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Pine wilt disease caused by pinewood nematode is one of the most destructive

forest diseases, and still spreading in South Korea despite the various control

efforts. Japanese pine sawyer (JPS) and Sakhalin pine sawyer (SPS) are the main

vectors of the disease. Understanding the distribution and density of the vectors

is crucial since the control period is determined by the different emergence

periods of the two vectors and the control method by its density and the

expected damage severity. In this study, we predicted the distribution of JPS

and SPS using Maxent and investigated the relationship between the resulting

suitability value and the density. The population densities of JPS and SPS were

obtained through a national survey using pheromone traps between 2020-2022.

We converted the density data into presence/absence points to externally

validate each species distribution model, then we used quantile regression to

check the correlation between the suitability and population density, and finally

we used three widely used thresholds to convert the model results into binary

maps, and tested if they could distinguish the density by comparing the Rb value

of biserial correlation. The quantile regression revealed a positive relationship

between the habitat suitability and population density sampled in the field.

Moreover, the binary map with threshold criteria that maximizes the sum of

the sensitivity and specificity had the best density discrimination capacity with the

highest Rb. A quantitative relationship between suitability and vector density

measured in the field from our study provides reliability to species distribution

model as practical tools for forest pest management.
KEYWORDS

quantile regression, pest management, pine wilt nematode, biserial correlation, Maxent,
Monochamus spp.
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1 Introduction
Pine wilt disease (PWD) has devastated the forests of East Asia

and Europe (Zhao et al., 2008; CABI, 2021). The disease is caused by

pinewood nematode (Bursaphelenchus xylophilus (Seiner et Buhrer)

Nickle (Nematoda, Aphelenchoididae)), which quickly kills host

pine species, hindering forest growth and causing economic and

ecologic impacts (Shin, 2008; Mota et al., 2009; Futai, 2013). Pine

sawyers are the main vectors of the pinewood nematodes which

cause PWD (Kishi, 1995). Pine sawyers can form a symbiotic

relationship with the pinewood nematode; pine sawyers disperse

the nematode, and the nematodes inhabit the phloem tissues of the

host trees eventually causing death, which can be used for

oviposition by pine sawyers (Mamiya and Enda, 1972).

The forest in South Korea has been heavily damaged by the

disease since its first introduction at Busan in 1988 (Yi et al., 1989).

In the 2000´s PWD spread about half of the country through

Jeollanam-do, Gwangwon-do, and Jeju-do province. By the end of

2010, PWD had spread through the entire country (Choi and Park,

2012). Due to its cultural and historical values, the host Japanese red

pine (Pinus densiflora Siebold & Zucc, (Pinales, Pinaceae)), the

most abundant tree species in South Korea, demands urgent PWD

control (National Geography Information Institute, 2020). In South

Korea, Japanese pine sawyer (JPS) (Monochamus alternatus Hope,

1843 (Coleoptera, Cerambycidae)) and Sakhalin pine sawyer (SPS)

(Monochamus saltuarius Gebler,1830 (Coleoptera, Cerambycidae))

are the main vectors of PWD (Shin, 2008). JPS is known to play a

major role in PWD dispersal as they carry more pinewood

nematodes (Mamiya, 1972) and have greater dispersal ability than

SPS (Kwon et al., 2018). Preemptive control of JPS and SPS

distribution is crucial for preventing the spread of PWD. PWD

control in South Korea is scheduled and prioritized by the

emergence period of the two vectors, since the best practice is to

eliminate the infected host trees before the spread (Kwon et al.,

2011). As the emergence periods of the two vectors are different,

controlling efforts should be made in May for the SPS habitats and

in mid-June for the JPS habitats (National Institute of Forest

Science, 2016).

Identifying the distribution and density of forest pests is

essential to schedule and prioritize the control (Barbosa et al.,

2012). The species distribution model (SDM) has been widely

used to predict species distribution by correlating the occurrence

or absence of the species with environmental variables, primarily in

geographic space. (Elith and Leathwick, 2009; Merow et al., 2014;

Peterson et al., 2015). Habitat suitability is the primary outcome of

SDM, which represents the suitable combination of the

environmental variables, the probability of occurrence when

presence/absence data is used to build the model, or the relative

likelihood of occurrence when a background point is used.

(Pearson, 2010; Guillera-Arroita et al., 2015). Estimated habitat

suitability is used to map geographic range and area to surveil, or

control in case of forest pests (Padalia et al., 2014).

Previous studies focused on the distribution of PWD itself only

using the occurrence points of PWD (Matsuhashi et al., 2020; Wang

et al., 2022). Yet, PWD occurs and spreads in a complex
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relationship between pathogen, host, and vector. Despite the

importance of the biotic interactions highly dependent on the

ecological traits of vectors, not many studies considered the biotic

interaction between the pathogen, host, and vector in PWD SDM

(Tang et al., 2021; Yoon et al., 2023), or predicted the distribution of

each vector separately (Estay et al., 2014). In South Korea, Kwon

et al. (2006) reported that the distributions of JPS and SPS were

separated with a 13.2°C mean annual temperature threshold. JPS

was distributed in the southern part of the country in warmer

climate regions and SPS in the relatively cold northern regions. Kim

et al. (2016) used the CLIMEX model to predict the distribution of

JPS by using life cycle temperature requirements as the

main variables.

The relationship between the distribution of the species and the

density has been generalized that the population density is highest

near the center of species distribution and declines towards the

boundary, with the assumption that the spatial variation in density

will depend on the combination of environmental variables

interacting with the species` niche (Hutchinson, 1959; Brown,

1984). Despite the intuition that habitat suitability should explain

the species’ density, several studies have tested the relationship

between them and had opposite results, with some reporting the

relationship generally none and statistically significant confounded

only to some species (Pearce and Ferrier, 2001; Nielsen et al., 2005),

while VanDerWal et al. (2009) found strong and consistent

relationship in most of the 69 rain forest vertebrates in the

Australian wet tropics. Nonetheless the debate, population density

data is not often related to the SDM habitat suitability due to its

expense and time-consuming effort (Tôrres et al., 2012).

Nevertheless, the data is valuable, containing the presence/

absence of the species and the degree of abundance in spatial

variation, possessing the potential for further analysis.

In this study, we used a machine learning based SDM, Maxent

(RRID:SCR_021830), to predict the distribution of two vectors of

PWD in South Korea and explored the relationship between

suitability and density. The density data of JPS and SPS was

obtained through a nationwide survey between 2020-2022. First,

we converted the density data into a presence/absence data format

to validate the SDMs externally. Second, we used quantile

regression to test the correlation between the suitability and the

in-situ sampled vector density. Finally, we used three widely used

thresholds to convert SDM results into binary maps and tested if

they could distinguish the density by comparing the Rb value of

biserial correlation. By showing the quantitative relationship

between SDM and vector density measured in the field, the study

may provide better use of SDM as a practical tool for forest

pest management.
2 Materials and method

2.1 Study area

The study area is the forested land in South Korea (longitude

125° 25’ 30” - 30° 7’ 60” E and latitude 38° 50’ 30” - 33° 54’ 30’ N)

(Figure 1A). The forest covers approximately 64% (6,294,334 ha) of
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the country, consisting of 38.8% conifer forest, 33.4% deciduous

forest, and 27.8% mixed forest (Korea Forest Service, 2022). Mean

annual temperature ranges from 1.8 to 15.2°C (Figure 1B). The

country is wide in the North-South direction and topographically

complex, with mountain ranges stretched along the East Coast,

forming diverse regional climates (Park et al., 2009).
2.2 Occurrence data of vectors

Maxent uses presence locations as input, along with a set of

environmental variables. The occurrence geographical coordinates

of two vector species are compiled mainly from three sources; (1)

the field survey provided by the National Institute of Forest Science,

(2) a previous study on JPS and SPS distribution by Kwon et al.

(2006), (3) the online database of Global Biodiversity Information

Facility (GBIF) database (Kwon, 2022a; Kwon, 2022b). A total of 86

JPS and 112 SPS present points are collected. The occurrence data

are commonly clustered and inherent with sampling bias. Such bias

can increase the correlation in certain locations and overfit the

model, so that we need a preprocessing of the data (Boria et al.,

2014). We used spThin R package (ver. 0.2.0) to thin the occurrence

location within 5km (Aiello-Lammens et al., 2015), which is known

to be the maximum natural dispersal distance of JPS (Kwon et al.,

2018). The final number of occurrence points used in the models is

78 for JPS and 87 for SPS (Figure 2A).
2.3 Environmental variables

We used the bioclimatic maps from worldclim (ver 1.4) with

1km resolution as predictive variables (Hijmans et al., 2005).

Among 19 variables, bio8, bio9, bio18, bio19 are excluded due to
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the discontinuity problem (Booth, 2022). Next, SDMtune r package

(ver. 1.1.6) is used to remove variables with high correlation with

Pearson correlation coefficient over 0.7 for reducing the effect of

multicol l inearity among variables and increasing the

interpretability of the model (Vignali et al., 2020). The remaining

variables are again selected with permutation importance values

over 15. The final variables used in models are the mean

temperature of warmest quarter (bio10) and precipitation

seasonality (bio15) for JPS and annual mean temperature (bio1)

and temperature seasonality (bio4) for SPS.
2.4 Species distribution model
and evaluation

Maxent (ver. 3.3.4) is used to predict the distribution of each

vector (Phillips et al., 2017). The model predicts the potential

distribution of the species that maximizes the entropy (Phillips

et al., 2006). Maxent performs well with only the occurrence points

and in small datasets (Pearson et al., 2007). The model is flexible

and can fit various patterns including linear and non-linear

relationships between explanatory and predictive variables (Elith

et al., 2011). As the method is prone to overfitting when using the

default settings, we used the ENMeval r package (ver. 2.0.3) for

feature class selection and regularization multiplier settings to

overcome the overfitting of the model (Muscarella et al., 2014). A

combination of the two with the lowest 10% training omission rate

is selected for each model. A model with a low omission rate is

considered to have a high discrimination ability, and the model is

not overfitted (Peterson et al., 2012).

The background points (or pseudo-absences) are the location

data created by the user to contrast from the occurrence location.

Background points are created using the “grid method” suggested
A B

FIGURE 1

Geographic location of Korean Peninsula (A) and mean annual temperature of South Korea (B).
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by Elith et al. (2010). The idea is that background points should also

have the geographic bias that occurrence points have in order to

minimize their impact on the model. Gaussian kernel density of

sampling localities tool from SDMtoolbox (ver. 2.0) is used to create

the bias grid (Brown, 2014). And create spatially balanced point tool

from ArcGIS pro (ver. 2.5) is used to create 10,000 points outside

the 4km buffer from the occurrence points (Barbet-Massin et al.,

2012; Esri Inc, 2020).

We divided the occurrence data into 75% of training data and

25% of cross-validation data by geographic division. The division is

divided by longitude and latitude, each containing one-quarter of

occurrence data. Fitting the model with spatially divided occurrence

data reduces spatial autocorrelation (Radosavljevic and Anderson,

2014). Each model is repeated 500 times.

We converted the density data into presence/absence format for

the external validation of the model, where survey location with 0

density as absence and presence if any single individual was found.

Threshold independent area under the curve (AUC) is used to

evaluate the models (Phillips and Dudıḱ, 2008). AUC is the area

under the receiver operating characteristic (ROC) curve. A high

AUC value indicates high accuracy and good model performance

(Franklin, 2010). The evaluate function in Dismo package (Ver.1.3-

14, Hijmans et al., 2017) is used to calculate the validation AUC, as

it is the same internal function used in ENMeval package to

calculate the cross-validation AUC.
2.5 Monochamus spp. population
density data

The density of JPS and SPS was surveyed in South Korea using a

pheromone trap between 2020 and 2022 (Figure 2B). Each survey

was performed in one site in every 40 km * 40 km grid that evenly
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divided the whole country, except for the islands and inaccessible

areas such as military security zones. A total of 64 locations with JPS

and SPS density information are obtained. The trap locations within

the forest were determined based on where PWD host trees were

abundant. Since the survey was done with the aid of the local

governments with varied budget conditions, the number of traps

varied by location with an average of 19. Each trap was placed at

least 10 m away from other traps in the forest. Since monochamol

(2-undecyloxy-1-ethanol) is known as an attractant for species

belonging to the genus Monochamus (Lee et al., 2018),

pheromone lures (monochamol, EtOH, a-pinene) were hung on

each trap to attract the vectors and were replaced approximately

every 2 weeks after the traps were installed. We also used a mixture

of 70% EtOH and antifreeze in traps as preservatives to prevent the

decay of caught insects. Sampling periods were from May to July.

Samples were moved to the laboratory at the National Institute of

Forest Science in Seoul, South Korea. Monochamus beetle species

were isolated from other cerambycid beetles and stored in bottles

with 70% EtOH until identification. A total of 2,503 JPS were caught

in the trap with a wide variation between the sites from 0 to 1,721

individuals, and 2,040 SPS were caught ranging from 0 to 308. The

density of each site was calculated dividing the captured individual

by the number of traps, and we transformed the value

logarithmically due to high variability.
2.6 Relationship between SDM suitability
and density

The predicted suitability value of each model is extracted from

each density survey points as shown in Figure 2B, to analyze the

correlation between suitability and density. First, we used quantile

regression to test the correlation between suitability and density as
A B

FIGURE 2

Map showing occurrence points of Sakhalin pine sawyer and Japanese pine sawyer used in the model (A), and density survey locations obtained by
pheromone traps (B).
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continuous variables. Secondly, we used three widely used

thresholds to convert the suitability map into binary and tested if

presence/absence from the binary map could distinguish the density

value by comparing the Rb value of biserial correlation.

Quantile regression is a method used to estimate functional

relations between variables with unequal variation, which is

common in ecology (Koenker and Bassett, 1978; Cade and Noon,

2003). An ecosystem is complex with the interaction of

heterogeneous variations and demands different analytical

approaches to investigate the relationships between variables

(Kareiva, 1990; Brown et al., 2002; Austin, 2007). Quantile

regression can estimate functional relations between variables for

all conditional quantiles of a probability distribution (Cade and

Noon, 2003). Ordinary linear regression was not applicable because

the data was not normally distributed. Instead, quantile regression

was used to examine the relationship.

Insect populations can vary significantly in time and space

(Geier, 1966), affected by many factors such as biotic interactions or

density dependence (Juliano, 2007). Past studies used the usual

regression method that focuses on the changes in the mean of the

variables and found no success in discovering the relationship

between habitat characteristics and species´ density (Dunham,

1996; Thomson et al., 1996). In comparison, quantile regression

can provide more information clouded by missing variables and

have successfully identified the relationship between habitat and

species response (Cade et al., 1999; Dunham et al., 2002; Cade et al.,

2005; Schröder et al., 2005), and between SDM-driven suitability

and the density (Elmendorf and Moore, 2008; VanDerWal

et al., 2009).

In this study, the quantile regression of the upper quantile from

60th to 90th with an interval of 10 is used. Past studies on the

relationship between habitat suitability and density showed the

wedge-shaped spread of points between them, meaning

the presence of unmeasured factors limiting the potential

abundance (Dunham et al., 2002; VanDerWal et al., 2009). The

model in this study was built only with bioclimatic variables; we

anticipated a similar pattern and used the upper quantile for the

regression. The result of quantile regression is evaluated with

pseudo r square (or coefficients of determination) and slope for

each quantile (Koenker and MaChado, 1999).

Also, we tested the relationship between suitability and density

further by analyzing the density value between the presence/absence

area in a binary-converted suitability map. Although the conversion

of the suitability map into discrete categories can degrade the

information of the results (Guillera-Arroita et al., 2015), a binary

map is widely used for practical applications and to interpret the

outcome (Araújo et al., 2004; Jiménez-Valverde and Lobo, 2007).

Moreover, various threshold criteria are used to assess the model

performance by creating a confusion matrix (Liu et al., 2011). The

choice of threshold criteria depends on the study’s objective, and

selecting the optimal criteria is challenging (Loiselle et al., 2003; Liu

et al., 2005). To test which threshold criteria can better distinguish

the density of vectors, we used three widely used threshold criteria

to convert JPS and SPS habitat suitability maps into binary and

tested the difference in density values between the presence/absence
Frontiers in Ecology and Evolution 05
areas using biserial correlation. The threshold criteria used are 1)

Threshold that sensitivity (Se) equals specificity (Sp), Se=Sp in

short, 2) Threshold that maximizes the sum of the sensitivity and

specificity, max(Se+Sp) in short, 3) Threshold that maximizes the

sum of positive predictive value (PPV) and negative predictive value

(NPV), max(PPV+NPV) in short. Biserial correlation is used to test

the relation between one variable in continuous and the other

variable in dichotomous (Sheskin, 2011). The higher coefficient Rb
value means the variables have a strong magnitude of

the relationship.
3 Results

3.1 Distribution of Monochamus spp.

The predicted distribution of two vectors were opposite of each

other with few overlapping areas (Figure 3). For JPS, Precipitation

seasonality (bio15) was the most influential variable with a

permutation importance value of 68.2, followed by mean

temperature of warmest quarter (bio10) of 31.8. Predicted

suitability decreased with bio15 and increased with bio10,

resulting in the JPS distribution in the southern part of South

Korea along the coastline (Figure 4).

The distribution of SPS is focused on the northern part of the

country. Annual mean temperature (bio1) had the highest

permutation importance value of 90.4 and temperature

seasonality (bio4) of 9.6. The suitability value peaked at annual

mean temperature around 11°C. The cross-validation AUC was

0.72 for JPS and 0.68 for SPS, but validation AUC calculated with

density converted presence/absence was higher in both species, with

0.76 for JPS and 0.86 for SPS.
3.2 Relationship

A constant positive relationship was found in quantile

regression between suitability and density (Figure 5). From 60th

to 90th; all quantiles showed significant p-values below 0.05

(Table 1). The upper quantile of density was directly proportional

with resulting suitability, forming wedge-shaped spread points. JPS

had the highest slope in the 90th quantile, while SPS slope increased

consistently with the quantile. SPS showed a higher slope due to

high survey density. JPS had the highest pseudo r square value in the

80th quantile with 0.19. While SPS, pseudo r square value increased

continuously, 90th quantile with 0.28.

The result showed that the binary map created with the max(Se

+Sp) threshold criteria was the most related to the density data with

the highest Rb value, Se=Sp the second, and max(PPV+NPV) the

least in both vectors (Table 2). Also the median density values in

presence area created by max(Se+Sp) threshold were highest, Se=Sp

the second, and max(PPV+NPV) the least (Figure 6). Every p-value

of Rb was below 0.00, meaning the density and presence/absence are

significantly correlated. While TSS (True Skill Statistic) calculated

with the max(Se+Sp) threshold had the highest value for both
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models, TSS from the max(PPV+NPV) threshold was higher than

the Se=Sp method in the SPS model.
4 Discussion

PWD in South Korea is spreading despite the various control

efforts (Korea Forest Service, 2022). Since the control period is

determined by the vector, understanding the distribution and

density of JPS and SPS is crucial (National Institute of Forest

Science, 2016). This study is the first to predict the distribution of

two vectors in South Korea using the Maxent model and investigate

the relationship between suitability and population density of
Frontiers in Ecology and Evolution 06
vectors. Quantile regression showed a consistent positive

relationship between suitability and density in the upper quantile

with a significant p-value. Presence/absence divided by max(Se+Sp)

threshold criteria best discriminated the density value.
4.1 Characteristics of pine sawyer’s
habitat suitability

The distribution of SPS was strongly influenced by the mean

annual temperature. SPS requires 183-244 degree days above 10°C for

larval development and adult emergence (Togashi et al., 1994) and is

found in environmental conditions of mean annual temperature
A B

FIGURE 4

The response curve of the predicted value to (A) mean temperature of warmest quarter (bio10) and precipitation seasonality (bio15) in Japanese pine
sawyer model and (B) annual mean temperature (bio1) and temperature seasonality (bio4) in Sakhalin pine sawyer model.
A B

FIGURE 3

Predicted distribution of (A) Japanese pine sawyer and (B) Sakhalin pine sawyer.
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between 8.2 and 13.2°C (Kwon et al., 2006). The response curve of

annual mean temperature also peaked between the range, successfully

reflecting the temperature constraint of the species. The most

important variable in JPS distribution was precipitation seasonality.

Precipitation seasonality is the measure of the variation in monthly

precipitation totals in a year, meaning a lower with smaller variability

of precipitation (O’Donnell and Ignizio, 2012). JPS is predicted to

distribute on the Southern region and coastlines of South Korea

where precipitation seasonality is relatively low (Yoon et al., 2006),

and elevation is below 1,050m above sea level where JPS is usually

found (Kobayashi, 1988; Kishi, 1995). Also, JPS requires an air

temperature of at least 21.3°C for oviposition to occur (Hanks,
Frontiers in Ecology and Evolution 07
1999), and the response curve of mean temperature of warmest

quarter coincides with such requirements.
4.2 Relationships between the density of
pine sawyers and their habitat suitability

Quantile regression showed a constant positive relationship

between predicted suitability and density. The increasing trend of

pseudo r square indicates that upper limit of suitability-density

distribution explains the relationship better. Suitability value driven

from the climatic data does not reflect the density of the species
TABLE 1 Quantile regression of 60th, 70th, 80th, and 90th percentiles for the relationship between suitability and population density.

Species 60th 70th 80th 90th

R2 Slope
(p-value)

R2 Slope
(p-value)

R2 Slope
(p-value)

R2 Slope
(p-value)

Japanese pine sawyer 012 1.41
(0.02)

0.17 1.74
(<0.01)

0.19 1.54
(<0.01)

0.16 2.21
(<0.01)

Sakhalin pine sawyer 0.15 2.53
(0.01)

0.21 3.82
(<0.01)

0.25 5.22
(<0.01)

0.28 8.49
(<0.01)
A

B

FIGURE 5

Comparison of density value between presence/absence areas divided by threshold criteria of (A) Japanese pine sawyer and (B) Sakhalin pine sawyer
suitability map.
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directly, but the data is related to the upper limits of density with

prevalent unmeasured factors (Tôrres et al., 2012). This relationship

between suitability, density and unmeasured factors is described as

triangular constraint envelope (Austin, 2007), as suitability can be

interpreted as carrying capacity of the density and there are

unmeasured factors limiting the species population (VanDerWal

et al., 2009).

The reason for the constantly increasing trend of pseudo r

square is assumed that the baseline of the distribution and

population of the insect is set by climate (Khaliq et al., 2014;

Skendžić et al., 2021). And the temperature is one of the most

important factors, as the insect metabolic rates, consumption,

development, and survival rates are highly affected (Bale et al.,

2002; Dukes et al., 2009). The selected climatic variables and

response curves in the models well matched with the physiology

and distribution of the Monochamus species (Kwon et al., 2006).

However, the insect population is spatially and temporally diverse

with population dynamics of high inter-annual variation (Wallner,

1987; Hassell et al., 1991). There could be many unmeasured factors

causing a partial mismatch between suitability and density, such as

detection limitations of the pheromone trap, biotic interactions, or

weather (Birch, 1957; Guisan and Thuiller, 2005; Araújo and Luoto,

2007; Lee et al., 2018).

The limitation of SDMs with only climatic variables was

obvious when in comparison with the population density. Past
Frontiers in Ecology and Evolution 08
studies showed the importance of considering multiple factors such

as biotic interaction or human influences in depicting the species

distribution (Araújo and Luoto, 2007; Austin, 2007). Many low

densities were found in survey areas with relatively high suitability,

causing wedge-shape in points distribution and low pseudo r square

in quantile regression. One of the variables that could strongly

influence the density but was not considered is human influence.

Many PWD controls are implemented in South Korea to stop the

spread, including aerial insecticide spray (Kwon et al., 2011).

Although there is a possibility that the survey locations were

affected by such control, no recent geographic information about

the control location was available. Such limitation of suitability was

also found in previous studies. VanDerWal et al. (2009) compared

the SDM suitability and local density of 69 vertebrates. Most species

showed wedge-shaped points distribution, and quantile regression

with upper quantile showed better prediction than the ordinary

linear regression.

Past studies have tested the threshold selection and its effects on

the accuracy assessment of SDM (Liu et al., 2005; Liu et al., 2011;

Bean et al., 2012). We used three widely used thresholds to test if

they could also distinguish the density by comparing the Rb value of

biserial correlation. The Se=Sp threshold is selected as Jiménez

Valverde (2012) stated the importance of Se and Sp value yield by

Se=Sp threshold as it is closely related with the AUC. Max(Se+Sp) is

selected as the threshold that maximizes the sum of the sensitivity
A B

FIGURE 6

Scatterplots of suitability against density of (A) Japanese pine sawyer and (B) Sakhalin pine sawyer. The regression lines shown above represent the
relationship fitted using 60th to 90th percentiles of quantile regression.
TABLE 2 TSS and Rb coefficient for each threshold criteria.

Species

Sp=Se Max(Sp+Se) Max(PPV+NPV)

Th1 TSS
Rb

(p-value)
Th2 TSS

Rb

(p-value)
Th3 TSS

Rb

(p-value)

Japanese pine sawyer 0.56 0.38
0.465
(<0.00)

0.54 0.47
0.477
(<0.00)

0.44 0.22
0.386
(<0.00)

Sakhalin pine sawyer 0.57 0.53
0.512
(<0.00)

0.62 0.57
0.534
(<0.00)

0.42 0.55
0.468
(<0.00)
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and specificity, which will certainly result in the highest TSS value as

the index is calculated as Se+Sp–1. TSS is based on sensitivity and

specificity and is defined as the average net prediction success rate

for presence and absence sites (Liu et al., 2011). It is considered one

of the best model performance assessments to distinguish between

presence and absence (Biggerstaff, 2000; Allouche et al., 2006). Max

(PPV + NPV) is the threshold that minimizes the predictive errors,

representing the proportion of incorrect predicted presences and

absences. PPV and NPV act as the counterparts of Se and Sp; Se and

Sp are the probability that a known site is correctly predicted, and

PPV and NPV are the probability that the model correctly predicts

an observation (Liu et al., 2009). PPV and NPV are more often used

in image classification assessments than SDM, widely known as user

accuracy (Hand, 2001).

Although it is not identical to the biserial correlation, the point-

biserial correlation coefficient was used in SDM to find a correlation

between the dichotomous presence/absence dataset and the

predicted probability (Zheng and Agresti, 2000; Elith et al., 2006).

Biserial correlation is used when the dichotomous variable is

converted binary by certain criteria, as in this study, suitability

value converted to presence/absence, but point-biserial

correlation`s dichotomous variable is inherently binary (Sheskin,

2011). Unlike the expectation, the rank of the Rb value did not

match with TSS accordingly, but the max(Se+Sp) threshold model

had the highest TSS and the strongest relationship with the density

with the highest Re. Also, the median density value in the presence

site of the max(Se+Sp) threshold was highest among the three, even

when there were more absence sites than the Se=Sp threshold

model, proving to be the threshold with the best discrimination

capacity. Our result was similar to the past studies of Jiménez-

Valverde and Lobo (2007) and Liu et al. (2005) that stated max(Se

+Sp) and Se=Sp as one of the best threshold criteria. Our study

suggests that the max(Se+Sp) threshold and binary map created by

its criteria are more likely to explain species density better.
4.3 Performance of the model

The validation AUC calculated with the presence/absence

derived from the density data had a higher value over cross-

validation AUC. Such result may due to a small number of

density points for validation or due to the calculation difference

between background points used in cross-validation and true

absence points used in validation (Jiménez Valverde, 2012). The

Dismo package, by default, uses all 10,000 background points used

in training and validation to calculate the AUC (Radosavljevic and

Anderson, 2014), while JPS only had 32 true absences and SPS 26.

Despite the prevalent use of AUC in SDM assessment (Fielding and

Bell, 1997), it cannot be calculated properly without the true

absence because the ROC curve is plotted with the commission

error, or 1 - specificity (Jiménez Valverde, 2012). In the case of using

background points to calculate AUC, the model can easily have low

commission error as the number of absence is much higher than the

presence (Lobo et al., 2008). Thus, the validation AUC value

calculated from presence/absence should assess the model better.
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Although the maxent models had intermediate AUC, suitability

value drawn from the model was capable of explaining the

relationship between density. The statistical performance of the

model does not always comply with the goodness of prediction.

Similar research done by Tôrres et al. (2012) showed simple

BIOCLIM explained the relationship between suitability and

density best, surpassing machine learning algorithms with higher

AUC. Maxent is capable offitting non-linear functions and prone to

overfitting, which could bias the result (Muscarella et al., 2014).

Species response to climate is expected to be smooth and simple

features (Holt, 2009). But complex model can capture non-climate

processes that possess local microenvironment that make ecological

interpretation difficult (Pulliam, 2000). Therefore constraining the

complexity of model based on the study object is recommended

(Elith and Graham, 2009; Merow et al., 2014). PWD have spread

country wide and generality of the model is required to prioritize

and schedule the vector control. In this study, from occurrence data

to parameter settings, the models are simplified to discover hidden

patterns between suitability and density.
5 Conclusion

SDM is widely used to describe the habitat suitability or

distribution range of various species (Guisan and Thuiller, 2005;

Elith and Leathwick, 2009). However, the relationship between

habitat suitability and density is still under debate, although the

knowledge of the distribution and density of forest pests is essential

in its control (Barbosa et al., 2012). Nationwide vector density data

achieved by the National Institute of Forest Science and local

governments made it possible to test the correlation between SDM

habitat suitability and the density of two vectors of pine wilt nematode.

The quantile regression revealed the hidden relationship that usual

regression could not (Dunham, 1996; Dunham et al., 2002). Presence/

absence divided by max(Se+Sp) threshold criteria best discriminated

the density value. This study showed a positive correlation between

predicted SDM suitability and density data of two main vectors of

PWD. This quantitative relationship will give reliability to SDM and

may provide better use as a practical tool for PWD in risk analysis and

selecting priority areas in control planning.
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Araújo, M. B., and Luoto, M. (2007). The importance of biotic interactions for
modelling species distributions under climate change. Global Ecol. Biogeography. 16 (6),
743–753. doi: 10.1111/j.1466-8238.2007.00359.x

Austin, M. (2007). Species distribution models and ecological theory : A critical
assessment and some possible new approaches. Ecological Modelling 200 (1-2), 1–19.
doi: 10.1016/j.ecolmodel.2006.07.005

Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V.
K., et al. (2002). Herbivory in global climate change research: direct effects of rising
temperature on insect herbivores. Global Change Biol. 8 (1), 1–16. doi: 10.1046/j.1365-
2486.2002.00451.x

Barbet-Massin, M., Jiguet, F., Albert, C. H., and Thuiller, W. (2012). Selecting
pseudo-ab sences for species distribution models: How, where and how many?Methods
Ecol. Evolution. 3 (2), 327–338. doi: 10.1111/j.2041-210X.2011.00172.x

Barbosa, F. G., Schneck, F., and Melo, A. S. (2012). Use of ecological niche models to
predict the distribution of invasive species: a scientometric analysis. Braz. J. Biol. 72,
821–829. doi: 10.1590/S1519-69842012000500007

Bean, W. T., Stafford, R., and Brashares, J. S. (2012). The effects of small sample size
and sample bias on threshold selection and accuracy assessment of species distribution
models. Ecography. 35 (3), 250–258. doi: 10.1111/j.1600-0587.2011.06545.x

Biggerstaff, B. J. (2000). Comparing diagnostic tests: a simple graphic using likelihood
ratios. Stat Med. 19 (5), 649–663. doi: 10.1002/(SICI)1097-0258(20000315)19:5<649::
AID-SIM371>3.0.CO;2-H

Birch, L. C. (1957). The role of weather in determining the distribution and
abundance of animals. Cold Spring Harbor Symp. Quantitative Biol. 22 (0), 203–218.
doi: 10.1101/sqb.1957.022.01.021

Booth, T. H. (2022). Checking bioclimatic variables that combine temperature and
precipitation data before their use in species distribution models. Austral Ecology. 47
(7), 1506–1514. doi: 10.1111/aec.13234
Boria, R. A., Olson, L. E., Goodman, S. M., and Anderson, R. P. (2014). Spatial
filtering to reduce sampling bias can improve the performance of ecological niche
models. Ecol. Modelling. 275, 73–77. doi: 10.1016/j.ecolmodel.2013.12.012

Brown, J. H. (1984). On the relationship beween abundance and distribution of
species. Am. Naturalist. 124 (2), 255–279. doi: 10.1086/284267

Brown, J. L. (2014). SDM toolbox: a python-based GIS toolkit for landscape genetic,
biogeographic and species distribution model analyses. Methods Ecol. Evolution. 5 (7),
694–700. doi: 10.1111/2041-210X.12200

Brown, J. H., Gupta, V. K., Li, B. L., Milne, B. T., Restrepo, C., andWest, G. B. (2002).
The fractal nature of nature: power laws, ecological complexity and biodiversity. Philos.
Trans. R. Soc. London. Ser. B: Biol. Sci. 357 (1421), 619–626. doi: 10.1098/
rstb.2001.0993

CABI. (2021). “Bursaphelenchus xylophilus,” in Invasive species compendium
(Wallingford: CAB International). Available at: www.cabi.org/isc.

Cade, B. S., and Noon, B. R. (2003). A gentle introduction to quantile regression for
ecologists. Front. Ecol. Environment. 1 (8), 412–420. doi: 10.1890/1540-9295(2003)001
[0412:AGITQR]2.0.CO;2

Cade, B. S., Noon, B. R., and Flather, C. H. (2005). Quantile regression reveals hidden
bias and uncertainty in habitat models. Ecology. 86 (3), 786–800. doi: 10.1890/04-0785

Cade, B. S., Terrell, J. W., and Schroeder, R. L. (1999). Estimating effects of limiting
factors with regression quantiles. Ecology. 80 (1), 311–323. doi: 10.1890/0012-9658
(1999)080[0311:EEOLFW]2.0.CO;2

Choi, W. I., and Park, Y. S. (2012). Dispersal patterns of exotic forest pests in South
Korea. Insect Science. 19 (5), 535–548. doi: 10.1111/j.1744-7917.2011.01480.x

Dukes, J. S., Pontius, J., Orwig, D., Garnas, J. R., Rodgers, V. L., Brazee, N., et al.
(2009). Responses of insect pests, pathogens, and invasive plant species to climate
change in the forests of northeastern North America: what can we predict? Can. J. For.
Res. 39 (2), 231–248. doi: 10.1139/X08-171

Dunham, J. B. (1996). The population ecology of stream-living Lahontan cutthroat
trout (Oncorhynchus clarki henshawi) (Reno: University of Nevada).

Dunham, J. B., Cade, B. S., and Terrell, J. W. (2002). Influences of spatial and
temporal variation on fish-habitat relationships defined by regression quantiles. Trans.
Am. Fisheries Soc. 131 (1), 86–98. doi: 10.1577/1548-8659(2002)131<0086:
IOSATV>2.0.CO;2

Elith, J., and Graham, C. H. (2009). Do they? How do they? WHY do they differ? on
finding reasons for differing performances of species distribution models. Ecography. 32
(1), 66–77. doi: 10.1111/j.1600-0587.2008.05505.x
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fevo.2023.1305573/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2023.1305573/full#supplementary-material
https://doi.org/10.1111/ecog.01132
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1111/j.1365-2486.2004.00828.x
https://doi.org/10.1111/j.1365-2486.2004.00828.x
https://doi.org/10.1111/j.1466-8238.2007.00359.x
https://doi.org/10.1016/j.ecolmodel.2006.07.005
https://doi.org/10.1046/j.1365-2486.2002.00451.x
https://doi.org/10.1046/j.1365-2486.2002.00451.x
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1590/S1519-69842012000500007
https://doi.org/10.1111/j.1600-0587.2011.06545.x
https://doi.org/10.1002/(SICI)1097-0258(20000315)19:5%3C649::AID-SIM371%3E3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-0258(20000315)19:5%3C649::AID-SIM371%3E3.0.CO;2-H
https://doi.org/10.1101/sqb.1957.022.01.021
https://doi.org/10.1111/aec.13234
https://doi.org/10.1016/j.ecolmodel.2013.12.012
https://doi.org/10.1086/284267
https://doi.org/10.1111/2041-210X.12200
https://doi.org/10.1098/rstb.2001.0993
https://doi.org/10.1098/rstb.2001.0993
http://www.cabi.org/isc
https://doi.org/10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2
https://doi.org/10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2
https://doi.org/10.1890/04-0785
https://doi.org/10.1890/0012-9658(1999)080[0311:EEOLFW]2.0.CO;2
https://doi.org/10.1890/0012-9658(1999)080[0311:EEOLFW]2.0.CO;2
https://doi.org/10.1111/j.1744-7917.2011.01480.x
https://doi.org/10.1139/X08-171
https://doi.org/10.1577/1548-8659(2002)131%3C0086:IOSATV%3E2.0.CO;2
https://doi.org/10.1577/1548-8659(2002)131%3C0086:IOSATV%3E2.0.CO;2
https://doi.org/10.1111/j.1600-0587.2008.05505.x
https://doi.org/10.3389/fevo.2023.1305573
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Kim et al. 10.3389/fevo.2023.1305573
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