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Pine wilt disease caused by pinewood nematode is one of the most destructive
forest diseases, and still spreading in South Korea despite the various control
efforts. Japanese pine sawyer (JPS) and Sakhalin pine sawyer (SPS) are the main
vectors of the disease. Understanding the distribution and density of the vectors
is crucial since the control period is determined by the different emergence
periods of the two vectors and the control method by its density and the
expected damage severity. In this study, we predicted the distribution of JPS
and SPS using Maxent and investigated the relationship between the resulting
suitability value and the density. The population densities of JPS and SPS were
obtained through a national survey using pheromone traps between 2020-2022.
We converted the density data into presence/absence points to externally
validate each species distribution model, then we used quantile regression to
check the correlation between the suitability and population density, and finally
we used three widely used thresholds to convert the model results into binary
maps, and tested if they could distinguish the density by comparing the R, value
of biserial correlation. The quantile regression revealed a positive relationship
between the habitat suitability and population density sampled in the field.
Moreover, the binary map with threshold criteria that maximizes the sum of
the sensitivity and specificity had the best density discrimination capacity with the
highest R,. A quantitative relationship between suitability and vector density
measured in the field from our study provides reliability to species distribution
model as practical tools for forest pest management.
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1 Introduction

Pine wilt disease (PWD) has devastated the forests of East Asia
and Europe (Zhao et al., 2008; CABI, 2021). The disease is caused by
pinewood nematode (Bursaphelenchus xylophilus (Seiner et Buhrer)
Nickle (Nematoda, Aphelenchoididae)), which quickly kills host
pine species, hindering forest growth and causing economic and
ecologic impacts (Shin, 2008; Mota et al., 2009; Futai, 2013). Pine
sawyers are the main vectors of the pinewood nematodes which
cause PWD (Kishi, 1995). Pine sawyers can form a symbiotic
relationship with the pinewood nematode; pine sawyers disperse
the nematode, and the nematodes inhabit the phloem tissues of the
host trees eventually causing death, which can be used for
oviposition by pine sawyers (Mamiya and Enda, 1972).

The forest in South Korea has been heavily damaged by the
disease since its first introduction at Busan in 1988 (Vi et al., 1989).
In the 2000's PWD spread about half of the country through
Jeollanam-do, Gwangwon-do, and Jeju-do province. By the end of
2010, PWD had spread through the entire country (Choi and Park,
2012). Due to its cultural and historical values, the host Japanese red
pine (Pinus densiflora Siebold & Zucc, (Pinales, Pinaceae)), the
most abundant tree species in South Korea, demands urgent PWD
control (National Geography Information Institute, 2020). In South
Korea, Japanese pine sawyer (JPS) (Monochamus alternatus Hope,
1843 (Coleoptera, Cerambycidae)) and Sakhalin pine sawyer (SPS)
(Monochamus saltuarius Gebler,1830 (Coleoptera, Cerambycidae))
are the main vectors of PWD (Shin, 2008). JPS is known to play a
major role in PWD dispersal as they carry more pinewood
nematodes (Mamiya, 1972) and have greater dispersal ability than
SPS (Kwon et al., 2018). Preemptive control of JPS and SPS
distribution is crucial for preventing the spread of PWD. PWD
control in South Korea is scheduled and prioritized by the
emergence period of the two vectors, since the best practice is to
eliminate the infected host trees before the spread (Kwon et al,
2011). As the emergence periods of the two vectors are different,
controlling efforts should be made in May for the SPS habitats and
in mid-June for the JPS habitats (National Institute of Forest
Science, 2016).

Identifying the distribution and density of forest pests is
essential to schedule and prioritize the control (Barbosa et al,
2012). The species distribution model (SDM) has been widely
used to predict species distribution by correlating the occurrence
or absence of the species with environmental variables, primarily in
geographic space. (Elith and Leathwick, 2009; Merow et al., 2014;
Peterson et al., 2015). Habitat suitability is the primary outcome of
SDM, which represents the suitable combination of the
environmental variables, the probability of occurrence when
presence/absence data is used to build the model, or the relative
likelihood of occurrence when a background point is used.
(Pearson, 2010; Guillera-Arroita et al., 2015). Estimated habitat
suitability is used to map geographic range and area to surveil, or
control in case of forest pests (Padalia et al., 2014).

Previous studies focused on the distribution of PWD itself only
using the occurrence points of PWD (Matsuhashi et al., 2020; Wang
et al, 2022). Yet, PWD occurs and spreads in a complex
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relationship between pathogen, host, and vector. Despite the
importance of the biotic interactions highly dependent on the
ecological traits of vectors, not many studies considered the biotic
interaction between the pathogen, host, and vector in PWD SDM
(Tangetal, 2021; Yoon et al.,, 2023), or predicted the distribution of
each vector separately (Estay et al., 2014). In South Korea, Kwon
et al. (2006) reported that the distributions of JPS and SPS were
separated with a 13.2°C mean annual temperature threshold. JPS
was distributed in the southern part of the country in warmer
climate regions and SPS in the relatively cold northern regions. Kim
et al. (2016) used the CLIMEX model to predict the distribution of
JPS by using life cycle temperature requirements as the
main variables.

The relationship between the distribution of the species and the
density has been generalized that the population density is highest
near the center of species distribution and declines towards the
boundary, with the assumption that the spatial variation in density
will depend on the combination of environmental variables
interacting with the species’ niche (Hutchinson, 1959; Brown,
1984). Despite the intuition that habitat suitability should explain
the species’ density, several studies have tested the relationship
between them and had opposite results, with some reporting the
relationship generally none and statistically significant confounded
only to some species (Pearce and Ferrier, 2001; Nielsen et al., 2005),
while VanDerWal et al. (2009) found strong and consistent
relationship in most of the 69 rain forest vertebrates in the
Australian wet tropics. Nonetheless the debate, population density
data is not often related to the SDM habitat suitability due to its
expense and time-consuming effort (Torres et al., 2012).
Nevertheless, the data is valuable, containing the presence/
absence of the species and the degree of abundance in spatial
variation, possessing the potential for further analysis.

In this study, we used a machine learning based SDM, Maxent
(RRID:SCR_021830), to predict the distribution of two vectors of
PWD in South Korea and explored the relationship between
suitability and density. The density data of JPS and SPS was
obtained through a nationwide survey between 2020-2022. First,
we converted the density data into a presence/absence data format
to validate the SDMs externally. Second, we used quantile
regression to test the correlation between the suitability and the
in-situ sampled vector density. Finally, we used three widely used
thresholds to convert SDM results into binary maps and tested if
they could distinguish the density by comparing the R, value of
biserial correlation. By showing the quantitative relationship
between SDM and vector density measured in the field, the study
may provide better use of SDM as a practical tool for forest
pest management.

2 Materials and method

2.1 Study area

The study area is the forested land in South Korea (longitude
125° 257 30” - 30° 7 60” E and latitude 38° 50’ 30” - 33° 54’ 30" N)
(Figure 1A). The forest covers approximately 64% (6,294,334 ha) of
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FIGURE 1

Geographic location of Korean Peninsula (A) and mean annual temperature

the country, consisting of 38.8% conifer forest, 33.4% deciduous
forest, and 27.8% mixed forest (Korea Forest Service, 2022). Mean
annual temperature ranges from 1.8 to 15.2°C (Figure 1B). The
country is wide in the North-South direction and topographically
complex, with mountain ranges stretched along the East Coast,
forming diverse regional climates (Park et al., 2009).

2.2 Occurrence data of vectors

Maxent uses presence locations as input, along with a set of
environmental variables. The occurrence geographical coordinates
of two vector species are compiled mainly from three sources; (1)
the field survey provided by the National Institute of Forest Science,
(2) a previous study on JPS and SPS distribution by Kwon et al.
(2006), (3) the online database of Global Biodiversity Information
Facility (GBIF) database (Kwon, 2022a; Kwon, 2022b). A total of 86
JPS and 112 SPS present points are collected. The occurrence data
are commonly clustered and inherent with sampling bias. Such bias
can increase the correlation in certain locations and overfit the
model, so that we need a preprocessing of the data (Boria et al,
2014). We used spThin R package (ver. 0.2.0) to thin the occurrence
location within 5km (Aiello-Lammens et al., 2015), which is known
to be the maximum natural dispersal distance of JPS (Kwon et al.,
2018). The final number of occurrence points used in the models is
78 for JPS and 87 for SPS (Figure 2A).

2.3 Environmental variables
We used the bioclimatic maps from worldclim (ver 1.4) with

lkm resolution as predictive variables (Hijmans et al., 2005).
Among 19 variables, bio8, bio9, biol8, biol9 are excluded due to
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of South Korea (B).

the discontinuity problem (Booth, 2022). Next, SDMtune r package
(ver. 1.1.6) is used to remove variables with high correlation with
Pearson correlation coefficient over 0.7 for reducing the effect of
multicollinearity among variables and increasing the
interpretability of the model (Vignali et al., 2020). The remaining
variables are again selected with permutation importance values
over 15. The final variables used in models are the mean
temperature of warmest quarter (biol0) and precipitation
seasonality (biol5) for JPS and annual mean temperature (biol)
and temperature seasonality (bio4) for SPS.

2.4 Species distribution model
and evaluation

Maxent (ver. 3.3.4) is used to predict the distribution of each
vector (Phillips et al., 2017). The model predicts the potential
distribution of the species that maximizes the entropy (Phillips
et al., 2006). Maxent performs well with only the occurrence points
and in small datasets (Pearson et al., 2007). The model is flexible
and can fit various patterns including linear and non-linear
relationships between explanatory and predictive variables (Elith
et al, 2011). As the method is prone to overfitting when using the
default settings, we used the ENMeval r package (ver. 2.0.3) for
feature class selection and regularization multiplier settings to
overcome the overfitting of the model (Muscarella et al., 2014). A
combination of the two with the lowest 10% training omission rate
is selected for each model. A model with a low omission rate is
considered to have a high discrimination ability, and the model is
not overfitted (Peterson et al., 2012).

The background points (or pseudo-absences) are the location
data created by the user to contrast from the occurrence location.
Background points are created using the “grid method” suggested
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Map showing occurrence points of Sakhalin pine sawyer and Japanese pine sawyer used in the model (A), and density survey locations obtained by

pheromone traps (B).

by Elith et al. (2010). The idea is that background points should also
have the geographic bias that occurrence points have in order to
minimize their impact on the model. Gaussian kernel density of
sampling localities tool from SDMtoolbox (ver. 2.0) is used to create
the bias grid (Brown, 2014). And create spatially balanced point tool
from ArcGIS pro (ver. 2.5) is used to create 10,000 points outside
the 4km buffer from the occurrence points (Barbet-Massin et al.,
2012; Esri Inc, 2020).

We divided the occurrence data into 75% of training data and
25% of cross-validation data by geographic division. The division is
divided by longitude and latitude, each containing one-quarter of
occurrence data. Fitting the model with spatially divided occurrence
data reduces spatial autocorrelation (Radosavljevic and Anderson,
2014). Each model is repeated 500 times.

We converted the density data into presence/absence format for
the external validation of the model, where survey location with 0
density as absence and presence if any single individual was found.
Threshold independent area under the curve (AUC) is used to
evaluate the models (Phillips and Dudik, 2008). AUC is the area
under the receiver operating characteristic (ROC) curve. A high
AUC value indicates high accuracy and good model performance
(Franklin, 2010). The evaluate function in Dismo package (Ver.1.3-
14, Hijmans et al., 2017) is used to calculate the validation AUC, as
it is the same internal function used in ENMeval package to
calculate the cross-validation AUC.

2.5 Monochamus spp. population
density data

The density of JPS and SPS was surveyed in South Korea using a

pheromone trap between 2020 and 2022 (Figure 2B). Each survey
was performed in one site in every 40 km * 40 km grid that evenly
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divided the whole country, except for the islands and inaccessible
areas such as military security zones. A total of 64 locations with JPS
and SPS density information are obtained. The trap locations within
the forest were determined based on where PWD host trees were
abundant. Since the survey was done with the aid of the local
governments with varied budget conditions, the number of traps
varied by location with an average of 19. Each trap was placed at
least 10 m away from other traps in the forest. Since monochamol
(2-undecyloxy-1-ethanol) is known as an attractant for species
belonging to the genus Monochamus (Lee et al.,, 2018),
pheromone lures (monochamol, EtOH, a-pinene) were hung on
each trap to attract the vectors and were replaced approximately
every 2 weeks after the traps were installed. We also used a mixture
of 70% EtOH and antifreeze in traps as preservatives to prevent the
decay of caught insects. Sampling periods were from May to July.
Samples were moved to the laboratory at the National Institute of
Forest Science in Seoul, South Korea. Monochamus beetle species
were isolated from other cerambycid beetles and stored in bottles
with 70% EtOH until identification. A total of 2,503 JPS were caught
in the trap with a wide variation between the sites from 0 to 1,721
individuals, and 2,040 SPS were caught ranging from 0 to 308. The
density of each site was calculated dividing the captured individual
by the number of traps, and we transformed the value
logarithmically due to high variability.

2.6 Relationship between SDM suitability
and density

The predicted suitability value of each model is extracted from
each density survey points as shown in Figure 2B, to analyze the
correlation between suitability and density. First, we used quantile
regression to test the correlation between suitability and density as
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continuous variables. Secondly, we used three widely used
thresholds to convert the suitability map into binary and tested if
presence/absence from the binary map could distinguish the density
value by comparing the R, value of biserial correlation.

Quantile regression is a method used to estimate functional
relations between variables with unequal variation, which is
common in ecology (Koenker and Bassett, 1978; Cade and Noon,
2003). An ecosystem is complex with the interaction of
heterogeneous variations and demands different analytical
approaches to investigate the relationships between variables
(Kareiva, 1990; Brown et al., 2002; Austin, 2007). Quantile
regression can estimate functional relations between variables for
all conditional quantiles of a probability distribution (Cade and
Noon, 2003). Ordinary linear regression was not applicable because
the data was not normally distributed. Instead, quantile regression
was used to examine the relationship.

Insect populations can vary significantly in time and space
(Geier, 1966), affected by many factors such as biotic interactions or
density dependence (Juliano, 2007). Past studies used the usual
regression method that focuses on the changes in the mean of the
variables and found no success in discovering the relationship
between habitat characteristics and species” density (Dunham,
1996; Thomson et al., 1996). In comparison, quantile regression
can provide more information clouded by missing variables and
have successfully identified the relationship between habitat and
species response (Cade et al., 1999; Dunham et al., 2002; Cade et al.,
2005; Schroder et al., 2005), and between SDM-driven suitability
and the density (Elmendorf and Moore, 2008; VanDerWal
et al.,, 2009).

In this study, the quantile regression of the upper quantile from
60th to 90th with an interval of 10 is used. Past studies on the
relationship between habitat suitability and density showed the
wedge-shaped spread of points between them, meaning
the presence of unmeasured factors limiting the potential
abundance (Dunham et al., 2002; VanDerWal et al,, 2009). The
model in this study was built only with bioclimatic variables; we
anticipated a similar pattern and used the upper quantile for the
regression. The result of quantile regression is evaluated with
pseudo r square (or coefficients of determination) and slope for
each quantile (Koenker and MaChado, 1999).

Also, we tested the relationship between suitability and density
further by analyzing the density value between the presence/absence
area in a binary-converted suitability map. Although the conversion
of the suitability map into discrete categories can degrade the
information of the results (Guillera-Arroita et al., 2015), a binary
map is widely used for practical applications and to interpret the
outcome (Araujo et al., 2004; Jiménez-Valverde and Lobo, 2007).
Moreover, various threshold criteria are used to assess the model
performance by creating a confusion matrix (Liu et al., 2011). The
choice of threshold criteria depends on the study’s objective, and
selecting the optimal criteria is challenging (Loiselle et al., 2003; Liu
et al., 2005). To test which threshold criteria can better distinguish
the density of vectors, we used three widely used threshold criteria
to convert JPS and SPS habitat suitability maps into binary and
tested the difference in density values between the presence/absence
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areas using biserial correlation. The threshold criteria used are 1)
Threshold that sensitivity (Se) equals specificity (Sp), Se=Sp in
short, 2) Threshold that maximizes the sum of the sensitivity and
specificity, max(Se+Sp) in short, 3) Threshold that maximizes the
sum of positive predictive value (PPV) and negative predictive value
(NPV), max(PPV+NPV) in short. Biserial correlation is used to test
the relation between one variable in continuous and the other
variable in dichotomous (Sheskin, 2011). The higher coefficient R,
value means the variables have a strong magnitude of
the relationship.

3 Results
3.1 Distribution of Monochamus spp.

The predicted distribution of two vectors were opposite of each
other with few overlapping areas (Figure 3). For JPS, Precipitation
seasonality (biol5) was the most influential variable with a
permutation importance value of 68.2, followed by mean
temperature of warmest quarter (biol0) of 31.8. Predicted
suitability decreased with biol5 and increased with biolo,
resulting in the JPS distribution in the southern part of South
Korea along the coastline (Figure 4).

The distribution of SPS is focused on the northern part of the
country. Annual mean temperature (biol) had the highest
permutation importance value of 90.4 and temperature
seasonality (bio4) of 9.6. The suitability value peaked at annual
mean temperature around 11°C. The cross-validation AUC was
0.72 for JPS and 0.68 for SPS, but validation AUC calculated with
density converted presence/absence was higher in both species, with
0.76 for JPS and 0.86 for SPS.

3.2 Relationship

A constant positive relationship was found in quantile
regression between suitability and density (Figure 5). From 60th
to 90th; all quantiles showed significant p-values below 0.05
(Table 1). The upper quantile of density was directly proportional
with resulting suitability, forming wedge-shaped spread points. JPS
had the highest slope in the 90th quantile, while SPS slope increased
consistently with the quantile. SPS showed a higher slope due to
high survey density. JPS had the highest pseudo r square value in the
80th quantile with 0.19. While SPS, pseudo r square value increased
continuously, 90th quantile with 0.28.

The result showed that the binary map created with the max(Se
+Sp) threshold criteria was the most related to the density data with
the highest R, value, Se=Sp the second, and max(PPV+NPV) the
least in both vectors (Table 2). Also the median density values in
presence area created by max(Se+Sp) threshold were highest, Se=Sp
the second, and max(PPV+NPV) the least (Figure 6). Every p-value
of R, was below 0.00, meaning the density and presence/absence are
significantly correlated. While TSS (True Skill Statistic) calculated
with the max(Se+Sp) threshold had the highest value for both
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FIGURE 3

Predicted distribution of (A) Japanese pine sawyer and (B) Sakhalin pine sawyer.

models, TSS from the max(PPV+NPV) threshold was higher than
the Se=Sp method in the SPS model.

4 Discussion

PWD in South Korea is spreading despite the various control
efforts (Korea Forest Service, 2022). Since the control period is
determined by the vector, understanding the distribution and
density of JPS and SPS is crucial (National Institute of Forest
Science, 2016). This study is the first to predict the distribution of
two vectors in South Korea using the Maxent model and investigate
the relationship between suitability and population density of
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The response curve of the predicted value to (A) mean temperature of warmest quarter (bio10) and precipitation seasonality (biol5) in Japanese pine
sawyer model and (B) annual mean temperature (biol) and temperature seasonality (bio4) in Sakhalin pine sawyer model.

vectors. Quantile regression showed a consistent positive
relationship between suitability and density in the upper quantile
with a significant p-value. Presence/absence divided by max(Se+Sp)
threshold criteria best discriminated the density value.

4.1 Characteristics of pine sawyer's
habitat suitability

The distribution of SPS was strongly influenced by the mean
annual temperature. SPS requires 183-244 degree days above 10°C for
larval development and adult emergence (Togashi et al., 1994) and is
found in environmental conditions of mean annual temperature
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Comparison of density value between presence/absence areas divided by threshold criteria of (A) Japanese pine sawyer and (B) Sakhalin pine sawyer

suitability map.

between 8.2 and 13.2°C (Kwon et al.,, 2006). The response curve of
annual mean temperature also peaked between the range, successfully
reflecting the temperature constraint of the species. The most
important variable in JPS distribution was precipitation seasonality.
Precipitation seasonality is the measure of the variation in monthly
precipitation totals in a year, meaning a lower with smaller variability
of precipitation (O’Donnell and Ignizio, 2012). JPS is predicted to
distribute on the Southern region and coastlines of South Korea
where precipitation seasonality is relatively low (Yoon et al., 2006),
and elevation is below 1,050m above sea level where JPS is usually
found (Kobayashi, 1988; Kishi, 1995). Also, JPS requires an air
temperature of at least 21.3°C for oviposition to occur (Hanks,

163

0 14

1999), and the response curve of mean temperature of warmest
quarter coincides with such requirements.

4.2 Relationships between the density of
pine sawyers and their habitat suitability

Quantile regression showed a constant positive relationship
between predicted suitability and density. The increasing trend of
pseudo r square indicates that upper limit of suitability-density
distribution explains the relationship better. Suitability value driven
from the climatic data does not reflect the density of the species

TABLE 1 Quantile regression of 60th, 70th, 80th, and 90th percentiles for the relationship between suitability and population density.

Species 60th 70th 80th 90th
Slope Slope Slope Slope
(p-value) (p-value) (p-value) (p-value)
Japanese pine sawyer 012 1.41 0.17 1.74 0.19 1.54 0.16 221
(0.02) (<0.01) (<0.01) (<0.01)
Sakhalin pine sawyer 0.15 2,53 0.21 3.82 0.25 5.22 0.28 8.49
(0.01) (<0.01) (<0.01) (<0.01)

Frontiers in Ecology and Evolution

07

frontiersin.org


https://doi.org/10.3389/fevo.2023.1305573
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Kim et al.

TABLE 2 TSS and Rb coefficient for each threshold criteria.

Species

10.3389/fevo.2023.1305573

Max(Sp+Se)

Max(PPV+NPV)

TSS
0.465 0.477 0.386
i 0.56 0.38 0.54 0.47 0.44 0.22
Japanese pine sawyer (<0.00) (<0.00) (<0.00)
Sakhalin pine sawye 0.57 0.53 0512 0.62 0.57 0:534 0.42 0.55 0468
m pu a’ T .. .. .| .. . .
pine sawy (<0.00) (<0.00) (<0.00)

directly, but the data is related to the upper limits of density with
prevalent unmeasured factors (Torres et al., 2012). This relationship
between suitability, density and unmeasured factors is described as
triangular constraint envelope (Austin, 2007), as suitability can be
interpreted as carrying capacity of the density and there are
unmeasured factors limiting the species population (VanDerWal
et al., 2009).

The reason for the constantly increasing trend of pseudo r
square is assumed that the baseline of the distribution and
population of the insect is set by climate (Khaliq et al, 2014;
Skendzic et al, 2021). And the temperature is one of the most
important factors, as the insect metabolic rates, consumption,
development, and survival rates are highly affected (Bale et al,
2002; Dukes et al,, 2009). The selected climatic variables and
response curves in the models well matched with the physiology
and distribution of the Monochamus species (Kwon et al., 2006).
However, the insect population is spatially and temporally diverse
with population dynamics of high inter-annual variation (Wallner,
1987; Hassell et al., 1991). There could be many unmeasured factors
causing a partial mismatch between suitability and density, such as
detection limitations of the pheromone trap, biotic interactions, or
weather (Birch, 1957; Guisan and Thuiller, 2005; Aratijo and Luoto,
2007; Lee et al., 2018).

The limitation of SDMs with only climatic variables was
obvious when in comparison with the population density. Past

Density (log)
Density (log)

studies showed the importance of considering multiple factors such
as biotic interaction or human influences in depicting the species
distribution (Aratjo and Luoto, 2007; Austin, 2007). Many low
densities were found in survey areas with relatively high suitability,
causing wedge-shape in points distribution and low pseudo r square
in quantile regression. One of the variables that could strongly
influence the density but was not considered is human influence.
Many PWD controls are implemented in South Korea to stop the
spread, including aerial insecticide spray (Kwon et al., 2011).
Although there is a possibility that the survey locations were
affected by such control, no recent geographic information about
the control location was available. Such limitation of suitability was
also found in previous studies. VanDerWal et al. (2009) compared
the SDM suitability and local density of 69 vertebrates. Most species
showed wedge-shaped points distribution, and quantile regression
with upper quantile showed better prediction than the ordinary
linear regression.

Past studies have tested the threshold selection and its effects on
the accuracy assessment of SDM (Liu et al., 2005; Liu et al,, 2011;
Bean et al., 2012). We used three widely used thresholds to test if
they could also distinguish the density by comparing the R, value of
biserial correlation. The Se=Sp threshold is selected as Jiménez
Valverde (2012) stated the importance of Se and Sp value yield by
Se=Sp threshold as it is closely related with the AUC. Max(Se+Sp) is
selected as the threshold that maximizes the sum of the sensitivity

o
one 88 % *

03 0.4 05 06 0.7 08
Model Suitability

FIGURE 6

Scatterplots of suitability against density of (A) Japanese pine sawyer and (B) Sakhalin pine sawyer. The regression lines shown above represent the

relationship fitted using 60th to 90th percentiles of quantile regression.
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and specificity, which will certainly result in the highest TSS value as
the index is calculated as Se+Sp-1. TSS is based on sensitivity and
specificity and is defined as the average net prediction success rate
for presence and absence sites (Liu et al., 2011). It is considered one
of the best model performance assessments to distinguish between
presence and absence (Biggerstaff, 2000; Allouche et al., 2006). Max
(PPV + NPV) is the threshold that minimizes the predictive errors,
representing the proportion of incorrect predicted presences and
absences. PPV and NPV act as the counterparts of Se and Sp; Se and
Sp are the probability that a known site is correctly predicted, and
PPV and NPV are the probability that the model correctly predicts
an observation (Liu et al., 2009). PPV and NPV are more often used
in image classification assessments than SDM, widely known as user
accuracy (Hand, 2001).

Although it is not identical to the biserial correlation, the point-
biserial correlation coefficient was used in SDM to find a correlation
between the dichotomous presence/absence dataset and the
predicted probability (Zheng and Agresti, 2000; Elith et al., 2006).
Biserial correlation is used when the dichotomous variable is
converted binary by certain criteria, as in this study, suitability
value converted to presence/absence, but point-biserial
correlation's dichotomous variable is inherently binary (Sheskin,
2011). Unlike the expectation, the rank of the R, value did not
match with TSS accordingly, but the max(Se+Sp) threshold model
had the highest TSS and the strongest relationship with the density
with the highest R.. Also, the median density value in the presence
site of the max(Se+Sp) threshold was highest among the three, even
when there were more absence sites than the Se=Sp threshold
model, proving to be the threshold with the best discrimination
capacity. Our result was similar to the past studies of Jimenez-
Valverde and Lobo (2007) and Liu et al. (2005) that stated max(Se
+Sp) and Se=Sp as one of the best threshold criteria. Our study
suggests that the max(Se+Sp) threshold and binary map created by
its criteria are more likely to explain species density better.

4.3 Performance of the model

The validation AUC calculated with the presence/absence
derived from the density data had a higher value over cross-
validation AUC. Such result may due to a small number of
density points for validation or due to the calculation difference
between background points used in cross-validation and true
absence points used in validation (Jimenez Valverde, 2012). The
Dismo package, by default, uses all 10,000 background points used
in training and validation to calculate the AUC (Radosavljevic and
Anderson, 2014), while JPS only had 32 true absences and SPS 26.
Despite the prevalent use of AUC in SDM assessment (Fielding and
Bell, 1997), it cannot be calculated properly without the true
absence because the ROC curve is plotted with the commission
error, or 1 - specificity (Jiménez Valverde, 2012). In the case of using
background points to calculate AUC, the model can easily have low
commission error as the number of absence is much higher than the
presence (Lobo et al., 2008). Thus, the validation AUC value
calculated from presence/absence should assess the model better.
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Although the maxent models had intermediate AUG, suitability
value drawn from the model was capable of explaining the
relationship between density. The statistical performance of the
model does not always comply with the goodness of prediction.
Similar research done by Torres et al. (2012) showed simple
BIOCLIM explained the relationship between suitability and
density best, surpassing machine learning algorithms with higher
AUC. Maxent is capable of fitting non-linear functions and prone to
overfitting, which could bias the result (Muscarella et al., 2014).
Species response to climate is expected to be smooth and simple
features (Holt, 2009). But complex model can capture non-climate
processes that possess local microenvironment that make ecological
interpretation difficult (Pulliam, 2000). Therefore constraining the
complexity of model based on the study object is recommended
(Elith and Graham, 2009; Merow et al., 2014). PWD have spread
country wide and generality of the model is required to prioritize
and schedule the vector control. In this study, from occurrence data
to parameter settings, the models are simplified to discover hidden
patterns between suitability and density.

5 Conclusion

SDM is widely used to describe the habitat suitability or
distribution range of various species (Guisan and Thuiller, 2005;
Elith and Leathwick, 2009). However, the relationship between
habitat suitability and density is still under debate, although the
knowledge of the distribution and density of forest pests is essential
in its control (Barbosa et al., 2012). Nationwide vector density data
achieved by the National Institute of Forest Science and local
governments made it possible to test the correlation between SDM
habitat suitability and the density of two vectors of pine wilt nematode.
The quantile regression revealed the hidden relationship that usual
regression could not (Dunham, 1996; Dunham et al.,, 2002). Presence/
absence divided by max(Se+Sp) threshold criteria best discriminated
the density value. This study showed a positive correlation between
predicted SDM suitability and density data of two main vectors of
PWD. This quantitative relationship will give reliability to SDM and
may provide better use as a practical tool for PWD in risk analysis and
selecting priority areas in control planning.
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