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Land Space Ecological Restoration and Comprehensive Renovation, Ministry of Natural Resources,
Chengdu, China, 4Shandong Jianzhu University, Jinan, China, 5Chengdu Land Consolidation and
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Three-River-Source (TRS) National Park stands as one of China’s earliest

established national parks, dedicated to significant ecological responsibilities

that include conserving soil and water resources in the Tibetan Plateau region.

Research on climate change’s influence on the TRS region’s grasslands is of great

significance in our efforts to comprehend and conserve the grassland ecosystem.

The most effective random forest (RF) model was chosen to invert the

aboveground biomass (AGB) of grassland in the previous 6 years (2015−2020)

and predict the grassland AGB in the following 20 years (2021−2040) by

comparing linear regression and multivariate nonlinear regression models such

as RF, support vector machine, decision tree, and artificial neural network. A

Theil–Sen median trend analysis and a Mann–Kendal test were then used to

examine the trends of grassland AGB. The results showed that (1) RF

outperformed other models in estimating grassland AGB, with a test set

decision coefficient of multiple determination (R2) of 0.722, a root mean

square error of 42.596 g/m2, and a mean absolute error of 35.619 g/m2;

(2) over 6 years, the grassland AGB in TRS National Park had a spatial trend of

a steady rise from the northwest to the southeast. The average annual grassland

AGB was 247.333 g/m2, with averages of 44.836 g/m2, 92.601 g/m2, and

120.217 g/m2 in the Yangtze River, Yellow River, and Lancang River source

parks respectively. The trend of the grassland AGB was primarily stabilized and

slightly recovered, with a small portion of the slightly deteriorated areas;

(3) climate change significantly affected grassland AGB, and when temperature
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and precipitation conditions were adequate, grassland AGB values increased with

temperature and precipitation. In the scenarios of ssp119, ssp245, and ssp585,

grassland AGB is projected to exhibit a dynamic upward trend over the next 20

years. Global warming is expected to boost grassland AGB. Comprehensive

measures are essential to maintain grassland health and ensure a positive impact

on global carbon and ecological balance. The study’s findings hold great

importance for the ecological security of the TRS region and contribute to our

global understanding of sustainable grassland development.
KEYWORDS

climate change, grassland AGB, machine learning, model evaluation, remote sensing
inversion, Three-River-Source National Park
1 Introduction

Grassland ecosystems, recognized as themost important ecosystem

types globally, encompass over 40% of the Earth’s land area. They have

a vital role in the global carbon cycle, climate regulation, and carbon

storage (Chapin et al., 2013). As the largest nature reserve in China and

a critical grassland ecological function area, Three-River-Source (TRS)

National Park is essential to maintaining water conservation and

ecological security on the Tibetan Plateau and inland Asia (Yu et al.,

2020b; Jiang F. et al., 2022). However, TRS National Park is located in

the hinterland of the Qinghai–Tibetan Plateau, where the high altitude

and harsh natural conditions make the region’s ecological environment

very fragile (Ma et al., 2022). Furthermore, the TRS region is

confronting a pressing ecological challenge—grassland degradation.

This predicament has arisen due to global warming, escalating

environmental deterioration, and overgrazing (Li C. et al., 2019; Shu

et al., 2022). Therefore, assessing the status and trends of the grassland

biomass in TRS National Park and monitoring and analyzing critical

parameters of grassland ecosystems can provide a scientific basis for the

sustainable use of grassland resources and ecological restoration in the

region (Yu et al., 2020a).

Grassland aboveground biomass (AGB) is an important indicator

reflecting grassland ecosystems’ productivities and carbon cycles. It is

also a critical factor in assessing the degree of grassland degradation

and the effect of restoration (Jia et al., 2016; Zhou et al., 2023). Due to

the vast scope, complex terrain, and inconvenient transportation of

TRS National Park, it is difficult and costly to obtain grassland AGB

data with the use of traditional field survey methods, and the spatial

and temporal coverage is low (Zhang F. et al., 2022). Despite

significant progress in the estimation of grassland AGB, several

challenges persist. The unique environmental conditions, extreme

weather variations, and specific vegetation types found in high-

altitude and high-latitude regions pose distinct challenges for

accurate AGB estimation (Gao et al., 2020). Remote sensing

technology can provide high spatial- and temporal-resolution

remote sensing image data, and by establishing a quantitative

relation model between remote sensing images and grassland AGB,

rapid, accurate, and large-scale inversion and prediction of grassland

AGB can be achieved (Jiang L. et al., 2022; Liu et al., 2022). Fan et al.
02
(2022) used Sentinel-2 images to estimate the grassland AGB of the

Qinghai–Tibetan Plateau, and Chapungu et al. (2020) assessed

grassland biomass in northeastern Zimbabwe by hyperspectral

remote sensing data using the relation between vegetation indices

and grassland organisms. In addition to remote sensing imagery,

uncrewed aerial vehicle (UAV) imagery is often a favored tool for

analyzing grassland AGB (Alvarez-Mendoza et al., 2022). Zhang H.

et al. (2022) used UAV technology to obtain large-area grassland

AGB with an R2 of 0.78, which is good evaluation accuracy. New

technologies like the 3D-laser point cloud technology are essential in

estimating grassland biomass (Wijesingha et al., 2019). In future

scenarios, sky–ground integration for estimating grassland AGB will

help to understand the changing characteristics of grassland

ecosystems and achieve the scientific use of grassland resources and

sustainable development (Yu et al., 2021a).

To establish inversion models, most studies use empirical

statistical models, such as linear and nonlinear regression.

Although those models can describe the mathematical relation

between grassland AGB and remote sensing indices, they lack the

explanatory value of physical mechanisms. They are also limited by

the number of sample data, making it difficult to achieve a generalized

application across regions and time (Zhang Y. et al., 2022). In recent

years, machine learning models have provided new methods for the

inversion of grassland AGB (Morais et al., 2021). Ge et al. (2022)

constructed grassland AGB data from 2000 to 2019 in North China

by comparing 4 machine learning algorithms and selecting the

optimal random forest (RF) model. Liu et al. (2023) also

constructed a model of grassland biomass in the western part of

Southwest China with the use of RF and analyzed the relation

between its response to climatic factors. Although machine learning

algorithms are widely used in various fields for their advantages and

accuracy, they differ markedly in sample requirements, parameter

adjustment, and computational efficiency (Wang Y. et al., 2022; Ma

et al., 2023). Also, overfitting during the machine learning fitting

process remains a critical problem that continues to be addressed (Yu

et al., 2021b). Therefore, it is essential to compare and evaluate the

accuracy, performance, and applicability of various machine learning

algorithms and emerging algorithms in remote sensing inversion to

promote the application of machine learning in this field.
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For grassland AGB inversion in TRS National Park, the current

method still has some problems in data selection, modeling, and

result validation (Xu et al., 2021). More in-depth studies are

urgently required to improve the accuracy and reliability of

grassland AGB inversion. Also, because TRS National Park is

located in an area sensitive to global warming, the past and future

spatial and temporal distribution and changes of its grassland AGB

are significantly affected by climatic factors (Xu et al., 2022; Zhang

L. et al., 2022). Therefore, exploring how the AGB in TRS National

Park will respond to future climate change is important for

determining the health and sustainability of grassland ecosystems.

This study aimed to (1) assess the suitability and limitations of

various regression models for estimating grassland AGB in TRS

National Park through remote sensing and determine the best

inversion models, (2) analyze the spatial and temporal

distribution patterns of AGB and its trends in the park and offer

a reference for addressing degradation in specific regions, and

(3) explore the impacts of climate change on the AGB in TRS

National Park to better understand the ecological influences on

grasslands and to provide strategic information on grassland

management in the TRS region.
2 Data and research methods

2.1 Study area

The TRS National Park encompasses the headwaters of 3 major

rivers in southern Qinghai Province and is accordingly divided into

3 zones: the sources of the Yangtze Yellow, and Lancang rivers

(Figure 1). The park covers an expansive area of 123,100 km2,
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extending from approximately long 89°50’57”E to long 99°14’57”E

and from lat 32°22’36”N to lat 36°47’53”N. This area constitutes

31.16% of the entire TRS region. It spans 4 counties: Zhiduo, Maduo,

Qumalai, and Zaoduo, and encompasses the Cococli Nature Reserve

(Zhang et al., 2019). The park is in the heart of the Qinghai–Tibetan

Plateau, with an average altitude exceeding 4,500 m. The climate is

characterized by extreme cold and aridity, featuring an average

annual temperature of 1.9°C and an average annual precipitation of

498.5 mm (Zheng et al., 2020). The park has various grassland

ecosystems, including alpine meadows, alpine steppes, alpine

swamps, and alpine scrub meadows. Among those, the alpine

steppes and meadows are the most pivotal ecosystems, significantly

contributing to water conservation and biodiversity preservation.
2.2 Data collection

2.2.1 Sampling data
In this study, ground sample data from grasslands were

collected primarily during the peak months of July and August

between 2018 and 2020. The sample area for grass collection was

standardized to 1 m by 1 m, with a minimum separation distance of

more than 20 m between each sampling square. The key recorded

information included ground cover, species names, vegetation

height, biomass measurements, and latitude and longitude

coordinates of each sample square. All grass samples were

carefully harvested during sampling, subsequently dried at 85°C

within a laboratory setting, and weighed. The AGBs of the sample

squares were determined by averaging the data obtained from 3

sample squares. One hundred sixty sampling points were

established, concentrated primarily within the TRS area.
FIGURE 1

Distribution of grassland types and sampling points in the study area.
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2.2.2 Remote sensing data
Remote sensing data were acquired using MOD13Q1/Global

250 m resolution with 16 d composite data, accessible at https://

search.earthdata.nasa.gov/search. That dataset included 2 images,

h25v05 and h26v05, covering the designated study area. MODIS

Reprojection Tool software was used for data processing tasks such

as format conversion, projection adjustment, and image

mosaicking. Subsequently, relevant vegetation indices were

extracted from the data with the use of ENVI software.

2.2.3 Climate and other data
Climate data for 2015 to 2020 were sourced from the National

Science and Technology Basic Conditions Platform-National Earth

System Science Data Center (http://www.geodata.cn). Those data

primarily included monthly average temperature and precipitation

data. Future climate data from 2021 to 2040 were obtained from

CMIP6 (cmip6–Home | ESGF-CoG [llnl.gov]), comprising monthly

average temperature and precipitation data. That dataset featured

data from EC-Earth3, encompassing 3 future climate scenarios:

ssp119, ssp245, and ssp585. Those scenarios correspond to various

socio-economic development pathways and greenhouse gas

emission levels. The numerical suffix in the ssp scenarios indicates

the projected radiative forcing level for the year 2100, with higher

radiative forcing values indicating more substantial global warming

(Hurtt et al., 2020). Specifically, ssp119 represents a low-emission

and low-forcing scenario aimed at limiting global warming to

approximately 1.5°C above pre-industrial temperatures, ultimately

stabilizing at approximately 1.4°C by the end of the century. ssp245

signifies a medium-emission and medium-forcing scenario, where

temperatures are projected to rise by 2.7°C by the end of the

century. ssp585 denotes a high-emission and high-forcing

scenario, anticipating global average temperatures to increase by

4.4°C by 2100 (Popp et al., 2017). The climate data used in the text

were average monthly temperatures and precipitation for August.

Three-River-Source grassland-type data were acquired from the

National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/zh-

hans/). Digital elevation model (DEM) data were derived from the

Geospatial Data Cloud (http://www.gscloud.cn/) SRTMTPI 90 m

resolution data product, and the slope data were generated from the

DEM data.
2.3 Modeling and data analysis

2.3.1 Inversion model construction and
accuracy assessment

(1) Vegetation index: This study used IBM’s SPSS Statistics

software to establish correlations between the extracted vegetation

indices and the collected sample grassland biological data (Table 1).

The primary objective was to assess the potential of the selected

vegetation indices and actual grassland AGB as influential factors in

estimating overall biomass within the study area (Li M. et al., 2019).

This validation process facilitated determining the correlation

strength between these factors, laying the groundwork for
Frontiers in Ecology and Evolution 04
constructing the inversion model and identifying the most

strongly correlated vegetation index for the model’s development.

Where:

rNIR is the reflectance in the near-infrared band.

rR is the reflectance in the red band.

rB is the reflectance in the blue band.

L is the soil conditioning coefficient, which assumes a value of 1

in the EVI and 0.5 in the SAVI (Ren et al., 2018). NDVIsoil is the

NDVI value of an area that is completely bare soil or has no

vegetation cover, while NDVIveg is the NDVI value of an image

element that is completely covered by vegetation.

(2) Model construction: This study used various modeling

approaches for remote sensing inversion, including traditional

simple linear regression, multivariate linear models, and machine

learning models such as RF, decision tree (DT), support vector

machine (SVM), and artificial neural network (ANN).

In the simple linear regression, the normalized difference

vegetation index (NDVI), the vegetation index with the highest

correlation, was selected as the independent variable, and measured

grassland AGB in grams per square meter (g/m2) as the dependent

variable y. The model is represented as

y = kx + b   (7)

where k and b are the model parameters representing the slope

and intercept respectively.

A multiple linear regression model used several independent

variables to describe the linear relation between those variables and

the dependent variable. Let the dependent variable be denoted as y

and the respective independent variables as x1, x2, x3, and so forth

up to xn. The linear relation between the dependent and

independent variables can be represented as

y = a1x1 + a2x2 +⋯+ anxn + e (8)

where y is the dependent variable; x1, x2, x3 and xn are the

independent variables; a1, a2, a3, and an   are the regression

coefficients; and e is the error coefficient. This error coefficient

accounts for the difference between the actual true value and the

predicted value.
TABLE 1 Vegetation index information.

Type Equation

Difference vegetation index (DVI) DVI = rNIR − rR (1)

Ratio vegetation index (RVI) RVI = rNIR
rR

(2)

Normalized difference vegetation
index (NDVI)

NDVI = rNIR−rR
rNIR+rR

(3)

Enhanced vegetation index (EVI) EVI = 2:5 rNIR−rR
rNIR+6rR−7:5rB+L

(4)

Soil adjustment vegetation index (SAVI) SAVI = (rNIR−rR )(1+L)
rNIR+rR+L

(5)

Fractional vegetation cover (FVC) FVC = NDVI−NDVIsoil
NDVIveg−NDVIsoil

(6)
frontiersin
.org

https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
http://www.geodata.cn
https://data.tpdc.ac.cn/zh-hans/
https://data.tpdc.ac.cn/zh-hans/
http://www.gscloud.cn/
https://doi.org/10.3389/fevo.2023.1326980
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


He et al. 10.3389/fevo.2023.1326980
Machine learning methods contain mainly RFs, decision trees,

SVMs, and ANNs.

An RF is an algorithm that combines the strengths of multiple

decision trees. Each tree is independently trained on randomly

selected data subsamples, reducing the risk of overfitting (Zeng

et al., 2019). Moreover, RFs are known for their high predictive

accuracy and exceptional performance in handling complex data

and high-dimensional features.

Decision trees divide the input space into regions, each

corresponding to an output value. Predictions of the output

variable are made based on the value of the input variable (Zhang

J. et al., 2022).

Support vector machines map the input data to a high-

dimensional feature space with the use of nonlinear mapping.

They then construct an optimal hyperplane in the feature space

to minimize the distance from all data points to the hyperplane for

predicting the output variable (Amarsaikhan et al., 2023).

Artificial neural networks are composed of interconnected

neurons, with layers for input, hidden, and output nodes. The

network architecture, including the number of nodes in each layer

and their connections, is defined. Those networks are trained using

optimization algorithms to handle linear and nonlinear regression

problems (Yang et al., 2018).

(3) Accuracy assessment: During the model construction

process, 80% of the samples were designated as the training set,

and 20% the test set. Our goal was to ensure that the inversion

model accurately reflected the conditions within the study area. To

evaluate model accuracy, several metrics were used, including the

root mean square error (RMSE), R2, and mean absolute error

(MAE) between the actual grassland AGB and the simulated

grassland AGB. Those metrics were crucial for assessing the

model’s performance. In accuracy evaluation, the R2 value ranged

from 0 to 1, where the closer the value 1, the higher the accuracy of

the constructed inversion model. Additionally, the RMSE and the

MAE measured the deviation between actual and simulated

grassland AGB values. Smaller values for the RMSE and MAE

signified a smaller difference between the actual and simulated

values, thereby indicating higher accuracy in the constructed

inversion model (Zhang et al., 2023).

The accuracy of the validation inversion model was determined

using the following equations:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(yi − y0i)
2

N

r
(9)

R2 = 1 −o
n
i=1(yi − y0i)

2

on
i=1(yi − �yi)

2 (10)

MAE = 1
no

n

i=1
jyi − y

0
ij, (11)

where yi is the actual grassland AGB of the sample, y0i is the
corresponding calculated simulated grassland AGB, �yi is the mean

of the simulated grassland AGB across all samples, andN is the total

number of samples.
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2.3.2 The Theil–Sen median slope estimation and
Mann–Kendall nonparametric test

The Theil–Sen median slope estimation and Mann–Kendall

nonparametric test are combined methods for analyzing time-series

data trends (Wu N. et al., 2023).

The Theil–Sen median slope estimation is a robust

nonparametric statistical approach used to calculate the average

rate of change, or slope, in time-series data. This method

determines the direction and magnitude of trends within a time

series.

b = median
xj−xi
j−i

� �
,∀ j > i (12)

A calculated value of b greater than 0 signifies an upward trend

in the time series, whereas a value of less than 0 indicates a

downward trend in the time series. If b equals 0, it suggests a

stable or flat trend within the time series.

The Mann–Kendall nonparametric test is a method used to

assess the presence of marked trend changes in time-series data.

What sets this test apart is that it does not assume that the data

follow a specific distribution, making it versatile for various

applications. Furthermore, it is robust at handling missing values

and outliers and is particularly well suited for conducting trend-

significance testing on lengthy time-series data.

Z =

S−1ffiffiffi
V

p ,     if S > 0

        0,     if   S = 0,

S+1ffiffiffi
V

p ,   if   S < 0

   

8>><
>>:

(13)

where

S =o
i=1
o
j=i+1

sign(xj − xi) (14)

V = n(n−1)(2n+5)
18     (15)

where xi and xj are the AGB values in years i and j respectively,

while n is the total number of data points in the time series. The sign

function refers to the mathematical signum function. The statistic Z

is a measure that can take a range of values from negative infinity to

positive infinity. At a given significance level a , when Zj j > m1−a=2, it

indicates a significant change in the time series at the a level.

Typically, a is set to 0.05, leading to a value of m1−a=2, approximately

±1.96. In this study, the significance of trend changes in the AGB

time series was determined with a confidence level of 0.05 (Table 2).
TABLE 2 Distribution of trend scenarios under various b and Z values.

b Z Scenario

b < 0 Z >1.96 Significant deterioration

b < 0 Z ≤1.96 Slight deterioration

b = 0 Z Stabilized

b > 0 Z ≤1.96 Slightly recovered

b > 0 Z >1.96 Significant recovery
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3 Results

3.1 Correlation between vegetation index
and grassland aboveground biomass

Among the vegetation indices, the highest correlation

coefficient was observed between grassland AGB and the NDVI,

which stood at 0.61. Following closely, the correlation coefficients

for the enhanced vegetation index, the ratio vegetation index, and

the fractional vegetation cover were 0.60, indicating a high degree of

similarity among these 3 vegetation indices, and their correlation

coefficients ranked second only to that of the NDVI. The soil

adjustment vegetation index and the difference vegetation index

had slightly lower correlation coefficients, with values of 0.58 and

0.56 respectively. All vegetation indices had a positive correlation

with AGB. The higher the vegetation index, the higher the AGB

value. This suggests that vegetation indices effectively characterize

grassland AGB. In the realm of climatic factors, the correlation

coefficients between grassland AGB and monthly average air

temperature and precipitation were 0.38 and 0.46 respectively.

Notably, precipitation influenced grassland AGB significantly

more than air temperature did. Within certain bounds,

precipitation and air temperature increases lead to higher

grassland AGB values. Geographic factors also affect grassland

AGB. The correlation coefficient between AGB and the DEM was

−0.48, indicating that grassland AGB decreases with rising altitude.

Because the study area was in a plateau region, there was also a

positive correlation between grassland AGB and slope, albeit with a

relatively small correlation coefficient of 0.28 (Figure 2).
3.2 Model accuracy

Six distinct models were used to analyze and predict grassland

AGB within the TRS National Park area (Table 3). In the simple

linear regression, the independent variable chosen was solely the

vegetation index NDVI, because it showed the highest correlation

coefficient with AGB. For the multivariate linear model and the
Frontiers in Ecology and Evolution 06
machine learning model, 5 influential factors were integrated:

NDVI, average monthly precipitation, average monthly

temperature, elevation, and slope, because those factors

collectively contributed to the construction of the regression model.

In the training set constructed by the 6 grassland AGB models,

the DT model yielded the highest R2 at 0.893. Furthermore, it

showed the lowest RMSE and MAE at 29.382 g/m2 and 20.500 g/m2

respectively. Notably, the RF model closely followed with an R2 of

0.876 and relatively low RMSE and MAE values. On the other hand,

simple linear regression achieved the lowest R2 at 0.560 in the

training set, resulting in higher RMSE and MAE compared to the

other models. In the test set, the RF model had the highest R2 at

0.722, along with corresponding RMSE and MAE values of

42.596 g/m2 and 35.619 g/m2 respectively. The multivariate linear

model achieved the second-highest R2 in the test set at 0.690,

demonstrating its effectiveness. In general, all 4 machine learning

models attained R2 values exceeding 0.63 in the test set, indicating a

strong fit. In contrast, simple linear regression had the lowest R2 in

the test set at 0.624, resulting in comparatively higher RMSEs and

MAEs. Due to its limitation of relying on only one factor to predict

grassland AGB, that model had a poorer fit. Overall, the RF

approach demonstrated advantages in predicting grassland AGB

in both the training and test sets.

Through the comparison of 6 different models and their actual

versus predicted values, the RF approach stood out for its superior

performance (Figure 3). As shown in Figure 3D, the predictions

obtained through the RF model closely aligned with the actual values.

The fitting line in those figures closely approximates a 1:1 relation,

with only a few predictions deviating markedly from the observed

AGB. Multivariate linear regression, DT regression, and ANNmodels

also demonstrated relatively minor differences between their

predicted values and actual values. However, the SVM model was

more accurate when AGB values were below 150 g/m2. Conversely,

when the AGB value was relatively high, the gap between the actual

and predicted values of the SVM became more pronounced. Simple

linear regression showed the lowest correlation with measured AGB

values, with a more dispersed distribution of sample points,

indicating the least effective modeling.

Building upon the preceding context, RF was used to estimate

the grassland biomass within TRS National Park.
3.3 Temporal dynamic and spatial pattern
of grassland aboveground biomass
distribution in each park

3.3.1 Temporal dynamic of grassland
aboveground biomass

From the inversion of the grassland AGB in TRS National Park

from 2015 to 2020 with the use of RF modeling, the average AGB

values in the Yellow River, Yangtze River, and Lancang River source

parks showed a consistent and dynamic increasing trend (Figure 4).

The most substantial increase in grassland AGB occurred in the

Yellow River source park from 2016 to 2017, with an average AGB

rise of 19.224 g/m2. The Yangtze River source park, influenced by its

geographic location and climatic factors, had lower average
FIGURE 2

AGB correlation with indicators.
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TABLE 3 Evaluation of the accuracy of each model.

Model
Training accuracy Test accuracy

R2 RMSE (g/m2) MAE (g/m2) R2 RMSE (g/m2) MAE (g/m2)

Simple linear regression 0.560 61.165 50.721 0.624 49.691 58.777

Multivariate linear regression 0.641 55.237 45.225 0.690 52.684 46.060

RF 0.876 32.826 25.432 0.722 42.596 35.619

SVG 0.758 46.193 31.140 0.639 53.026 41.027

DT 0.893 29.382 20.500 0.647 61.261 43.730

ANN 0.626 56.227 44.224 0.686 54.262 44.798
F
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FIGURE 3

Comparison of the actual value of each model with the predicted value (unit: g/m2). (A) Simple Linear Regression, (B) Multiple Linear Regression,
(C) Decision Tree, (D) Random Forest, (E) Support Vector Machine, (F) Neural Network Regression.
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grassland AGB values than the other 2 parks. The maximum AGB

value within the 6 years did not surpass 50 g/m2. Notably, the AGB

in that park showed a linear increase from 2015 to 2017, with a

growth rate of 24.73%, suggesting an enhancement in the ecological

health of the Yangtze River source park grassland. Conversely, the

Lancang River source park showed a relatively consistent growth

trend during the same 6-year period, with annual average values

ranging from 98.966 g/m2 to 136.892 g/m2. TRS National Park had

a growth trend similar to those of the individual parks over the 6

years, consistently showing a dynamic increase. The average AGB

rose from 200.371 g/m2 in 2015 to 274.330 g/m2 in 2020, marking a
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total increase of 73.958 g/m2. All 3 parks experienced a reduction in

grassland AGB during 2018−2019, with a decrease of 5.54%. The

primary reason for that was insufficient precipitation in the TRS

region during that period, leading to limited grass growth.

3.3.2 Spatial pattern of grassland AGB
The overall spatial distribution of TRS National Park from 2015

to 2020 had relatively minor changes, and all areas demonstrated a

gradual increase in AGB from the northwest to the southeast

(Figure 5). That pattern showed noticeable heterogeneity, aligning

closely with the distribution of actual sampling data. The average

grassland AGB for TRS National Park as a whole was 247.333 g/m2.

When considering the region’s individual parks, the Yangtze River

source park had the lowest average AGB at 44.836 g/m2. That can be

attributed to its elevated average altitude and less favorable water

and heat conditions. In contrast, the Yellow River and Lancang

River source parks boasted higher average grassland AGB values,

standing at 92.601 g/m2 and 120.217 g/m2 respectively. The

Lancang River source park enjoyed a more suitable climate and

altitude, resulting in a higher grass biomass.

3.3.3 Trends of changes in grassland
aboveground biomass

By overlaying the results of grassland AGB changes with their

significance, we delineated the trends in grassland AGB changes

across TRS National Park during the 6-year period. As shown in

Figure 6, the 3 parks predominantly slightly recovered and stabilized

in their AGB trends. A few areas showed slight deterioration, with

minimal signs of either significant recovery or significant

deterioration. The areas showing slight recovery are the most

extensive and are situated primarily in the southeast of the Yangtze

River source park, a substantial portion of the Lancang River source
FIGURE 4

Average grassland AGB of Three-River-Source National Park by park
from 2015 to 2020.
FIGURE 5

Spatial distribution of average grassland aboveground biomass in Three-River-Source National Park.
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park, and the south-central area of the Yellow River source park.

Stabilized areas are concentrated in the northwestern region of the

Yangtze River source park, while scenarios of slight deterioration

were observed primarily in the southeastern part of all 3 parks.

The most extensive category was slight recovery, encompassing

an area of 69,780.53 km², which accounts for 56.99% of TRS National

Park’s total area. This suggests that the overall grassland recovery in

the TRS region has been relatively positive in recent years. The

stabilized category encompassed a total area of 28,148.06 km²,

distributed primarily in the Yangtze River source park area. That

region is relatively undisturbed, resulting in a more stable grassland

condition. Notably, the Yangtze River source park comprises

25,654.65 km², representing 91.14% of the total stabilized area,

while the Yellow River and Lancang River source parks had smaller

stabilized areas. Areas of slight deterioration were dispersed across

the 3 parks, totaling 22,003.87 km². Within this category, the Yellow

River, Yangtze River, and Lancang River source parks occupied

13.54%, 69.27%, and 17.19% of the total area respectively.

Moreover, the combined areas of significantly deteriorated and

significantly restored regions measured 2,535.63 km², constituting

2.07% of TRS National Park’s total area. These results suggest that

from 2015 to 2020, the TRS area experienced an overall trend of

grassland recovery, stability in the eastern part of the Yangtze River

source park, and localized deterioration trends (Table 4).
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3.4 Distribution of grassland aboveground
biomass in future scenarios

Using the RF approach, the future changes in grassland AGB in

TRS National Park were modeled for the period 2021−2040 under 3

scenarios: ssp119, ssp245, and ssp585 (Figure 7). All scenarios had a

dynamic upward trend in grassland AGB, with trend lines showing

slopes greater than 0. Notably, the ssp119 scenario showcased the

most rapid upward trend in grassland AGB for TRS National Park,

with a slope of 7.618. That slope exceeded those observed in the

ssp245 and ssp585 scenarios. The fluctuations in overall grassland

AGB remained relatively consistent across the 3 parks, with the

Lancang River source park displaying the highest values, followed

by the Yellow River and Yangtze River source parks. Under the

ssp585 scenario, the mean grassland AGB in TRS National Park

averaged 320.92 g/m² over the 20-year period. This figure surpassed

the mean values of ssp119 and ssp245, which stood at 288.80 g/m²

and 311.53 g/m² respectively. This suggests that higher radiative

forcing corresponds to increased global warming, resulting in

elevated temperatures and, consequently, higher grassland

AGB values.

In the ssp119 scenario, the average grass biomass in Changjiang

Yuan Park increased to 54.77 g/m² from 2020 to 2035, surpassing

the average value from 2015 to 2020. Notably, in 2035, the AGB of
FIGURE 6

Trend analysis of grassland aboveground biomass changes in national parks.
TABLE 4 Area of different trend changes in each park (km2).

Source park
Significant
recovery

Slight recovery Stabilized
Slight

deterioration
Significant

deterioration

Yellow River 555.19 13394.31 1877.05 2979.18 32.95

Yangtze River 1544.76 47368.61 25654.65 15242.44 220.33

Lancang River 117.15 9017.61 616.36 3782.25 65.25

Total 2217.1 69780.53 28148.06 22003.87 318.53
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grassland in the Yangtze River source park peaked at 92.55 g/m². In

the subsequent years, an average AGB of approximately 60 g/m²

was maintained, which was markedly higher than the period from

2020 to 2034. The Yellow River source park showed an average

grass biomass of 113.79 g/m² over 20 years, with 101.29 g/m² from

2020 to 2035 and a peak of 142.93 g/m² from 2035 to 2040. The

Lancang River source park had the highest average grassland AGB

of 120.24 g/m² over the 20-year period, displaying a dynamic

upward trend, with a peak of 92.55 g/m² in the subsequent years.

That was a 33.19% increase from 2031 to 2035.

Under the ssp245 scenario, the mean grassland AGB in TRS

National Park increased at a lower rate than in ssp119, showing a

fluctuating upward trend. In this scenario, the Yangtze River source

park peaked at 71.37 g/m² in 2040, with a mean value of 57.29 g/m²

from 2020 to 2039, showing a steep increase between 2039 and

2040. The mean value of grass biomass in the Yellow River source

park remained relatively stable at 112.17 g/m² over the 20 years,

ranging from 89.20 g/m² to 134.83 g/m². In that scenario, the mean

value of grassland AGB in the Lancang River source park exceeded

that of the other 2 parks, with a mean value of 141.36 g/m², marking

a 21.25 g/m² increase compared to the period from 2015 to 2020,

accounting for 17.59% of the total.

Under the ssp585 scenario, the mean grassland AGB in the

Yangtze River source park averaged 59.87 g/m² over 20 years,

reaching a peak of 76.30 g/m² in 2036. The Yellow River source

park showed an average grassland AGB of 115.60 g/m² over 20
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years, with occasional lower values in 2021, 2022, and 2033, whereas

the remaining years consistently exceeded 100 g/m². In the Lancang

River source park, the ssp585 scenario showed an increase in the

mean grassland AGB, with a minimum value of 129.26 g/m² and an

average of 145.49 g/m². That indicated that temperature increases

had a more pronounced effect on grassland AGB in the Lancang

River source park than in the Yellow River and Yangtze River

source parks.
4 Discussion

4.1 Factors affecting the accuracy of
grassland aboveground biomass
inversion models

Machine learning algorithms offer clear advantages over

traditional simple and multivariate linear regression models, because

they excel in capturing and characterizing the relation between

grassland AGB and its influencing factors. When constructing

models, it became evident that relying solely on a single variable like

NDVI could not encompass the full spectrum of characteristics within

grassland biomass. The complexity of measured grassland AGB data

and the presence of multicollinearity among influencing factors

further hinder the accurate estimation of grassland AGB through

multiple linear regression models, as noted by Zhou et al. (2021).
A

B C

FIGURE 7

Changes in grassland aboveground biomass under various scenarios. (A) ssp119 scenarios, (B) ssp245 scenarios, (C) ssp585 scenarios.
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Among the 4 machine learning algorithms considered, RF was

the top performer when assessed using training set accuracy

analysis. Following RF, the ranking continued with ANN, DT,

and SVM respectively. Its effectiveness in estimating grassland

biomass in the TRS region was further substantiated by the

findings of Zeng et al. (2021), who found that the RF model

outperformed other machine learning models, achieving an

impressive correlation coefficient (r) of 0.84 and RMSE of 76.99

g/m2. Moreover, Zhang J. et al. (2022) also successfully applied the

RF model to estimate alpine grassland AGB from 2001 to 2019 in

the Tibetan Plateau, which encompasses the TRS region, thereby

emphasizing the strong regional representation offered by the RF

fitting method.

The machine learning approach effectively captures the

nonlinear relation between independent and dependent variables

and often yields higher accuracy relative to traditional regression

models. However, is not without its challenges, notably the problem

of overfitting in practical applications due to noise interference.

This concern is further exacerbated when pertaining to studies that

use smaller sample sizes and a greater number of variables for

fitting, as observed in many contemporary research works (Yu et al.,

2021b). To mitigate overfitting, it is crucial to increase the number

of samples during the fitting process while simultaneously

exercising control over the number of variables. Furthermore,

note that the accuracy of machine learning models can also be

affected by problems related to the model’s physical parameters, as

highlighted by Liang et al. (2016). Therefore, optimizing model

parameters is another critical and challenging aspect that merits

continued exploration and refinement in future research endeavors.

It is essential to recognize that model inversion accuracy is

subject to various influencing factors (Qiu et al., 2022). Because

the actual sampling data years were 2018 to 2020, and the

inversion grass biomass years were 2015 to 2020, the model

inversion results were subject to errors caused by the mismatch

in the numbers of sampling years. The TRS region, situated on the

Tibetan Plateau, has substantial variations in elevation, with

different areas being affected by varying elevations and slopes

(Liang et al., 2016; Wang L. et al., 2022). The remote sensing

estimation method for grassland AGB represents a transition from

statistical analysis to growth-process simulation. It involves

simulating the grass’s growth and development by analyzing

the statistical relations among various influencing factors,

including environmental, anthropogenic, topographic, and

climatic factors. In this intricate process, irregular fluctuations

in external factors can significantly affect the precision of grass

biomass model construction.
4.2 Impacts of climate change on
grassland aboveground biomass

Temperature and precipitation fluctuations directly influence

the supply and demand of water and heat crucial for grass growth.

Moreover, climate factors can induce alterations in the attributes of

grassland vegetation by affecting the transformation of biological

conditions like soil (Chi et al., 2021; Shi et al., 2023).
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Future global warming will alter soil temperature and moisture

levels (Pei et al., 2023). Research indicates that temperature determines

grassland growth, with higher temperatures promoting vegetation

growth and development (Xu and Li, 2021). Precipitation also has a

broad spectrum of effects on grass vegetation characteristics. It

influences the interaction between plants and soil microorganisms,

leading to changes in vegetation biomass distribution (Zhang and Xi,

2021). Moreover, there is an asynchronous relation between grassland

biomass and changes in precipitation. Zhang et al. (2023) researched

moisture conditions affecting both the aboveground and belowground

biomasses of grasslands during different stages of vegetation flowering

and fruiting. Wang Q. et al. (2022) found that increased temperatures

have a significant effect on the biomass and species diversity of

degraded grasslands in their natural recovery state, although they

have little effect on natural grasslands. Therefore, restoring degraded

grasslands might become more challenging under future warming

scenarios. To address the degradation trend observed in the grasslands

of the TRS National Park, sustainable grazing management practices

should be implemented, grassland restoration projects advanced, and

proactive measures taken to protect and enhance biodiversity to

ensure the health and sustainability of the grasslands.

This study explored the relation between grass biomass and

temperature and precipitation within the TRS National Park area.

The relations among average monthly temperature, monthly

precipitation, and grassland AGB were constructed based on

sample data (Figure 8). It was observed that when precipitation was

below 90 mm, the average grassland AGB remained below 136.6 g/

m2 regardless of temperature changes. In the range of 90−120 mm of

precipitation and temperatures ranging from 9°C to 12°C, the

grassland AGB increased with rising temperatures. The peak

grassland AGB was reached when precipitation was approximately

95 mm, and the temperature was approximately 11°C. This suggests

that grassland AGB increases with both precipitation and

temperature under favorable climatic conditions. In the ssp585

scenario, grassland AGB increased more substantially with rising

temperature and precipitation compared to the ssp119 and ssp245

scenarios. Precipitation appeared to have a greater influence than
FIGURE 8

Relation between mean monthly temperature, mean monthly
precipitation, and grassland aboveground biomass.
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temperature change, mainly because, at lower temperatures,

increasing precipitation led to more grassland AGB. However, the

relation between temperature change and grassland AGB was weaker

under lower precipitation conditions. Wu W. et al. (2023) also

demonstrated that climate factors have varying effects in Inner

Mongolia and the Tibetan Plateau, with increased precipitation

positively affecting grassland material production, while increased

temperature has varying effects in different regions, both promoting

and suppressing scenarios. In the context of global warming, most of

the extreme climate indicators have risen in the TRS region, the

frequency of extreme heat events has increased, and the frequency of

extreme precipitation is higher than in other regions of the globe (Jin

et al., 2020). To address the challenge of climate warming in the TRS

region, key measures to improve the sustainability of agriculture and

animal husbandry, strengthen water resource management, and raise

awareness of ecological protection are required to ensure the health

and balance of grassland ecosystems.
5 Conclusion

This paper delves into the practicality of various remote sensing

inversion models for estimating grassland AGB, using actual

sampling points and remote sensing data. The analysis covers

changes in grassland AGB within the TRS National Grassland

from 2015 to 2020, forecasts future biomass trends, and examines

the potential influence of climate change on grassland AGB. The

key findings can be summarized as follows:

(1) Grassland AGB strongly correlates with vegetation indices,

with the highest correlation coefficient observed with the NDVI.

Machine learning models proved more accurate in estimating

grassland AGB in the TRS region than traditional linear

regression models. Among the machine learning methods, the RF

fitting approach yielded the highest accuracy, with a test set

coefficient of determination reaching 0.722, making it well suited

for grassland AGB analysis in TRS.

(2) From 2015 to 2020, the mean grassland AGB in TRS

National Park showed a continuous upward trajectory

characterized by a gradual increase from northwest to southeast.

The analysis of grassland AGB trend changes revealed a

predominant pattern of slight recovery and stabilization, with

some areas experiencing slight deterioration. Notably, the areas

displaying significant recovery or deterioration were limited. For

degraded grassland areas, measures such as vegetation restoration,

improved grazing management, and soil protection should be taken

to restore and maintain the ecological health of grasslands.

(3) The grassland AGB in TRS National Park consistently

displayed fluctuating and increasing trends across three future

climate change scenarios (ssp119, ssp245, and ssp585). Apart

from geographic factors, the effects of temperature and

precipitation on grassland AGB proved to be more pronounced.

Within specific ranges, grassland AGB values also increased as

temperatures continued to increase and precipitation grew.

Notably, the growth rate was particularly evident under

conditions of 100−120 mm of precipitation and temperatures

ranging from 9°C to 12°C. Global warming is expected to further
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drive the rise in grassland AGB values. Proactive measures must be

taken to protect grasslands in the context of global warming. Those

measures include implementing sustainable grassland management

methods and enacting policies focused on preserving grasslands to

mitigate the effect of climate change on these ecosystems.
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