligns well with salinity (left) and DIN concentrations, displayed in logarithmic scale (right). This EV probably separates species
by their adaptation to salinity levels or their nitrogen requirements.
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might be due to seasonal exchange with the Wadden Sea

phytoplanktonic community.

Lastly, the estimations of functional diversity were consistent with

expectations based on species composition. The low functional diversity

in samples of 2006 and 2015 coincides with the dominance of the

flagellate Micromonas pusila, with numbers over 90% of the total

phytoplankton abundance (Figure 5). Similarly, low values of

functional diversity in Dutch off-shore waters is due to a major

dominance of Phaeocystis sp., whose numbers got to represent up to

99% of the total phytoplankton abundance in 2016 (Figure 6). On the

contrary, the period of increased functional diversity in German samples

are due to the community being dominated by two to three species

constituting togethermore than 50% of the total abundance. Among this

species were Lithodesmium undulatum, Paralia sulcata, Leptocylindrus

minimus, Skeletonema costatum and other diatoms. The number of non-

dominant species with relative abundances less than 10% also increased.
6 Conclusions

In this paper, we proposed a method to aggregate

phytoplankton abundance datasets from different origins to

reconstruct i-traits using diffusion maps. This aggregated data

improved the reconstruction of trait axes and the subsequent

estimation of functional diversity from monitoring data. Our

approach enables a robust estimation of functional diversity

within the system based solely on species abundances.

We demonstrated that failure of naive aggregation is rooted in

the nature of the data collection and then exacerbated to the point of

clustering those species unique to individual datasets, hence

conflicting the trait reconstruction. If some species are not

reported in a dataset, it can be assumed that these species were

never present there or could not be identified, but total certainty for

any alternative is unlikely. Our approach to data aggregation avoids
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assuming a total absence of those no-reported species by averaging

similarity values of only those species common to both data sets,

obtaining a better reconstructed trait space.

The final result is a better estimation of functional diversity for both

data sets and for the entire analyzed geographical area. Significant

declining estimations of functional diversity in the West Wadden Sea

are in line with recent reports (Wolff et al., 2010; van Beusekom et al.,

2019; Jacobs et al., 2020) and showed the ever prevalence of fast-

growing nutrient opportunist phytoplankton species in this ecosystem.

Additionally, the difference in the functional diversity trends of the

Southern North Sea stations might be explained by the existence of a

‘line-of-no-return’ off the sand barrier islands of the Wadden Sea

(Postma, 1984; Jung et al., 2017), which might isolate off-shore stations

and their phytoplanktonic community.

We envision the possibility of large-scale aggregation of many

different monitoring datasets, moving from local to regional, and

even to global scales. Successful application of diffusion maps to

large-scale aggregated data could ultimately provide a unified

standard of functional diversity that can be used to map the

functional diversity of samples on a fixed scale.
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