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Predicting the behavior of individuals acting under their own motivation is a

challenge shared across multiple scientific fields, from economic to ecological

systems. In rivers, fish frequently change their orientation even when stimuli are

unchanged, which makes understanding and predicting their movement in time-

varying environments near built infrastructure particularly challenging. Cognition

is central to fish movement, and our lack of understanding is costly in terms of

time and resources needed to design and manage water operations infrastructure

that is able to meet the multiple needs of human society while preserving valuable

living resources. An open question is how best to cognitively account for the

multi-modal, -attribute, -alternative, and context-dependent decision-making of

fish near infrastructure. Here, we leverage agent- and individual-based modeling

techniques to encode a cognitive approach to mechanistic fish movement

behavior that operates at the scale in which water operations river infrastructure

is engineered and managed. Our cognitive approach to mechanistic behavior

modeling uses a Eulerian-Lagrangian-agent method (ELAM) to interpret and

quantitatively predict fish movement and passage/entrainment near infrastructure

across different and time-varying river conditions. A goal of our methodology is

to leverage theory and equations that can provide an interpretable version of

animal movement behavior in complex environments that requires a minimal

number of parameters in order to facilitate the application to new data in real-

world engineering and management design projects. We first describe concepts,

theory, and mathematics applicable to animals across aquatic, terrestrial, avian,

and subterranean domains. Then, we detail our application to juvenile Pacific

salmonids in the Bay-Delta of California. We reproduce observations of salmon

movement and passage/entrainment with one field season of measurements,
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year 2009, using five simulated behavior responses to 3-D hydrodynamics.

Then, using the ELAM model calibrated from year 2009 data, we predict the

movement and passage/entrainment of salmon for a later field season, year

2014, which included a novel engineered fish guidance boom not present in

2009. Central to the fish behavior model’s performance is the notion that

individuals are attuned to more than one hydrodynamic signal and more than

one timescale. We find that multi-timescale perception can disentangle multiplex

hydrodynamic signals and inform the context-based behavioral choice of a fish.

Simulated fish make movement decisions within a rapidly changing environment

without global information, knowledge of which direction is downriver/upriver,

or path integration. The key hydrodynamic stimuli are water speed, the spatial

gradient in water speed, water acceleration, and fish swim bladder pressure. We

find that selective tidal stream transport in the Bay-Delta is a superset of the

fish-hydrodynamic behavior repertoire that reproduces salmon movement and

passage in dam reservoir environments. From a cognitive movement ecology

perspective, we describe how a behavior can emerge from a repertoire of multiple

fish-hydrodynamic responses that are each tailored to suit the animal’s recent

past experience (localized environmental context). From a movement behavior

perspective, we describe how different fish swim paths can emerge from the

same local hydrodynamic stimuli. Our findings demonstrate that a cognitive

approach to mechanistic fish movement behavior modeling does not always

require the maximum possible spatiotemporal resolution for representing the

river environmental stimuli although there are concomitant tradeoffs in resolving

features at different scales. From a water operations perspective, we show that a

decision-support tool can successfully operate outside the calibration conditions,

which is a necessary attribute for tools informing future engineering design and

management actions in a world that will invariably look different than the past.

KEYWORDS

ecohydraulics, ethohydraulics, multi-timescale perception, perceptual decision-making,
multiplex signal disentanglement, psychophysics, habituation, fish behavior model

1. Introduction

Fish in rivers are important ecologically, culturally,
recreationally, commercially, and as a key food resource (Murray
et al., 2020; Su et al., 2021). Inland waters make up less than
0.01% of Earth’s water yet simultaneously support both 40% of
the world’s fish production and more than 40% of the global
human population (Stiassny, 1996; Helfman et al., 2009; Kummu
et al., 2011; Lynch et al., 2016). Rivers are a portion of inland
waters and particularly vital, making up just 0.0002% of the
water supply (Shiklomanov, 1993; Vince, 2012). Water operations
provide human society with irrigation, navigation, power, and
flood protection and include built infrastructure such as dams,
levees, and water diversions. More than 2.8 million dams have
been built globally, and 500,000 km of waterways are regulated in
some form (Grill et al., 2019; Belletti et al., 2020; Yang et al., 2022).
In the U.S. alone, there are more than 90,000 dams (U.S. Army
Corps of Engineers, 2018) and 40,000+ km of levees with 45,500+
built structures associated with 17 million people and $2 trillion in
property (U.S. Army Corps of Engineers, 2020). More than 60% of
the US inland navigation steel structures have reached or exceeded
their design life. As infrastructure is designed, re-designed, and/or

re-imagined, the ability to predict near-term fish movement during
the engineering design phase has the potential to save time and
money as well as living resources. The success of structures and
management actions designed to facilitate the safe travel of aquatic
species past built infrastructure is frequently dictated by the
volitional decision-making of freely-moving fish.

Managing fish near water diversions and dams often involves
some form of separating individuals from the bulk flow of water
and guiding them to specific safe transit locations within the river
channel. In other species management scenarios, in-river structures
may be used to facilitate the capture or limit the spread of invasive
species (Zielinski et al., 2020). Both species management goals are a
daunting engineering challenge.

More than a half-century of field and laboratory research has
yielded a substantial amount of work and literature in which
there are many, and sometimes contradictory, findings for how
fish respond to natural and manageable environmental stimuli
(Table 1). Fish respond to multiple factors that can be managed in
a river including hydrodynamics, electrical fields, carbon dioxide,
and insonified bubble curtains with light stimuli. In some settings,
water temperature, salinity, dissolved oxygen, and stratification are
factors that influence fish movement in rivers.
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TABLE 1 Fish stimuli-response factors, cognition, behavior modeling, and general cognitive characteristics across many different kinds of organisms.

Area of scientific inquiry Abbreviated synopsis of historical and more recent works

Fish stimuli-response factors, cognition, and behavior modeling

Multiple factors Chamberlain, 1907; Chidester, 1924; Collins, 1952; Brett and Alderdice, 1958; Hocutt et al., 1980; Anderson, 1988; Feist and
Anderson, 1991; Coutant and Whitney, 2000; Schilt, 2007; Sweeney et al., 2007; Katopodis and Williams, 2012; Noatch and Suski,
2012; Jones et al., 2021; Cooke et al., 2022; NMFS, 2022

Hydrodynamics Gray, 1933a,b; McLeod and Neményi, 1941; MacKinnon and Hoar, 1953; Jones, 1956; Sutterlin and Waddy, 1975; Kalmijn, 1988;
Webb, 1989; Drucker and Lauder, 2003; Lauder and Tytell, 2004; Liao, 2007; Windsor et al., 2010a,b; Lacey et al., 2012; Coutant,
2023

Temperature, salinity, dissolved oxygen Gurley, 1902; Chamberlain, 1907; Shelford and Allee, 1913; Galtsoff, 1924; Gutsell, 1929; Creaser, 1930; Brett, 1952; Collins, 1952;
Erichsen Jones, 1952; Sullivan and Fisher, 1953; Brett, 1956; Ferguson, 1958; Garside and Tait, 1958; Whitmore et al., 1960; Moss
and Scott, 1961; Javaid and Anderson, 1967; Coutant, 1975; McCauley and Huggins, 1979; Reed and Balchen, 1982; Coutant, 1985;
Kramer, 1987; Thomson et al., 1992; Goodwin, 2000; Humston et al., 2000; Nestler et al., 2002; Humston et al., 2004; Carter, 2005;
Prchalová et al., 2006; Booker et al., 2008; Mork et al., 2012; Chittenden et al., 2013; Burke et al., 2014; Byron et al., 2014; Moriarty
et al., 2016; Clancey et al., 2017; LaBone et al., 2021; Quinn et al., 2022; García-Vega et al., 2023

Electrical fields Baker, 1928; Applegate et al., 1952; Brett and Alderdice, 1958; Johnson et al., 2014; Miller et al., 2021; Kowalski et al., 2022; Miller
et al., 2022

Carbon dioxide Shelford and Allee, 1913; Wells, 1913; Gutsell, 1929; Creaser, 1930; Powers and Clark, 1943; Collins, 1952; Donaldson et al., 2016;
Cupp et al., 2017; Treanor et al., 2017; Hasler et al., 2019; Cupp et al., 2021

Acoustic, light, bubbles Parker, 1912; Reeves, 1919; von Frisch, 1938; Lowe, 1952; Brett and MacKinnon, 1953; Fields et al., 1956; Brett and Alderdice, 1958;
Patrick et al., 1985; Sager et al., 1987; Kalmijn, 1988; Nestler et al., 1992; Popper and Carlson, 1998; Bullen and Carlson, 2003;
Johnson, 2003; Prchalová et al., 2006; Kock et al., 2009; California Department of Water Resources, 2012, 2013; Flammang et al.,
2014; Mussen et al., 2014; Perry et al., 2014; Zielinski et al., 2014a,b; Febrina et al., 2015; Zielinski and Sorensen, 2015, 2016, 2017;
Miehls et al., 2017; Dennis et al., 2019; Hansen et al., 2019; Jesus et al., 2019; Mickle et al., 2019; Piper et al., 2019; Dennis and
Sorensen, 2020; Popper et al., 2020; Flores Martin et al., 2021; Jesus et al., 2021; Leander et al., 2021; Pratt et al., 2021

Cognition; orientation to environmental
cues

Gurley, 1902; Churchill, 1916; Fraenkel and Gunn, 1940; Thorpe, 1956; Royce et al., 1968; Gleitman and Rozin, 1971; Quinn, 1991;
Dukas, 1998; Shettleworth, 1998, 2001; Brown et al., 2011; Eliassen et al., 2016; Salena et al., 2021; Hein, 2022; Rodriguez-Santiago
et al., 2022; Fahimipour et al., 2023

Cognition, orientation in natural world
for conservation

Galtsoff, 1924; Dodson, 1988; Kieffer and Colgan, 1992; Odling-Smee and Braithwaite, 2003; Greggor et al., 2020

Behavior, movement modeling DeAngelis, 1978; Balchen, 1979; Neill, 1979; Reed and Balchen, 1982; Anderson, 1988; Bartsch et al., 1989; Foreman et al., 1992;
Lough et al., 1994; Reyes et al., 1994; Tyler and Rose, 1994; Zabel, 1994; Davidson and Deyoung, 1995; Tregenza, 1995; Giske et al.,
1998; Heath et al., 1998; Goodwin, 2000; Humston et al., 2000; Humston, 2001; Bracis, 2010; Byron and Burke, 2014; Jager and
DeAngelis, 2018; DeAngelis and Diaz, 2019; Lilly et al., 2022

Agent-, particle-, individual-based
movement behavior model with 2-D/3-D
hydrodynamics, water quality, and/or
other stimuli

Walsh et al., 1981; Thomson et al., 1992; Werner et al., 1993; Thomson et al., 1994; Hermann et al., 1996; Hinckley et al., 1996;
Werner et al., 1996; Rand et al., 1997; Walter et al., 1997; Ault et al., 1999; Quinlan et al., 1999; Goodwin, 2000; Friedland, 2001;
Guensch et al., 2001; Werner et al., 2001; Nestler et al., 2002; Scheibe and Richmond, 2002; Giske et al., 2003; Blumberg et al., 2004;
Booker et al., 2004; Goodwin, 2004; Humston et al., 2004; Goodwin et al., 2006; Werner et al., 2007; Booker et al., 2008; Willis, 2011;
Bracis and Anderson, 2012; Fossette et al., 2012; Mork et al., 2012; Abdelaziz et al., 2013; Chittenden et al., 2013; Burke, 2014; Burke
et al., 2014; Byron et al., 2014; Goodwin et al., 2014; Arenas et al., 2015; Febrina et al., 2015; Moriarty et al., 2016; Putman et al.,
2016; Railsback et al., 2016; Naisbett-Jones et al., 2017; Putman, 2018; Zielinski et al., 2018; Gilmanov et al., 2019; Snyder et al., 2019;
Brosnan and Welch, 2020; Morrice et al., 2020; Ounsley et al., 2020; Padgett et al., 2020; Rossington and Benson, 2020; Benson et al.,
2021; Bjørnås et al., 2021; Gross et al., 2021a,b; Kulić et al., 2021; LaBone et al., 2021; McIlvenny et al., 2021; Newton et al., 2021;
Olivetti et al., 2021; Szabo-Meszaros et al., 2021; Zhu L. et al., 2021; Gisen et al., 2022; Holleman et al., 2022; Lai, 2022; Powalla et al.,
2022; Quinn et al., 2022; Tan et al., 2022; Whitty et al., 2022; Zeng, 2022; Hajiesmaeili et al., 2023; Kerr et al., 2023; Mawer et al.,
2023; Sridharan et al., 2023

General cognitive characteristics across many different kinds of organisms

Role of time in behavior Dodson, 1988; Kieffer and Colgan, 1992; Odling-Smee and Braithwaite, 2003; Park et al., 2016; Dabiri, 2017; Oteiza et al., 2017; Bi
and Zhou, 2020; Auger-Méthé et al., 2021; Chen et al., 2021; Fagan et al., 2023

Behavioral choice/decision via evidence
accumulation

Stone, 1960; Laming, 1968; Vickers, 1970; Ratcliff, 1978; Dodson, 1988; Kieffer and Colgan, 1992; Giske et al., 1998; Usher and
McClelland, 2001; Odling-Smee and Braithwaite, 2003; Bogacz et al., 2006; Bogacz et al., 2007; Ossmy et al., 2013; Dabiri, 2017;
Oteiza et al., 2017; Dragomir et al., 2020; Chen et al., 2021; Salena et al., 2021

Multiple timescales Gleitman and Rozin, 1971; Giske et al., 1998

Related to temporal features of the
environment

Harris, 1943; Thompson and Spencer, 1966; Anderson, 2002; Steele-Feldman, 2006; Bromberg-Martin et al., 2010; Nassar et al.,
2010; Kato et al., 2014; Murray et al., 2014; Piet et al., 2018

Tracking of time-varying information in
behavioral analysis

Anderson, 2002; Steele-Feldman, 2006; Van Moorter et al., 2009; Anderson et al., 2010; Bernacchia et al., 2011; Fagan et al., 2013;
Kacelnik et al., 2013; Wilson et al., 2013; Murray et al., 2014; Bracis et al., 2015; Wilson et al., 2018; Iigaya et al., 2019; Lin et al., 2021;
Ranc et al., 2022

Short- and long-term categorizations Sharpless and Jasper, 1956; Gleitman and Rozin, 1971; Harley, 1981; Giske et al., 1998; Rose and Rankin, 2001; McNamara et al.,
2008; Wilson and Linster, 2008; Thompson, 2009; Bernacchia et al., 2011; Das et al., 2011; Murray et al., 2014; Iigaya et al., 2019; Bi
and Zhou, 2020; Shen et al., 2020; Spitmaan et al., 2020; Lin et al., 2021; Meister, 2022; Wang and Salmaniw, 2023
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Here, we limit our focus to hydrodynamic stimuli. The study of
fish and water flow has a rich history dating back about a century.
Also dating back about a century yet somewhat separate from the
hydrodynamic investigations is the study of fish cognition and how
they orient to environmental cues, which have long been applied
to understand their behavior in the natural world for conservation
purposes (Table 1).

Ecological decision-making for conservation is inherently
a forecasting problem (Werner et al., 2007; Dietze et al.,
2018), and numerical modeling makes precise our underlying
hypotheses (Dietze et al., 2018). Numerical fish behavior and
movement modeling has been a powerful tool in conservation for
more than 40 years (Table 1). Near-term ecological forecasting,
specifically, focuses on meeting the needs of daily to decadal
environmental decision-making under high uncertainty and
adaptive management. Iterative near-term ecological forecasting
involves rapidly testing hypotheses through comparison of
quantitative predictions to new observational data under different
scenarios, one of the strongest tests of scientific theory (Dietze et al.,
2018). However, there is no such thing as a perfect forecast (Werner
et al., 2007; Dietze et al., 2018). Key challenges remain.

The number of fish behaviors that need to be factored in
order to reproduce movement and passage/entrainment patterns
at river infrastructure increases concomitantly with environmental
complexity (Goodwin et al., 2014). An important question for
water operations management, therefore, is how different fish
behaviors emerge, one at a time, from a multi-response repertoire
to meet the momentary challenges of an individual. In other
words, how does a specific fish-hydrodynamic response suited for a
given environmental context emerge from an evolved repertoire of
multiple behaviors that, together, facilitate the animal’s navigation
through diverse, time-varying conditions such as flood and ebb
tides (Dodson, 1988). We pursue three main lines of scientific
inquiry in our study:

• what might the evolved repertoire of fish-hydrodynamic
responses be for downstream-migrating fish in rivers;
• what degree of mathematical complexity is needed to

reproduce and predict fish swim path patterns and observed
passage/entrainment at infrastructure; and
• what level of numerical sophistication is required of

river hydrodynamic modeling to inform a computationally-
tractable management decision-support tool?

We cannot measure all internal and external factors in the
natural world that may influence how a fish moves through
an open river. However, sensory processing and cognitive
decision-making is evident even in simple laboratory settings
where an individual fish changes its behavior response over
time to a stimulus that itself does not change (Haro et al.,
1998; Enders et al., 2009a). In rivers, the same phenomena
is observed near infrastructure (Goodwin et al., 2006, 2014).
We piece together concepts, theory, and mathematics across
multiple scientific fields as well as findings dating back in some
cases nearly a century ago within the areas of organism sensory
perception and cognitive decision-making, fish environmental
and hydrodynamic response, and numerical behavior and
environmental modeling (Table 1).

We start by, first, describing some general characteristics of
cognition that apply to many organisms, not just fish. Then, second,
we describe our tidal study system and data involving juvenile
Pacific salmonids (hereafter salmon). Third, we tailor the general
characteristics of animal cognition that we introduce in the next
section to salmon navigating a tidal river junction in the context
of water operations to understand and predict their movement and
passage/entrainment.

2. Methods: general characteristics
of animal cognition

The present era is one of rapidly developing knowledge about
animal cognition (Greggor et al., 2020; Salena et al., 2021; Bialek,
2022; Hein, 2022; Petrucco et al., 2022; Triki et al., 2022; Wang and
Salmaniw, 2023). At a fundamental level, we lack understanding of
the complexities and context dependencies that underlie behavior
changes in multisensory conditions (Bak-Coleman et al., 2013;
Coombs et al., 2020). A critical part of interpreting changes in
behavior is understanding the role of time (Table 1). One reason
for our existing knowledge gaps is that invaluable laboratory
experiments are also limited in the available degrees of freedom
compared to the natural world (Salena et al., 2021), the latter of
which involves continuous decisions with ever-changing options
influenced by recent responses (Yoo et al., 2021). Fish may exhibit
different behaviors in the field environment than in simpler settings
(Dennis and Sorensen, 2020).

Note that for the purposes of our work herein that terminology
can differ among scientific fields and, here, we take an expansive
and inclusive view of the terms cognition and cognitive. By the terms
cognition and cognitive we are referring generally to perception,
attention, memory, learning, and the processes of perceptual
decision-making that we can predict at the scale of a river. Also,
we use the terms behavioral choice and decision interchangeably.
We recognize that in our attempt to make our nomenclature
understandable across a broad audience that we may deviate from
more stringent terminology definitions in some of the scientific
fields that we leverage in this work.

Our cognitive approach to mechanistic animal movement
behavior modeling is not a study of brain architecture.
We necessarily relegate many cognitive phenomena to
parameterization that summarily represents subresolution
dynamics that may seem crude if viewing our work from the
perspective of other scientific fields that investigate neuroscience,
neurobiology, and cognition at a finer scale. Here, we must encode
cognitive phenomena more simply than what happens inside an
animal’s brain in order for a model of movement behavior to
operate at the scale of landscape and waterscape infrastructure in
the open world for natural resources management.

2.1. Sensory experience influences
stimulus perception and behavioral
choice

The sensory experience of an individual strongly influences
the perception of a stimulus (Akrami et al., 2018) and resulting
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behavioral choice (Table 1). Momentary stimuli are noisy, so
animals constantly integrate sensory evidence over time and space
to infer the state of their environment (Bahl and Engert, 2020;
Dragomir et al., 2020). A relative difference between momentary
and previously experienced stimuli influences the movement of
even primitive organisms (Ikeda et al., 2020). In next section, we
describe the first step in our modeling process for encoding how
sensory experience influences the perception of a stimulus and
resulting behavioral choice.

2.1.1. Stimulus: physical vs. perceived intensity
We first convert a stimulus physical (measured/modeled) value

into a perceived intensity, Iϕ, by applying a treatment analogous to
the decibel scale for any stimuli variables whose quantities, ϕ, span
orders of magnitude, such as gradients and other derivative values:

Iϕ (t) = log10

(
ϕ (t)
ϕo

)
(1)

where ϕo is an arbitrary reference or baseline. The logarithm
of a physical quantity, Iϕ, at momentary time t often better
represents an animal’s perception of intensity for a stimulus whose
measured/modeled quantities span orders of magnitude (Fechner,
1860), e.g., sound. In our approach, physical stimulus quantities
that do not span orders of magnitude remain unmodified from their
measured/model value.

After this step, we refer to each stimulus i whose
measured/modeled quantity is ϕ as its perceived intensity, Ii.
Also, note that in limited places we use the terms quantity and
intensity interchangeably in order to convey a few concepts herein.

A common feature of perception across taxa is the sensory
system’s translation of a physical stimulus magnitude to a
perceived quantity using proportional differencing (Akre
and Johnsen, 2014). While our first step accounts for some
psychophysical characteristics of perception, it does not account
for an animal’s continuous sampling of the environment. In next
section, we describe our approach for how continuous sensory
sampling and experience over time influences an individual’s
perception of a stimulus.

2.1.2. Stimulus: perceived change in intensity
Continuous sampling of a stimulus over time impacts how its

perceived quantity may be registered by an animal. Each animal has
its own unique sequence of preceding experiences, or history, so the
momentary perception of a stimulus can be registered differently
by separate individuals. Detecting the change in a stimulus using a
proportional difference between two magnitudes allows an animal’s
sensory system to cope with the enormous diversity of intensities
experienced in the environment (Akre and Johnsen, 2014).

Note that in the first step, we converted stimuli to perceived
intensities, yet the perceived change in intensity is also a perceptual
characteristic. To keep our steps clear and nomenclature simple,
hereafter, we refer to perceived intensity simply as intensity, Ii, so we
can refer to the notion of a perceived change in perceived intensity
more simply as the perceived change in intensity.

Our second step for encoding how sensory experience
influences stimulus perception is to describe the perceived change
in intensity, Ei, following an analogy to the just noticeable difference
(jnd) concept of the Weber-Fechner law (Weber, 1846; Fechner,

1860). We compute Ei by comparing the momentary intensity, Ii,
to recent past sensory experience in the form of a habituated (or
acclimatized) level, Iai , at time t as:

Ei (t) =
Ii (t)− Iai (t)

Iai (t)
(2)

Habituation is the foundation of selective attention that
perceptually desensitizes an animal over time to static, common,
irrelevant, or inconsequential stimuli. Habituation allows the
individual to focus on the most salient signals in their environment
at a given moment even amid high background noise (Rose
and Rankin, 2001; McNamara et al., 2008; Rankin et al., 2009;
Blumstein, 2016; Shen et al., 2020; Tafreshiha et al., 2021).
Habituation is a form of plasticity, more specifically, a simple
memory and learning process that is found across sensory systems
and taxa, including fish (Dennis and Sorensen, 2020). Habituation
is a building block of animal cognition and behavior (Harris,
1943; Konorski, 1948; Sharpless and Jasper, 1956; Thompson and
Spencer, 1966; Peeke and Peeke, 1973; Rose and Rankin, 2001;
McNamara et al., 2008; Das et al., 2011).

The jnd does not universally capture perceptual performance in
every kind of task (Carriot et al., 2021). Our treatment of signal-
to-background, or signal-to-noise jnd, Ei (t), is perhaps better
described instead as a notable streaming differential (nsd) because
animals update the ratio in Equation 2 perpetually, not just at
a single decision moment in time that is often the basis for jnd
evaluation. We use an exponentially weighted moving average
(EWMA) to encode habituation although more sophisticated
algorithms exist. Using an EWMA, the habituated intensity, Iai ,
updates as follows:

Iai (t) =
(
1−mai

)
· Ii (t) + mai · Iai (t − 1) (3)

where Ii (t) is the momentary intensity of stimulus i at the
individual’s xyz-position at time t, Iai (t) is the intensity of stimulus
i to which the individual is habituated or, in other words, the
background intensity. We assume the memory parameter mai is
a non-changing coefficient within the range [0, 1] that determines
how quickly the individual habituates and becomes desensitized to
new intensities of the stimulus (Bush and Mosteller, 1955).

Sensory experience is the basis we use to encode a
cognitively-inspired mechanistic account of the salmon’s changing
environmental context for momentary decisions (Goodwin et al.,
2006, 2014), which we describe as the third step in the next sections.

2.1.3. Context-based behavioral choice—with a
single factor

Contrary to the notion that context is important in decision-
making only for higher trophic level organisms, contextual
awareness resulting in different responses to the same stimulus is
a factor even in single cells (Kramer et al., 2022). An organism’s
behavioral choice depends on the context of its momentary
decision (Bak-Coleman et al., 2013; Coombs et al., 2020; Ikeda
et al., 2020; Mann, 2020; Oram and Card, 2022). Sensory
experience informs the decision context. Animal decisions are
based on the simple notion of whether perceived conditions are
better or worse than preceding experience (McNamara et al.,
2013). In our approach, preceding experience is encoded through
habituation, Iai .
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In our approach, the previously experienced stimulus
intensities provide the decision context when a single
environmental factor is at play. We encode the momentary
stimulus relative to the context of previous sensory experiences
using the perceived change in intensity Ei.

Behavioral choice such as a change in movement orientation
and speed within our approach is based on the notion of whether
Ei exceeds a pertinent threshold, ki, where ki is a characteristic that
must be determined in the analysis. Describing behavioral decisions
using accumulated sensory evidence crossing a threshold (Bahl and
Engert, 2020) is a common approach across a variety of organisms
(Dragomir et al., 2020).

2.1.4. Context-based behavioral choice—with
multiple factors

The natural world is composed of many factors, some known
and many unknown, whose stimulus quantities are continuously
integrated over time by an animal. Each stimulus competes for the
individual’s selective attention. Determining the decision context of
behavioral choice requires not only integrating intensities over time
for multiple abiotic and biotic factors but also finding a common
currency to combine the diverse sensory experiences toward a
singular decision for the moment. Our approach to multiple factors
is to use thresholds, ki, for each factor or stimulus i. We combine the
sensory experiences across multiple factors by converting threshold
exceedances into Boolean values [0 or 1], which we can use as
a common currency to combine diverse sensory experiences to
inform momentary choice.

An animal’s movement strategy in natural settings may consist
of a large repertoire of behavior responses. A stimulus operates
on a spectrum, so the concept of a threshold helps in interpreting
at what point does the factor warrant attention relative to
competing factors. When the animal experiences a diverse array
of environmental stimuli and conditions, behaviors within a
repertoire may take varying precedence in different phases of a
movement sequence (Sogard and Olla, 1993; New et al., 2001).

In our approach, an individual perpetually updates and
compares their nsd values at time t, Ei (t), to corresponding
thresholds, ki, for each stimulus i. When Ei (t) crosses ki we
assume the neural activity, aB (t), in the animal’s brain increases
their propensity or motivation – mathematically, what we call
accumulated evidence, eB (t) – to respond with behavior B (t) {r}
using one of the available responses, r, within the evolved
repertoire, r = {1, 2, 3, ...}. Put simply, when Ei (t) crosses ki we
assume the corresponding stimulus i warrants attention, even if no
movement response is yet required; stimulus i begins to climb in
the hierarchy of competing other stimuli. Mathematically, when the
threshold is crossed then the Boolean measure switches from 0 to
1. When the Boolean measure is 1, then activity aB (t) takes on a
value within the range [0.0 < aB ≤ 1.0] that does not change with
time and whose value is determined in the analysis. The constant
aB is based on a subjective assessment of the response’s value to
the animal relative to the other behaviors in the larger repertoire.
Activity aB (t) is zero whenever the threshold is not crossed.

The evidence, eB, supporting each behavior B accumulates
based on inputs aB (t) through a cognitive algorithm and results
in the selection of a singular movement orientation and speed
response for the duration of time increment 4t. The temporal

integration of evidence supporting different choice options — each
behavior response B — is a computational process generally
thought to underlie decision-making (Ossmy et al., 2013) and
accurately describes paradigms with multiple sensory modalities
across various organisms (Dragomir et al., 2020). The exact
currency of evidence that is accumulated (e.g., sensory versus
behavioral output) is an active area of neurophysiological study
(Dragomir et al., 2020).

In our present approach, following the sensory integration
paradigm, we use the Mutual Inhibition Model or Leaky Competing
Accumulator model (Usher and McClelland, 2001) to temporally
accumulate perceived evidence and select the behavior B. To
decide behavior transitions, the sensory evidence accumulators, eB,
integrate the activity, aB, supporting each behavior B as:

deB =

aB − λeB − η

S∑
j = 1
j 6= B

ej

 dt + cdWB (4)

or as a complete equation in discrete form:

eB (t +1t) = eB (t) +

aB (t)− λeB (t)− η

S∑
j=1
j6=B

ej(t)


4t + cζB

√
1t (5)

where eB (t = 0) = 0. The behavior B (t) {r} implemented at time
t is the response r associated with the greatest accumulator value
eB at the beginning of increment 4t. eB is a leaky integrator that
accumulates evidence from a drifting input with mean activity aB
(Bogacz et al., 2006). Activity aB corresponds to a general, inherent
urgency to respond to the stimulus with a particular behavior B
(Schurger et al., 2012). Each behavior B is associated with an activity
aB that causes it to be implemented in the face of other available
responses. An individual executes behavior B when the activity aB
supporting it accumulates over time in the form of accumulator eB
from Equation 4 or 5 and overtakes the accumulators, e, of the other
available behaviors that could otherwise be implemented.

λ is the exponential decay rate of activity aB where the leak
term −λeB causes eB to decay to zero in the absence of inputs aB.
When λ > 0, the net effect is decay toward zero that produces
stability in the activation whereas for λ < 0 the activation
tends to self-amplify and is not stable (Schurger et al., 2012). The
accumulators eB mutually inhibit each other through a connection
weight, η, where S is the number of accumulators eB. The variable
having uppercase W may be thought of as random fluctuations in
the signal, intrinsic accumulator noise, or unmodeled inputs and
can be represented as independent, identically distributed Wiener
processes with unit variance (McMillen and Holmes, 2006).

In the discrete form, ζB is Gaussian noise sampled from a
standard normal distribution N (0, 1) with zero mean and variance
σ2
= 1, c is a noise-scaling factor, and 4t is the discrete time

increment of the simulation (Usher and McClelland, 2001; Bogacz
et al., 2007; Schurger et al., 2012; Tsetsos et al., 2012). λ and η are
all assumed to be nonnegative. The activity scale can be chosen so
that zero represents baseline activity in the absence of inputs, hence
integration starts from eB (t = 0) = 0 (Bogacz et al., 2006). The
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major simplification of the model here compared to that of Usher
and McClelland (2001) is the removal of nonlinearities (Bogacz
et al., 2006). eB accumulation rates depend linearly on their present
values. To account for the fact that neural firing rates in the
brain are never negative, Usher and McClelland assumed that eB
is transformed via a threshold-linear activation function:

eB (t + 1) = max
(
0, eB (t)+ deB

)
(6)

or more simply:
eB → max (0, eB) (7)

Usher and McClelland (2001) propose that a multi-decision
process can be modeled by a direct extension of the Mutual
Inhibition Model in which each eB inhibits and receives
inhibition from all other eB. This implements a max-versus-
average procedure where evidence favoring the most supported
alternative is compared with the average of the evidence in
support of all other alternatives (Bogacz et al., 2006). Usher and
McClelland (2001) show the approach performs best among several
alternative models. Behavior selection is an ongoing decision
process, perpetual in time, and cross-inhibition robustly improves
its efficiency by reducing the frequency of costly transitions
(Marshall et al., 2015).

2.1.5. Multiplex signal disentanglement via
multi-timescale perceptions

Animals must be responsive to information that changes locally
as well as broader environmental shifts. Both local short-term
and broader longer-term information inform the next behavioral
choice through shifts in the decision context. Animals sample
their landscape from a single position per unit time. Discerning
whether a perceived change stems from updated positioning
or broader environmental shifts is straightforward when the
stimuli are relatively steady (unchanging with time) as the animal
samples the space. When the landscape itself changes with time
at nearly the same temporal scale that the animal samples
its surroundings, disentangling self-guided and external factor
contributions to perceived shifts in environmental context is less
straightforward.

Distinguishing local versus larger-scale change is relatively
straightforward from a Eulerian (outside human observer) point-
of-view compared to the Lagrangian perspective of an individual
limited in sensory range and to a single sample per unit
time. Multiple perceptions operating at different timescales can
disentangle environmental factors occurring at more than one
spatiotemporal scale using only a single sample per unit time. In
our approach, the animal serially samples its local surroundings
once per unit time but can generate one or more parallel images
of the environment at different spatiotemporal scales by tracking
serial samples with multiple concurrent habituations (memories).
Multiple memories, or habituations, encode information that the
animal can later use to discern perceived environmental shifts at
different spatiotemporal scales.

The notion of multiple timescales is not new (Table 1). Existing
theory already suggests that animals integrate fluctuating sensory
cues over multiple timescales relevant to the temporal features of
their environment. Multiple integrations or memory timescales,
such as in habituation, are frequently categorized as short- and

long-term (Table 1). Shorter forms may be as fast as hundreds of
milliseconds (Szyszka et al., 2012) and longer forms as slow as days
(Sharpless and Jasper, 1956).

In behavioral analyses, multiple memory streams are a
powerful means to account for the tracking of time-varying
information (Table 1). While questions remain regarding the
specific relationship between short- and long-term memory
processes (McGaugh, 2000), it is generally recognized that
slower-updating (longer-term) and faster-updating (shorter-term)
memories can coexist (Bernacchia et al., 2011; Murray et al., 2014;
Iigaya et al., 2019).

We expand Equation 3 to now include two timescales
of integration for cognitively tracking long-term (slower) and
short-term (faster) habituations to a stimulus i, denoted as Islow

ai
and

Ifast
ai , respectively:

Islow
ai (t) =

(
1−mslow

ai

)
· Ii (t) + mslow

ai
· Islow

ai (t − 1) (8)

Ifast
ai (t) =

(
1−mfast

ai

)
· Ii (t) + mfast

ai · I
fast
ai (t − 1) (9)

with the memory values mslow
ai
� mfast

ai bound within the range of
[0, 1], where superscript slow indicates the quantity updates at a
slower rate since a larger m value more heavily weighs the past. We
treat timescale integration (memory) parameters mslow

ai
and mfast

ai as
fixed but, in reality, they could themselves be context-dependent.

The dual timescale approach is a simple computational method
for encapsulating the notion of multiple timescales that, in reality,
are complex neural phenomena (Thompson, 2009; Bi and Zhou,
2020; Shen et al., 2020; Spitmaan et al., 2020). Two timescales
of integration allow an individual with serial sampling of the
landscape or waterscape to disentangle dual overlapping contexts
occurring simultaneously; for example, detecting a spatial gradient
amid rapid time-varying changes while immersed in a media that
itself is moving, such as water.

The material discussed thus far does not stem primarily from
fish or the aquatic realm and, therefore, is likely applicable to
movement ecology questions in terrestrial, avian, and subterranean
environments. Next, we describe the details of our tidal river
salmon study before revisiting the general cognition characteristics
tailored specifically to our analysis. Note that, at field scale,
it is not yet possible to disentangle the relative contributions
of all the potential abiotic and biotic factors that might
be responsible for observed salmon movement. Therefore,
our notion of cognition likely inadvertently encapsulates other
factors that influence a fish’s hydrodynamic response such as
physiological condition, internal or bioenergetic state, change in
risk disposition, etc.

3. Tidal river salmon movement
behavior

In this section, we introduce the diverse and time-varying
river conditions of our tidal system and the data available.
Then, we describe the details of our cognitive approach to
mechanistic behavior modeling tailored specifically to interpreting
and predicting salmon movement and passage/entrainment.
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3.1. California’s Bay-Delta

The Sacramento-San Joaquin Rivers Delta that, together with
San Francisco Bay, is often referred to as California’s Bay-Delta
supplies drinking water to 27 million people, fuels a $32 billion
agricultural industry, and is habitat for more than 750 animal and
plant species (California Department of Water Resources, 2022).
The tidally influenced Sacramento River bifurcation at Georgiana

Slough in Walnut Grove (Figures 1, 2) is part of the managed
water supply system. A management goal at the bifurcation is to
direct juvenile salmon so their movement continues downriver
using the Sacramento River, which leads more directly to the Pacific
Ocean where these fish mature to adults. Salmon migrating through
the alternate route, Georgiana Slough, take a longer path to the
ocean that may also be associated with reduced survival probability
(Perry et al., 2018).

FIGURE 1

The Sacramento River reach between the Delta Cross Channel and Georgiana Slough in Walnut Grove, California used for our analysis is located
between river miles 26 and 28. The reach is located between the cities of Sacramento and San Francisco within the Sacramento-San Joaquin Rivers
Delta (left panels). The floating fish guidance structure or surface guidance boom (FFGS) is deployed only during year 2014 (middle and right
panels). FFGS field photo credit: California Department of Water Resources. Bathymetry data: U.S. Geological Survey, California Water Science
Center. Map data: Google, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency.

FIGURE 2

The tidally influenced flow of the Sacramento River bifurcation at Georgiana Slough during the 2008–2009 and 2014 studies. Negative river flows
move upriver away from the ocean. The graph of tagged salmon counts from acoustic-tag telemetry (Romine et al., 2013, 2017; California
Department of Water Resources, 2016) depicts the number of unique individuals observed at the junction with at least four consecutive detections
within a day. Our analysis timeframes, or simulation windows (darker grayed blocks), correspond to the dates with the largest number of tagged
salmon observed near the junction. FFGS is the floating fish guidance structure or surface guidance boom (Figure 1). Flow gage locations (SDC, GES,
GSS) shown in Figure 1. cfs is cubic feet per second. Gage flow data from the U.S. Geological Survey (2020).
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We use salmon acoustic-tag telemetry and hydrodynamic data
from the Sacramento River between the Delta Cross Channel and
Georgiana Slough to better understand and predict the stimuli-
response behaviors of the fish that result in their ultimate fate
(passage, entrainment) and movement patterns. We use data within
five analysis or simulation windows (Figure 2 and Table 2) from
two field study seasons. We use year 2009 data (two windows: 1–7
and 16–22 January) to fully build and parameterize the fish behavior
model. Later, we then apply the model without any modification
to year 2014 flow conditions that include a novel surface guidance
boom (three windows: 22–24 March, 1–4 and 12–15 April) to assess
predictive performance on out-of-sample data.

3.1.1. Salmon field data details
The fish used in the 2008–2009 and 2014 studies are juvenile

late fall-run Chinook salmon obtained from the Coleman National
Fish Hatchery operated by the US Fish and Wildlife Service. The
mean fork length of the 3,551 tagged salmon in 2008–2009 is
149.9 mm (Romine et al., 2013), and in year 2014 the average
is 157 mm with a range of 109− 213 mm across the 5,461
individuals with acoustic transmitters (California Department of
Water Resources, 2016; Romine et al., 2017).

Of the 3,551 tagged salmon in 2008–2009, 1,772 (49.9%)
are released downriver of the Georgiana Slough junction with
the Sacramento River; specifically, 690 downriver in Ryde in
the Sacramento River (river mile 24) and 1,082 in Georgiana
Slough (Figure 1). All other tagged salmon are released upriver
approximately 53 km (33 miles) in the City of Sacramento at the
Tower Bridge (river mile 59). In year 2014, 826 of the 5,461 tagged
salmon (15.1%) are released in Georgiana Slough approximately
5 km (3 miles) downriver of the junction with the Sacramento
River, and all others are released upriver in the City of Sacramento.

We filter out the following tag detections:

• known predator tags as well as tagged salmon that at any point
during their observation are assigned a predator probability
greater than or equal to 0.85 in the range [0, 1] based on
previous work by Romine et al. (2014), where 1.0 suggests
a predator and 0.0 a salmon. Some tagged individuals are
released as known predators, and any fish released dead is
classified as a predator. All fish released into Georgiana Slough
during the 2008–2009 study and later observed near the
junction are assumed to be predators (Romine et al., 2014).
One predator during the 2008–2009 study ate five tagged
salmon, and these tags are classified as predator;
• spatial positioning errors greater than 10 m. Georgiana Slough

is only about 45 m wide near the junction;
• consecutive tag detections less than 2 s apart in order to sample

the telemetry data as analogous as possible to the time step of
modeled salmon described later;
• consecutive tag detections that would require a speed over

ground greater than 2.5 m s−1, a threshold cutoff slightly
stricter than would be calculated (2.65 m s−1) by combining
the maximum water speed during our simulation windows of
about 0.65 m s−1 (from the hydrodynamic modeling described
later) and a generic 200−mm fish with a short-duration burst
swim speed of 2 m s−1 or 10 body lengths per second (Beamish,
1978).

3.1.2. Salmon movement patterns
Tagged salmon in the Sacramento River exhibit several distinct

movement modes. We classify every tagged salmon path in
the Sacramento River reach between the Delta Cross Channel
and Georgiana Slough during our simulation windows using
visual inspection according to the following predominant patterns
(Figure 3):

(1) direct path — no milling or zig-zag movements greater than
1/3 of the river’s width;

(2) zig-zagging — at least one cross-stream excursion sustained
for more than 1/3 of the river’s width. Path
can include brief, intermittent milling and/or
shoreline movement but no appreciable
double-backing within the reach between the
Delta Cross Channel and Georgiana Slough;

(3) reach milling — milling predominant throughout the reach
between the Delta Cross Channel and
Georgiana Slough;

(4) pier milling — distinct milling near the Walnut Grove
Bridge piers;

(5) riverbank — movement and milling predominantly near
the riverbank;

(6) mode
combination

— combination of two or more of (1) direct
path, (2) zig-zagging, (3–4) milling, and (5)
riverbank;

(7) unclassified — mode not readily classifiable, typically
because the swim path has few detections,
spatial gaps in key areas, a massive number
of detections in a small area that persist for
a while, or does not span the majority of
the reach between the Delta Cross Channel
and Georgiana Slough. Tag detections in the
upriver portion of the reach during 2014
have, at times, more gaps and imperfections
than 2008–2009 data, resulting in more
contributions to this class.

Tagged fish released downriver of the junction may not swim
upriver into the Sacramento River as far as the Delta Cross Channel
during our simulation windows and, thus, often contribute to
the unclassified count. Our classifications are analogous to those
developed independently in prior work by the U.S. Geological
Survey in a turning point analysis of the tagged fish; see page 3–215
of California Department of Water Resources (2016).

Heatmaps of the movement modes (Figure 3) illustrate the
pattern of all mode-classified tagged salmon. A heatmap is the
number (frequency, Freq) of unique individuals visiting a 1−m
square grid cell filling the domain, normalized by the total tagged
salmon in the movement mode category (n in Figure 3). Only
detected tag positions are heatmapped, that is, paths are not implied
from the position sequence.

Zig-zagging is, by far, the predominant movement mode in
the Sacramento River reach between the Delta Cross Channel and
Georgiana Slough in Walnut Grove. Salmon zig-zagging is not
unique, however, to the Walnut Grove reach in the Bay-Delta. Zig-
zagging and other movement modes are also observed upriver in
Clarksburg (Dinehart and Burau, 2005) about halfway between the
City of Sacramento release site and Walnut Grove (Figures 1, 3).
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TABLE 2 Tagged salmon data in analysis.

Number of tagged salmon

Permanently pass/exit (entrained) downriver during simulation window

Date First detected during
simulation window

Total exits (%: total
exits/first detections)

Georgiana Slough (% of
exits)

Sacramento River (% of
exits)

Jan 2009

1 56 40 8 32

2 75 62 21 41

3 20 20 5 15

4 24 22 7 15

5 67 60 14 46

6 10 12 4 8

7 9 10 2 8

Total 261 226 61 165

(86.6 %) (27.0 %) (73.0 %)

16 32 21 9 12

17 64 46 10 36

18 62 45 13 32

19 76 64 19 45

20 28 35 14 21

21 10 15 5 10

22 4 9 2 7

Total 276 235 72 163

(85.1 %) (30.6 %) (69.4 %)

Mar 2014

22 53 21 8 13

23 49 22 6 16

24 40 18 2 16

Total 142 61 16 45

(43.0 %) (26.2 %) (73.8 %)

Apr

1 87 39 5 34

2 74 41 8 33

3 67 35 5 30

4 53 29 5 24

Total 281 144 23 121

(51.2 %) (16.0 %) (84.0 %)

12 42 27 10 17

13 41 31 6 25

14 47 27 5 22

15 46 44 6 38

Total 176 129 27 102

(73.3 %) (20.9 %) (79.1 %)

A single salmon exhibiting more than one movement mode in
a short period of time can be observed in two examples within
Figure 3. First, just upriver of Georgiana Slough (Figure 3, upper
right) a salmon alternates between zig-zagging, pier milling, and the

riverbank movement modes. Second, upriver, a salmon can be seen
zig-zagging, transitioning to a riverbank mode, and then back again
to zig-zagging (Figure 3 inset of Clarksburg, California—white
fish trajectory).
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FIGURE 3

Available acoustic-tag telemetry data (upper-left, upper-middle, table in lower-middle), movement mode heatmaps (lower-right), example tagged
salmon swim paths of each mode (upper-right), and the modes exhibited elsewhere in the Bay-Delta (lower-left). Tabulated are the (a) total tagged
salmon released during the 2008-2009 and 2014 studies, (b) the number detected in the Sacramento River reach between the Delta Cross Channel
and Georgiana Slough, (c) within our simulation windows, and (d–f) unlikely a predator at moments the data is used in our analysis. Heatmaps are
computed after removing suspected predators, tag detections with spatial error greater than 10 m, and consecutive positions either less than 2 s
apart or require a speed over ground in excess of 2.5 m s−1 (f). n equals the total tagged salmon in the movement mode category. Example
constituent paths of each movement mode are plotted above the respective heatmap. Movement modes (1)–(6) are observed elsewhere in the
Bay-Delta (gray inset) in a supplemental 2014 hydrophone array (California Department of Water Resources, 2016). We assume all tagged fish
detected for the first time ever during our 2014 simulation windows are salmon (*) whereas year 2009 predator probabilities are formatted
differently and allow us to identify and remove suspected predators at a tag’s initial detection (d). We use transects immediately downriver of the
junction to determine tagged salmon final exits downriver (e) (Table 2) also referred to as passage or entrainment. The Delta Cross Channel is closed
during our simulation windows (Figure 2).

Habitat refuge, vision (Leander et al., 2021;
Müller et al., 2021), and explicit response to spatial structure
(Braithwaite and Burt de Perera, 2006; Miles et al., 2023) may play
modulating roles in salmon movement. Also, behavioral variation
among individuals of the same species is common (Bolnick et al.,
2002; Bierbach et al., 2017; Cresci et al., 2018; Campos-Candela
et al., 2019; Harrison et al., 2019; Honegger et al., 2020; Bailey et al.,
2021; Daniels and Kemp, 2022) as it has distinct survival value
(Humphries and Driver, 1970). We do not attempt to disaggregate
or prioritize the relative contribution of all internal and external
factors. Here, we focus on understanding the predominant zig-
zagging swim path pattern and how it with smaller proportions of
other movement modes might be hydrodynamically mediated.

3.1.3. Protean movement decisions and optimality
Movement is a behavior that operates within a hierarchy of

needs, where predation is a constant threat for prey species.
Predation complicates the analyses of behavioral choice in real-
world environments because rote responses easily discerned by

an outside observer may also be predictable from a predator’s
perspective. Protean movement in which a prey’s path changes
frequently, helps evade predators (Humphries and Driver, 1970;
Godin, 1997; Richardson et al., 2018). Selective evolutionary
pressure suggests that predators exploit repeated fixed patterns
of prey (Humphries and Driver, 1970; Domenici et al., 2008),
although perhaps not universally (Szopa-Comley and Ioannou,
2022). Peculiarities in observed movement that appear sub-
optimal from an outside observer’s perspective may be anti-
predatory characteristics whereby optimality is realized at the
much larger scale of species persistence. It is increasingly
recognized that perceptual decision-making at the individual
level in natural settings with multiple alternatives is suboptimal
(Yeon and Rahnev, 2020).

3.1.4. Zig-zagging
Salmon persist in the “predator-prey arms race”

(Humphries and Driver, 1970; Kelley and Magurran, 2006)
of California’s Bay-Delta, which suggests that they may have
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an anti-predatory characteristic to their downriver navigation
strategy. When visual cues are limited underwater, zig-zagging
keeps a prey’s average position within the river channel
unpredictable from the perspective of an immersed predator
(Humphries and Driver, 1970). Prey zig-zagging is a protean
movement pattern often thought to occur in small arenas where
it lowers a predator’s targeting accuracy (Furuichi, 2002; Jones
et al., 2011; Richardson et al., 2018; Gazzola et al., 2021), however,
juvenile salmon zig-zag also in the large spatial domains of
dammed reservoirs; see telemetry data references in the supporting
information appendix of Goodwin et al. (2014).

3.2. Fish movement behavior and
hydrodynamics

3.2.1. Determining fish movement behavior
starting with particles and particle tracking

To understand the relationship between salmon movement
and hydrodynamics, we must first understand how the river
environment itself is described and the assumptions that are
involved. Water flow is described by the Navier–Stokes equations
but conceptualizing a river’s advective contribution to a fish’s
displacement in space (x, y, z Cartesian coordinate positions)
is not trivial, especially when hydrodynamics changes with
time and location.

The movement of an ‘active’ particle that is moving under
its own motivation contributes volitionally to its spatial position
(Patlak, 1953; Siniff and Jessen, 1969; Kareiva and Shigesada, 1983),
e.g., a fish locating within a river via swimming. In water, the
change in spatial position of a swimming fish can be described
mathematically between time step t and t + 1 as follows:

x (t + 1) = x (t) + (u + uvolitional) · 4t

y (t + 1) = y (t) + (v + vvolitional) · 4t

z (t + 1) = z (t) + (w + wvolitional) · 4t (10)

where x, y, and z are the individual’s spatial position (m), u, v, and
w are the water velocity vectors (m s−1), uvolitional, vvolitional, and
wvolitional are the volitional contribution from swimming (m s−1),
and4t is the time step increment (s).

A fish that does nothing (no volitional movement) is
transported by the surrounding water flow while, in contrast, an
individual with an unbiased, uncorrelated random walk within a
non-advective environment such as a static lake typically exhibits
some form of diffusion in its location over time. In an advective
environment, such as a river or estuary, the diffusive property of a
random walk can be appreciably altered by the advection.

In general terms, the movement path of a volitional random
walk is stretched in the direction of the water flowline and
the degree to which this happens depends on the strength and
complexity of flow (river hydrodynamics). A “passive” particle
that is neutrally buoyant and massless will follow the water
flowline and provides a means to conceptualize and mathematically
determine the contribution of physical water flow to an entity’s

movement (displacement) in a river. The movement of a simulated
passive particle, however, depends inherently on the accuracy
and spatiotemporal resolution of the available water flow data
(Déjeans et al., 2022). Therefore, determining an entity’s volitional
movement behavior (which equals the measured total movement
minus what a passive particle would do) depends also on the
accuracy and spatiotemporal resolution of the available water
flow data. As there are numerous methods for describing
hydrodynamics within a river, with different tradeoffs, we provide
a brief synopsis before describing the stimuli that we use
in our analysis.

3.2.2. Describing river hydrodynamics via
numerical modeling and measurement

Fish in rivers experience turbulence that may be thought
of as water flow composed of a wide continuum of eddy sizes
where larger eddies spawn smaller ones, passing on kinetic energy,
down to the scale where viscous forces dampen or dissipate the
phenomenon (Tritico and Cotel, 2010; Rodi, 2017; Crowley et al.,
2022). In rivers, where width is often much larger than depth, the
eddy size continuum has two ranges. Smaller-scale motions are
fairly random whereas larger fluctuations interact with the mean
flow and often have some order and correlated pattern (coherent
structures). In each range, the largest eddies that contain the most
energy are limited by the size of the river dimension (Rodi, 2017).

The straightforward approach to simulating the Navier–Stokes
equations in order to describe river water flow dynamics is direct
numerical simulation or DNS (Orszag and Patterson, 1972; Moin
and Mahesh, 1998). DNS does not require any model assumptions
and accounts for fluid phenomena across the many spatiotemporal
scales relevant to fish, down to the smallest dissipation scale. DNS
simulation of river flow, however, is impractical with present-day
computing. For instance, a relatively low energy water domain just
0.1 m deep moving slowly at 0.1 m s−1 requires approximately one
billion computational mesh points (Keylock et al., 2005), and the
required grid size grows quickly with increasing flow complexity
and energy. All other approaches to the Navier–Stokes equations
involve approximating their full complexity (Keylock et al., 2012).

There are numerous approaches to modeling river
hydrodynamics, and every method involves tradeoffs (Lane
et al., 1999; Keylock et al., 2012; Rodi, 2017; Robinson et al., 2019;
Brunner et al., 2020). A simple way to gain information about the
time-varying nature of hydrodynamics is an unsteady Reynolds
averaged Navier–Stokes (RANS) approach where motions and
variations in the mean flow field account for eddy-shedding
at scales greater than the integral timescale (Keylock et al.,
2005). RANS renders a smoothed, or averaged, version of the
water flow field and, presently, is a common workhorse of river
hydrodynamic modeling.

An intermediate approach between DNS and RANS (Rodi,
2017) is large eddy simulation or LES (Smagorinsky, 1963; Bedford
and Babajimopoulos, 1980; Mahesh et al., 2004; Khosronejad et al.,
2016, 2020; Le et al., 2019; Flora, 2021; Flora and Khosronejad,
2021, 2022). LES resolves eddy phenomena larger than a given
filter scale, not just above the integral timescale as in unsteady
RANS (Keylock et al., 2005). LES resolves eddies down to the
mesh element size, and smaller scale phenomena are approximated
with a subgrid-scale model (Keylock et al., 2012; Rodi, 2017).
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LES is more sensitive to the treatment of the river’s boundary
conditions than RANS (Rodi, 2017), which is one reason why
hybrid LES-RANS approaches have emerged such as detached eddy
simulation or DES (Spalart and Allmaras, 1992; Spalart et al., 1997;
Constantinescu et al., 2011a; Keylock et al., 2012). LES and DES
require more nodes and are more computationally expensive than
RANS. The river flow field described by LES or DES is closer to what
a fish experiences (Figure 4), but the temporal sequence of LES
or DES outputs can be challenging to synchronize with a specific
calendar date-time. In other words, it is not straightforward to
determine whether an ephemeral eddy feature of interest from LES
or DES occurred before, during, or after a measured fish passed
through that part of the river.

For most rivers, water depth is shallow relative to width so
the vertical acceleration is negligible compared to gravitational
acceleration (Lai, 2010). In shallow water situations, the Navier–
Stokes equations can be vertically averaged (Rodi, 2017). Two-
dimensional, depth-averaged modeling of the Navier–Stokes
equations provides the next level of accuracy when 3-D is not
required, and the approach is practical for many river applications
with a more typical desktop computer. 2-D depth-averaged
approaches require considerably less computational resources.
Numerous modeling approaches occupy the spectrum between
RANS and simpler 2-D and 1-D methods, often covering much
larger spatial domains (Zhang et al., 2016; Savant et al., 2018;
Robinson et al., 2019; Brunner et al., 2020).

The selection of hydrodynamic model involves accounting
for whether the additional required resources are balanced by
the needed improvements in predictive ability and utility (Lane
et al., 1999; Lai, 2010; Robinson et al., 2019; Brunner et al., 2020).
The field of hydrodynamic modeling continues to rapidly evolve,
and emerging methods such as physics-informed neural networks
(Karniadakis et al., 2021; Kochkov et al., 2021) and other forms of
machine learning (Margenberg et al., 2022; Vinuesa and Brunton,
2022; Zhang et al., 2022) are expanding the viable approaches.

Generally, one can measure river hydrodynamics at finer
spatiotemporal scales than modeling can render them, but at
the expense of spatial coverage (Figure 4). Acoustic Doppler
velocimeters (ADVs) measure water velocity many times a second
at a single point. Acoustic current profilers now commonly referred
to as acoustic Doppler current profilers or ADCPs (Muste et al.,
2004; Dinehart and Burau, 2005) measure the flow field many
times a second at multiple distance intervals from the aimed
instrument and are often able to span much of a river’s width
or depth. Particle image velocimetry or PIV (Soo et al., 1959;
Adrian, 2005; Tritico et al., 2007) and large-scale particle image
velocimetry or LSPIV (Fujita, 1997; Fujita et al., 1998; Muste et al.,
2008) measure instantaneous velocities in a 2-D plane using tracers
present in the flow. Infrared quantitative image velocimetry or
IR-QIV (Schweitzer and Cowen, 2021) measures instantaneous
velocities at the 2-D water surface without tracers or illumination
and can be used both day and night. A continuing active area
of research is developing methods to estimate 3-D subsurface
hydrodynamics from river-wide measurements at the water surface
(Johnson and Cowen, 2016, 2017a,b, 2020). Increasing the spatial
coverage of river measurements can be accomplished by deploying
multiple instruments or, in some cases, moving the instruments to
capture different flow field regions.

To date, no measurement or modeling technique can accurately
describe hydrodynamics down to the finest scale that fish detect
throughout a 3-D river reach. We use field measurements of
the river’s flow and bathymetry to build and validate a RANS
model of the time-varying 3-D hydrodynamics for year 2009
(Lai, 2000; Lai et al., 2003, 2017). Later, for year 2014, we use
a 2-D depth-averaged model (Lai, 2010). For both models, we
output river hydrodynamics at 3−min intervals because the
water flow field at the junction of the Sacramento River and
Georgiana Slough can change noticeably within a few minutes and
frequently reverses direction (Figure 2). Our 3-D RANS and 2-D
depth-averaged model mesh domains (Figure 1, middle plot) are
approximately 550,000 and 50,000 vertices, respectively, for each
3−min time increment.

3.2.3. Eulerian-Lagrangian-agent method (ELAM)
River hydrodynamics output from our 3-D RANS and 2-

D depth-averaged modeling determines the river’s advective
contribution (u, v, and w water velocity vectors) to the fish’s
spatial displacement during an increment of time (Equation 10).
To compute the fish’s volitional swimming contribution to its
own displacement, we must first gain an understanding of the
stimuli available to our modeling that can influence its behavior.
Then, we must determine how the multiple available competing
and simultaneous stimuli may be perceived at a moment in
time by the animal and inform a repertoire of evolved behaviors
that mathematically result in a movement response behavior,
specifically, a 3-D orientation and speed (uvolitional, vvolitional, and
wvolitional).

Fish are simulated as an “active” particle within our
hydrodynamic model grid. A 3-D fish orientation and speed
(uvolitional, vvolitional, and wvolitional) together with the u, v, and w
water velocity vectors from the hydrodynamic model complete
Equation 10 and allow us to update the fish’s spatial displacement
each time increment.

We employ an Eulerian-Lagrangian-agent method (ELAM) to
conceptually understand the movement behavior of salmon by
mathematically resolving the differences between passive particle
and tagged fish movement path and passage/entrainment patterns
(Goodwin, 2004; Goodwin et al., 2006, 2014). The ELAM acronym
stems from the constituent numerical frameworks involved
(Figure 5):

• Eulerian — computational mesh (static or time-varying
2-D or 3-D) composed of nodes used to describe the
environmental domain;
• Lagrangian — continuous directional trajectory composed of

computationally discrete locations used to describe individual
movement trajectories and directional sensory perception;
• agent — algorithm ensemble used to describe the

behavioral cognitive decision-making of animals.

We simulate each salmon individually in order to gain
their Lagrangian perspective. Each individual has agent-based
perceptual responses to the Eulerian-meshed river hydrodynamics.
A sensory ovoid around each simulated salmon (Figure 5),
described in detail later, limits the spatial extent of stimulus
information available for making movement decisions. Simulated
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FIGURE 4

Rivers have more hydrodynamic heterogeneity than can be readily captured by any single measurement device or computational model. Here, we
use a conceptual montage to illustrate some of the general tradeoffs in spatiotemporal detail vs coverage associated with different approaches to
measuring/modeling river hydrodynamics. The fidelity of hydrodynamic information available influences the factors attributed to 3-D/2-D fish
movement trajectories and behavior. Water flow heterogeneity within a river at the surface can be measured in detail via an infrared camera that
reflects underlying hydrodynamic phenomena, illustrated here near Sacramento River mile 34 in Sutter Slough (courtesy of Seth Schweitzer;
Schweitzer and Cowen (2021)). Water flow heterogeneity can also be modeled in great 3-D detail throughout the river column using LES, illustrated
here near Sacramento River mile 89.5 (courtesy of Kevin Flora; Flora and Khosronejad (2022)). Describing river hydrodynamics with infrared
quantitative image velocimetry (IR-QIV, Schweitzer and Cowen (2021)) or LES (Khosronejad et al., 2016; Flora and Khosronejad, 2022) provides more
spatiotemporal detail than is possible using the 3-D RANS or 2-D depth-averaged methods in our study. In 3-D LES and RANS modeling, the
hydrodynamic variable values are provided explicitly at multiple depths whereas 2-D depth-averaged models provide only a single value for each
horizontal (xy-plane) location. However, RANS and even 2-D models render more spatial heterogeneity than other, courser forms of hydrodynamic
modeling. The 3-D RANS and 2-D depth-averaged illustrations of the river flow field here are of similar conditions in the Sacramento River near mile
27 between the Delta Cross Channel and Georgiana Slough upriver of the bridge piers. ADV is an acoustic Doppler velocimeter; ADCP is an acoustic
current profiler now commonly referred to as an acoustic Doppler current profiler; PIV is particle image velocimetry; LSPIV is large-scale particle
image velocimetry.
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FIGURE 5

To implement our cognitive approach to mechanistic salmon movement behavior modeling we use a numerical scheme called the
Eulerian-Lagrangian-agent method, or ELAM. We use three different forms of river hydrodynamic model mesh output: explicit 3-D hydrodynamics
(left panels), 2-D xy-plane horizontal slice extractions from just under the water surface for each output in the original 3-D flow field time series
(middle panels), and 2-D depth-averaged water flow fields (right panels). In the 2-D analyses (middle and right panels), both the vertical
z-coordinate (depth-oriented) hydrodynamics and fish swim orientation/speed are eliminated. No 3-D model is used for year 2014. Only a 2-D
depth-averaged river hydrodynamic model is available for year 2014 ELAM simulations. A sensory ovoid (lower panels) around each simulated
salmon limits the spatial extent of stimulus information available for making movement decisions.

fish neither have global information nor know downriver
from upriver.

In our study, the agent framework encodes our cognitive
representation of a salmon’s perceived local hydrodynamic
environment and resulting behavioral choices. Fish movement
decisions (agent framework) are composed of a swim orientation
and speed (Lagrangian framework) implemented in the
spatial mesh data output from the hydrodynamic model
(Eulerian framework).

3.2.4. ELAM model development and
parameterization

To build a hypothesis for the salmon’s behavior repertoire,
we identify possible strategic and tactical solutions (Anderson,
2002) that individuals of the population may have evolved over
time to confront common and critical challenges in order to
survive and persist. Behavioral choice observed in one setting may
not be relevant to a repeat encounter. Identifying the motivation
of animals is an unavoidably subjective exercise with present
technology yet important for understanding which modalities may
inform a specific movement decision, how their behavior will vary
with context, and for extrapolating existing observations to make
predictions in other environmental conditions (Mann, 2018, 2020).

We use a systematic, manual exploratory process to develop
and parameterize the behavior repertoire. We start by overlaying
the time-dynamic environment with fish movement trajectories.
Separate, but related, we also plot each trajectory in its entirety

atop the most representative water flow condition. The two overlays
are then viewed many times repeatedly, leveraging human visual
acuity and intuition. The goal of the initial exploratory process is
to find and discern repeated movement patterns — and changes
in movement patterns — that cannot be readily explained with
how passive particles move. The manual process takes time. Ever-
maturing tools are getting better at automating the identification
of trajectory patterns and change phenomena (Romine et al., 2014;
Gurarie et al., 2017; Vilk et al., 2022). However, we find that to
date automated methods cannot yet fully match the performance of
human visual acuity and intuition. One reason is that key patterns
we find useful for discerning a behavior repertoire are obvious only
in the context of — that is, contrasted with — movement dynamics
that happen elsewhere either spatially in the domain or in time
within the available data.

Unfortunately, we find that key movement patterns and
attributes (e.g., changes in swim path orientations) are rarely
evident at first and emerge to the human eye/intuition after gaining
a gist of the movement patterns and changes. Complicating the
process of identifying key patterns and changes is that one must
keep in mind the underlying hydrodynamics and what passive
particles would do. In rivers, hydrodynamics can vary quickly in
both space and time.

An observed real-world fish movement pattern (or change)
may have a place in the behavior repertoire if it occurs analogously
among multiple individuals. We often observe patterned
phenomena of interest to our analysis where hydrodynamic
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features are more complex. A pattern or change may not have
a place in the repertoire if the trajectory could be attributed
to inherent animal movement stochasticity, observed in very
few individuals, or not coincident with any nearby rendered
environmental feature. More complicated is when water flow
pattern changes in time, switching from identifiable hydrodynamic
features at one moment to perhaps none at all, for instance, during
slack tide; in such circumstances, movement pattern changes
might be related to the temporal and not spatial domain. Further
complicating the process, but where manual acuity and intuition
are helpful, is when patterns are obscured by imperfect real-world
sampling of the trajectory, common in the aquatic realm. Despite
the above challenges, we anticipate that tools in the near-future will
automate the present manual process in a way that is more on par
with human visual acuity and intuition.

After key distinct patterns are discerned within the trajectory
data, typically about a half-dozen, trial-and-error exploration
commences whereby one pattern or change is selected and
work begins to reproduce that phenomenon using the available
environmental data. Once successful, a scaffolding process begins
whereby the next distinct pattern or change is reproduced
whilst not losing the model’s ability to also reproduce the
first behavior phenomenon. Each addition to the model’s
behavior repertoire typically involves nuancing the algorithms
and parameterization of already-described phenomenon. The
exploratory model development process ends with a behavior
repertoire, algorithms, and parameterization when all of the
identified trajectory pattern and change phenomena can be
reproduced with a single structure.

We use prior ELAM model findings as a starting point and
guide (Goodwin, 2004; Goodwin et al., 2006, 2014) for how
hydrodynamic stimuli might relate to fish movement patterns and
changes. We also leverage findings — both old and new — from
fish-flow research (Tables 1, 3). In this study, we identify the
following four movement patterns and changes in the 2009 data
that, once reproduced via simulation, result in the fully developed
and parameterized version of the ELAM model described herein:

• a salmon changing its zig-zag within the Sacramento River in
front of the Delta Cross Channel junction during relatively
steady (unchanging with time) ebb tide flow, suggesting the
riverbank per se may not explicitly be solely responsible for
the swim path re-orientation pattern;
• nine salmon near-concurrently zig-zagging within the

Sacramento River with little-to-no milling in the reach from
the Delta Cross Channel to downriver of the Georgiana Slough
junction during relatively steady ebb tide flow, in which both
flow and fish continue primarily via the Sacramento River;
• two salmon milling, in part, with zig-zag movements during

relatively slow flood tide flow, one in the thalweg near the
bridge piers and, at the same time, the other along the
Sacramento River bank opposite the Delta Cross Channel;
• two salmon milling, in part, with zig-zag movements during

relatively slow ebb tide flow into Georgiana Slough, one of the
fish in the thalweg just downriver of the Delta Cross Channel
junction and the other near the bridge piers that does not
enter (e.g., seems to avoid) Georgiana Slough dissimilar from
a passive particle. At the same time, two salmon swim upriver

TABLE 3 Candidate hydrodynamic stimuli: abbreviated synopsis of historical and more recent works.

Candidate hydrodynamic
stimulus

Fish behavior response

Water velocity gradient Dijkgraaf, 1963; Royce et al., 1968; Fausch and White, 1981; Kalmijn, 1988, 1989; Fausch, 1993; Fletcher, 1994; Hayes and Jowett,
1994; McLaughlin and Noakes, 1998; Braun and Coombs, 2000; Crowder and Diplas, 2000; Montgomery et al., 2000; Kemp et al.,
2003; Goodwin, 2004; Goodwin et al., 2006; Sweeney et al., 2007; Nestler et al., 2008; Russon and Kemp, 2011; Abdelaziz et al., 2013;
Vowles et al., 2014; Oteiza et al., 2017; Albayrak et al., 2020; Beck, 2020; Swanson et al., 2020; Zhu L. et al., 2021; Li et al., 2022; Tan
et al., 2022; Li et al., 2023

Turbulence MacKinnon and Hoar, 1953; Pavlov et al., 1982; Pavlov and Tyuryukov, 1993; Pavlov et al., 1995; Skorobogatov et al., 1996; Coutant,
1998; Coutant and Whitney, 2000; Crowder and Diplas, 2000; Pavlov et al., 2000; Cada and Odeh, 2001; Coutant, 2001; Crowder
and Diplas, 2002; Enders et al., 2003; Smith, 2003; Lupandin, 2005; Smith et al., 2005; Cotel et al., 2006; Liao, 2006, 2007; Enders
et al., 2009b; Tiffan et al., 2009; Tritico and Cotel, 2010; Silva et al., 2011; Lacey et al., 2012; Silva et al., 2012; Abdelaziz et al., 2013;
Liao and Cotel, 2013; Smith et al., 2014; Cotel and Webb, 2015; Elder and Coombs, 2015; Gao et al., 2016; Kerr et al., 2016; Kirk
et al., 2017; Quaranta et al., 2017; Tan et al., 2018; Kerr and Kemp, 2019; Silva et al., 2020; Zhu et al., 2020; Ben Jebria et al., 2021;
Kulić et al., 2021; Lewandoski et al., 2021; Li P. et al., 2021; Prada et al., 2021; Syms et al., 2021; Szabo-Meszaros et al., 2021; Zhu L.
et al., 2021; Zielinski et al., 2021; Gisen et al., 2022; Li et al., 2022; Tan et al., 2022; Li et al., 2023; Wiegleb et al., 2023

Relative water velocity/speed MacKinnon and Hoar, 1953; Brett and Alderdice, 1958; Schwartz, 1974; Montgomery et al., 1997; Standen et al., 2002; Standen et al.,
2004; Sweeney et al., 2007; Chagnaud et al., 2008; McElroy et al., 2012; Mussen et al., 2013; Langford et al., 2016; Romine et al., 2021;
Gisen et al., 2022; Li et al., 2022; Liao et al., 2022; Maddahi et al., 2022; Tan et al., 2022; Zeng, 2022; Kerr et al., 2023; Li et al., 2023;
Renardy et al., 2023

Water acceleration, deceleration, and
inertial factors

Jones, 1956; Brett and Alderdice, 1958; von Baumgarten et al., 1971b; Ducharme, 1972; Arnold, 1974; Denton and Gray, 1988, 1989;
Kalmijn, 1989; Kroese and Schellart, 1992; Bleckmann, 1994; Pavlov and Tjurjukov, 1995; Haro et al., 1998; Coombs and
Montgomery, 1999; Coutant and Whitney, 2000; Johnson et al., 2000; Montgomery et al., 2000; Kanter and Coombs, 2003; Kemp
et al., 2005; Liao, 2007; Sweeney et al., 2007; Bleckmann, 2008; Enders et al., 2009a; Johnson et al., 2009; Enders et al., 2012;
Chagnaud and Coombs, 2013; McHenry and Liao, 2013; Montgomery et al., 2013; Goodwin et al., 2014; Vowles et al., 2014; Arenas
et al., 2015; Gisen et al., 2022; Zeng, 2022; Wiegleb et al., 2023

Water pressure (registered by fish swim
bladder)

Moreau, 1876; Jones, 1949, 1951, 1952; McCutcheon, 1966; Alexander, 1982; Coutant and Whitney, 2000; Goodwin, 2004; Strand
et al., 2005; Goodwin et al., 2006; Govoni and Forward, 2008; Nestler et al., 2008; Weitkamp, 2008; Brown et al., 2012; Goodwin
et al., 2014
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in Sacramento River flood flow from downriver of the slough
junction and these fish readily enter Georgiana Slough akin to
passive particles.

We identify one additional pattern, i.e., two salmon zig-
zagging into Georgiana Slough, but are able to reproduce this
last example as an emergent outcome of reproducing the previous
four examples. The example patterns and changes above are
found multiple times in the field telemetry data. Reproducing the
above movement patterns via simulation by adding them to the
model mix, one by one, is how we develop and parameterize the
ELAM in this study.

In due diligence, we rigorously evaluate the model structure
and all our parameters that we describe in the coming sections via
genetic algorithm and simulated annealing optimization schemes.
We evaluate model structure by eliminating (zeroing-out) different
components and stochasticity required to initially meet our goal.
We also evaluate adding in (activating) stochasticity permissible
from the algorithms in our model but not leveraged in the original
manual development. Lastly, we explore the model’s parameter
space to find optima that may have eluded the manual means of
development. Optimization schemes result in no further model
or performance improvements but remain an area of study.
We anticipate that automated methods will be superior in the
future, so the exploratory process leading to the model structure
described in the following sections can be accomplished faster and
cheaper in later works.

3.3. Hydrodynamic stimuli

Identifying variables of the river flow field relevant to fish
movement behavior has been an ongoing process for almost a
century (Tables 1, 3). Fish have multiple sensory modalities to
inform movement (Liao, 2007), and the context-dependencies in
multisensory information are important even for the relatively
simple case of rheotaxis (Bak-Coleman et al., 2013; Coombs et al.,
2020).

Selecting stimuli for analysis is still unavoidably subjective
as the metrics available change with measurement scale. Also,
hydrodynamic variables are often correlated. Not surprisingly,
different hydrodynamic variables have been attributed to fish
movement behavior. We select five candidate hydrodynamic
stimuli from the literature for evaluation in our study (Table 3).

3.3.1. Variable physical quantities
A nerve response in fish can be stimulated with relative flow

field currents as small as 0.025 mm s−1 (Schwartz, 1974) and water
particle movement of less than 0.5 µm (Suckling and Suckling,
1964; Anderson and Enger, 1968; Popper and Carlson, 1998). Fish
detect and interact with hydrodynamics at scales far smaller than
are rendered in a river reach size RANS model (Borazjani and
Sotiropoulos, 2008, 2009, 2010; Windsor et al., 2010a,b; Oteiza et al.,
2017; Khan et al., 2022). However, animals also constantly integrate
momentary, noisy stimuli sensory evidence over time and space
to infer the state of their environment (Bahl and Engert, 2020;
Dragomir et al., 2020; DiBenedetto et al., 2022).

We assume fish can generate a hydrodynamic image of
its nearby river environment not dissimilar from RANS-level

spatiotemporal resolution by integrating sensory experience over
time. We do not explicitly account for how a fish upscales
minuscule hydrodynamic experiences to form a RANS-level
perception of its localized river flow field. However, later,
we describe parameterization of Equation 3 that can upscale
point measurements of the RANS solution to perceive much
larger, bulk flow changes within the river due to the tides.
The minuscule-to-RANS and RANS-to-tidal perception upscaling
processes could be analogous. Leveraging our assumptions, we
formulate candidate stimuli (Table 3) using output from our RANS
hydrodynamic model.

The spatial gradient of water speed or velocity (magnitude, GM ,
s−1) represents the amount of mechanical distortion in the water
flow field (Nestler et al., 2008). Mathematically, GM is computed
as the Frobenius or Euclidean norm of the pure normal strain
(linear deformation), angular velocity (rotation), and shearing
strain (angular deformation) tensors. We compute GM on the
Eulerian mesh of the hydrodynamic model with u, v, and w
representing the mean or average water velocity vectors at time t:
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Turbulence is hard to describe mathematically with a single
metric (Tennekes and Lumley, 1972; Tritico and Cotel, 2010; Liao
and Cotel, 2013; Crowley et al., 2022). For instance, in the x-
coordinate direction, turbulent flow can be conceptually viewed as
the instantaneous random fluctuation u′ about the mean u where
the total water velocity at a moment in time, umomentary, is:

umomentary
= u + u′ (12)

where u′, v′, and w′ represent the instantaneous water velocities
relative to the mean velocities. Of the many options for describing
turbulence, we select the metric of turbulent kinetic energy (TKE,
m2 s−2) to include in our analysis. TKE is computed as follows:

TKE (t) =
1
2

(
(u′)2
+ (v′)2

+ (w′)2
)

(13)

TKE is computed within our 3-D RANS model using the k− ε

turbulence closure method (Harlow and Nakayama, 1968; Launder
and Spalding, 1974).

Water speed (VM , m s−1) is simply the magnitude of the mean
velocities:

VM (t) =
√

u2 + v2 + w2 (14)

Fish are sensitive to gravity and, thus, also to other acceleratory
and inertial stimuli (von Baumgarten et al., 1971a), which we define
with the spatial, convective acceleration of water (magnitude, AM ,
m s−2) as:

Ax = u
∂u
∂x
+ v

∂u
∂y
+ w

∂u
∂z

Ay = u
∂v
∂x
+ v

∂v
∂y
+ w

∂v
∂z

Az = u
∂w
∂x
+ v

∂w
∂y
+ w

∂w
∂z

AM (t) =
√

(Ax)
2
+
(
Ay
)2
+ (Az)

2 (15)
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Lastly, we assume water pressure registered by the salmon’s
swim bladder varies proportionally with depth below the surface
(D, m).

3.3.2. Spatial velocity gradient (GM) vs. turbulent
kinetic energy (TKE)

The magnitude of the spatial velocity gradient tensor, GM , is
the sum of linear deformation (pure normal strain rates), rotation
(angular velocities), and angular deformation (shearing strain
rates) mechanisms. While the mathematics are more involved, in
simple conceptual terms, GM can be viewed as a precursor to
turbulence. A velocity gradient, GM , may or may not result in
turbulence. TKE reflects turbulence that has actually materialized.
The velocity gradient may exist in areas with little-to-no TKE but
turbulence is less likely without GM . Variables GM and TKE can be
highly correlated. Fish may be attuned not only to turbulence but
also the distortion that precedes it (Goodwin, 2004; Nestler et al.,
2008).

In our hydrodynamic modeling, turbulence represented as TKE
exhibits spatial patterns similar to our velocity gradient metric,
GM . The spatial pattern similarities between TKE and GM occur
throughout our river domain and tidal phases. From a stimulus
modeling point-of-view, the similarities suggest only one of the

variables is needed. We select the velocity gradient because, in our
modeling and post-processing, the spatial GM patterns are more
pronounced than TKE across tidal phases. More specifically, the
velocity gradient GM illuminates a marked stimulus in areas where
tagged salmon re-orient whilst little-to-no TKE signature exists
(i.e., down to the lowest practical numerical precision) (Figure 6).

Given that fish movement is commonly analyzed in the context
of turbulence (Table 3), we illustrate TKE for visual comparative
purposes. A full accounting of the tradeoffs between TKE and GM
as a behavioral stimulus is beyond the scope of the work herein.
We recognize that our TKE finding may be attributable to nuances
and idiosyncrasies of our hydrodynamic modeling that, if done
differently, might result in a different conclusion regarding the
value of turbulent kinetic energy for modeling salmon swimming
behavior. The tradeoffs between TKE and GM are worthy of future,
more in-depth analysis.

3.3.3. Acute vs. nonacute
We select four hydrodynamic variables to continue our

analysis, and introduce the notion of acute and nonacute to
conceptually differentiate how the stimuli contribute to and rank
in precedence order within a repertoire of multiple competing
behaviors:

FIGURE 6

Tagged salmon and candidate hydrodynamic stimuli. Depicted are two tagged salmon (A), water flowlines (B), and the physical quantities of our
candidate hydrodynamic stimuli (C–F) in a river scenario with both ebb and flood flows. Spatial patterns in our velocity gradient metric GM are
similar yet more pronounced than turbulent kinetic energy, TKE, [compare panels (D) and (E)]. Across tidal phases, GM illuminates a hydrodynamic
stimulus in areas where tagged salmon re-orient even where little-to-no TKE signature exists down to the lowest practical numerical model
precision available. Map data: Google, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency.
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• spatial gradient of water speed, GM , stimulus i = 1
(nonacute)
• water speed, VM , stimulus i = 2 (nonacute)
• water acceleration, AM , stimulus i = 3 (acute)
• fish swim bladder pressure, D, stimulus i = 4 (acute)

We consider a variable to be acute if the stimulus has a
surmised inherent value to the animal across different contexts.
Examples include an approaching predator or a physiologically
damaging hydraulic condition. In our approach, acute stimuli
require a timely response and quickly dominate other, nonacute
factors. We consider a stimulus to be nonacute if the behavior’s
value to the animal depends mostly on the present context
of competing stimuli. The behavior response to an acute
stimulus will be more consistent across different environmental
contexts as it is less sensitive to competing stimuli. We
describe in detail later how competing acute stimulus responses
are resolved.

3.4. Stimuli: physical vs. perceived
intensity

In rivers, GM and AM quantities span orders of magnitude, so
we convert the intensities to log form analogous to the decibel scale
using Equation (1):

Ii = 1 (t) = log10

(
GM (t)

Go

)
(16)

Ii = 3 (t) = log10

(
AM (t)

Ao

)
(17)

where Go = 1e−6 and Ao = 1e−6 are arbitrary reference values.
Values of VM and D do not span orders of magnitude, so they
remain unmodified from their physical quantities:

Ii = 2 (t) = VM (t) (18)

Ii = 4 (t) = D (t) (19)

3.5. Stimuli: perceived change in intensity

We compute the derivative stimulus quantities of GM , VM ,
and AM on the Eulerian mesh (Equations 11–15), then transform
them to perceived intensity Ii (Equations 1, 16–19), and lastly
compute the temporal rate of change in Ii at the fish centroid
via Equation 2. To be clear, note that we are first computing
the derivative quantities of GM , VM , and AM throughout the
entire spatial domain as a preprocessing step, in other words,
via a global Eulerian perspective. Second, we interpolate each
physical derivative quantity from the Eulerian mesh to the precise
fish centroid location and transform GM , VM , and AM to their
perceived intensity via Equations 16–19. For the last step, we
compute one more rate of change (derivative, differential) that is
of the temporal domain and conducted only at the fish centroid
location. The last derivative uses a local (Lagrangian) perspective

in which the individual compares the momentary experience at
the fish centroid to a habituated memory integrating all preceding
experiences (Equation 2). We describe the last derivative (rate of
change, differential) computed at the individual level next, in the
following paragraphs.

We find that the perceived change in stimuli i = 1, 2, 3 follow
Equation 2 as expected, reinforcing the notion that proportional
differencing (signal-to-background ratios) influence behavioral
choice. We find again here — as in prior work (Goodwin, 2004;
Goodwin et al., 2006, 2014) — that the perceived change in swim
bladder pressure (D, m, stimulus i = 4) for eliciting the needed
vertical movement dynamics in our approach is best described
without the denominator. Specifically, we find that using the
denominator results in an asymmetric response to perceived depth
changes that biases the modeled fish to move up more than down in
the water column. The bias makes it difficult to reproduce observed
salmon swim paths. Thus, here as in previous work, we use a
simpler formulation that does not bias vertical movement either up
or down in the water column:

E4 (t) =
∣∣I4 (t)− Ia4 (t)

∣∣ (20)

Alternative methods exist for translating physical
(measured/modeled) variables into perceived quantities, Ei,
but to date our evaluations have not found better formulations
for our stimuli i = 1− 4 that work across our multiple
environmental contexts.

3.6. Multiplex signal disentanglement via
multi-timescale perceptions

In our approach, simulated salmon make decisions every 2 s
even if the choice is no change from the previous time increment.
The 2− s time increment is mandated by a goal of keeping
individuals responsive to hydrodynamic features that can come-
and-go in a matter of a few seconds, e.g., as a fish rapidly
transits through infrastructure. Also, we want to limit the number
of interactions with the boundary of the hydrodynamic model
Eulerian mesh. Regardless of the boundary interaction heuristics
employed, e.g., at riverbanks, these features of the model are
nonetheless more physical than hydrodynamically-mediated and
can, if left unchecked, influence the fate of simulated fish. Our goal
is to maintain as much a hydrodynamically-mediated fish swim
behavior as possible.

We use memory timescales, mai , to mathematically develop a
context for behavioral choice. A timescale is one part of a process
that determines the spatiotemporal scales within which a simulated
salmon can robustly discern hydrodynamic feature changes. The
sequence of perceptual processing (model variables) that results in
a behavior decision B is as follows:

mai

memory
→

Iai

habituation
→

Ei, ki

perceived change in stimulus intensity

→
aB

sensory activity
→

eB

evidence accumulator
→

B
behavior

In the remaining portion of this section, we describe the first
half of the sequence: mai → Iai → Ei. We start with the construct
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of one timescale for each stimulus i that we refer to arbitrarily as
slow. We set mslow

ai
= 0.9999 (T50 = 3.85 h) where T50 is the

half-life of the habituation indicating how long it takes for the level
to decline 50% after the last non-zero stimulus acquisition. The
memory value is pulled directly from prior work that focused on
simplifying the parameter (Goodwin et al., 2014).

We find the single timescale is sufficient for activating a
response to our acute stimuli (Table 4) across diverse contexts. We
describe the behaviors fully in the next section (Table 5), but for the
purposes of illustrating the first part of the perceptual processing
sequence we note that one of our behaviors, B {4}, is a response
to water acceleration. Most often the behavior B {4} is triggered in
the context of simulated salmon avoiding Georgiana Slough, that
is, repulsed by the water acceleration enveloping the entrance to
the slough. The B {4} response is relatively consistent so long as the
water acceleration stimulus, AM , is present at sufficient intensity.

In contrast, we find that responses to our nonacute
stimuli — behaviors B {2} and B {3} also referred to with the
notation B {2, 3} — require additional context quantification.
B {2} is a reaction to GM that results in an orientation toward
(attraction to) the fastest nearby water, VM . Behavior B {3} is
similar but inverted, in which the response to VM results in an
orientation toward the largest nearby spatial gradient in water
speed, GM (Table 5). By nearby we mean within the perceptual
range of the sensory ovoid (Figure 5) described in detail later.
We highlight B {2, 3} here because of their unique dependence
on multiple timescales. B {2, 3} must be responsive to both local
spatiotemporal features such as riverbank-induced hydrodynamic
patterns of elevated GM and low VM as well as to, at the same time,
bulk water flow speed changes due to the tides. B {2, 3} take on
a very different character — visual trajectory appearance — near
the riverbank when bulk river flow changes due to the tides.

TABLE 4 Relationship between hydrodynamic stimuli, memory timescales (slow = longer-term; fast = shorter-term), and behavior response.

Original physical (measured/modeled) quantity,ϕ

Unmodified, Iϕ = ϕ Log-transformed, Iϕ = log10

(
ϕ
ϕo

)
Memory
(habituation)

Single timescale
Islow
ai

Fish’s swim bladder pressure
D (t), meters

Stimulus i = 4 (acute)
Triggers behavior B {5}

Response type I

Water acceleration
AM (t), m s−2

Stimulus i = 3 (acute)
Triggers behavior B {4}

Response type II

Dual timescales
Islow
ai

, Ifast
ai

Water speed
VM (t), m s−1

Stimulus i = 2 (nonacute)
Triggers behavior B {3}

Response type II

Spatial gradient in water speed
GM (t), s−1

Stimulus i = 1 (nonacute)
Triggers behavior B {2}

Response type II

Type I is triggered by stimulus i, response orients to same stimulus. Type II is triggered by stimulus i, response orients to different stimulus.

TABLE 5 Engineering design relevance of each behavior in the repertoire of downstream-migrating salmon responses to river hydrodynamics.

Context-based behavioral choice/decision

Engineering design relevance
How each stimulus might be used to trigger a
managed movement of fish in a river channel

Behavior notation
Type I or II

Swim path/trajectory color

Orientation
Alignment
Attraction
Repulsion

Modulation

Trigger
Sensory evidence accumulator, eB , integrates the

activity, aB , supporting behavior B when the following
occurs:

Guide salmon with the bulk water flow
toward an area

B {1}
N/A
Cyan

Flowline alignment
swim with flow

Absence of other triggers

Separate (guide) salmon away from the bulk water
flow
toward/away from an area

B {2}
II

Yellow

Velocity (VM) attraction
swim toward fastest water

Small or decreasing perceived change in spatial
gradient of water speed GM (↓ Efast

1 ) in
large GM (↑ Eslow

1 )

B {3}
II

Blue

Gradient (GM) attraction
swim toward largest spatial

gradient in
water speed

Small or decreasing perceived change in water speed
VM

(↓ Efast
2 ) in

fast water (↑ Eslow
2 )

Repulse salmon
away from an area

B {4}
II

Gray

Acceleration (AM) repulsion
swim against flowline, away

from large AM

Large perceived change in water
acceleration/deceleration AM (↑ Eslow

3 )

In deep environments:
Separate (guide) salmon away from the bulk water
flow
toward/away from an area

B {5}
I

Green

Pressure (depth, D)
modulation
swim toward

habituated/acclimatized
depth

Large perceived change in swim bladder pressure or
depth D
(↑ Eslow

4 )

N/A is not applicable. ↓ = small or decreasing values; ↑ = large values.
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We find that B {2, 3} cannot be responsive to both localized and
tidally-driven bulk flow hydrodynamics at the same time with only
a single timescale.

The inadequacy of a single timescale for B {2, 3} precipitates
our need for a second that can facilitate perception at a different
scale. Equation [3] with timescale mslow

ai
= 0.9999 (T50 = 3.85 h)

forms the basis we need for a simulated fish to perceive bulk flow
changes within the river due to the tides; this is the process we
alluded to earlier (Section 3.3.1) that may have analogies for how a
fish could upscale minuscule hydrodynamic experiences to form a
RANS-level perception of its localized river flow field. We pursue
a second timescale that can operate at smaller spatiotemporal
scales. For simplicity, we start with the length of time between
consecutive behavioral choices in our fish model (T50 = 2 s,
mfast

ai = 0.5) and then evaluate values higher and lower than our
initial guess. We find that T50 = 2 s provides the most robust
perception of local hydrodynamic features needed to activate
B {2, 3}. The superior performance of T50 = 2 s stems, in part,
from the intrinsic relationship to our model’s time step that, in
turn, is related to the spatial resolution of the Eulerian mesh data.
Therefore, T50 = 2 s is not reflective of real fish memory of local
hydrodynamic features but, rather, an artifact that is inseparable
from our river hydrodynamic description. The dual timescales
facilitate perception of hydrodynamic features in our river reach
at two different spatiotemporal scales, simultaneously.

Sensory experience for each stimulus i is integrated over time in
the form of habituation, Islow

ai
and, for B {2, 3}, also Ifast

ai . A simulated

fish detects perceived changes Eslow
i and Efast

i by comparing the
perceived stimulus intensity at momentary time t to an integrated
value over time that corresponds to longer-term (slower, Islow

ai
) and

shorter-term (faster, Ifast
ai ) habituations, respectively.

A change in water acceleration AM (i = 3) is perceived using
the slow timescale (Table 4) via Equation 2:

Eslow
3 (t) =

I3 (t)− Islow
a3 (t)

Islow
a3 (t)

(i = 3) (21)

and swim bladder pressure (i = 4) changes are perceived via
Equation 20 using the variation of:

Eslow
4 (t) =

∣∣∣I4 (t)− Islow
a4 (t)

∣∣∣ (i = 4) (22)

We use two timescales to perceive the velocity gradient GM
(i = 1) and water speed VM (i = 2). We expand Equation
2, one for the slow and another for the fast timescale. Perceived
changes in GM and VM are perceived in both slow and fast
timescales as:

Eslow
1 (t) =

I1 (t)− Islow
a1 (t)

Islow
a1 (t)

(i = 1) (23)

Eslow
2 (t) =

Ifast
a2 (t)− Islow

a2 (t)
Islow
a2 (t)

(i = 2) (24)

Efast
i (t) =

Ii (t)− Ifast
ai (t)

Ifast
ai (t)

(i = 1, 2) (25)

Note the difference between Equations 24 and 2, 21, 23, 25.
Equations 2, 21, 23, 25 all follow the same logic structure where

the momentary perceived intensity Ii is located in the first position
of the numerator. In contrast, Equation 24 places the fast memory
(shorter-term) habituation, Ifast

a2 , in the position. In other words, for
VM (Equation 24 only) we modify the slow memory structure of
E2 by substituting Ifast

a2 in lieu of I2 in the numerator. Through trial-
and-error, we find that Equation 24 is superior within our modeling
approach for an immersed individual to perceive meaningful large
spatiotemporal scale changes in river water speed due to the tides.

The floor of habituated intensities for GM and AM are set to
0.001 and 0.0001, respectively. In other words, Iai = 1 ≥ 0.001
and Iai = 3 ≥ 0.0001. Note the numerical floors here are different
than the arbitrary reference values of Go = 1e−6 and Ao = 1e−6

used in log-transforming these physical quantities to perceived
intensities Ii = 1 and Ii = 3, respectively, in Equations 16,17.

3.7. Repertoire of hydrodynamic
response behaviors

In this section, we describe the behaviors so that in the
next section we can describe the second half of the perceptual
processing (model variables) sequence: Ei, ki → aB → eB → B.
We refer to the behaviors B{1}, B {2}, B{3}, B{4}, and B{5} using
the notation B{1, 2, 3, 4, 5} and analogously for any subset of
responses. Our salmon behaviors B{1, 2, 3, 4, 5} are repulsion,
alignment, attraction, and modulation responses to the river’s
hydrodynamic field (Table 5). The default behavior, B {1}, is
swimming oriented aligned with (parallel to) the river flowline
facing downstream. B {1} is a negatively rheotactic response that
occurs in the absence of stimuli supporting other actions. Behaviors
B {2, 3} are both attraction responses, towards faster water and
larger spatial gradients in water speed, respectively. Behavior B {4}
is also aligned parallel to the river flowline but in the opposite
direction facing into, instead of with, the water current where the
fish’s head is upstream of the tail. B {4} is a positively rheotactic
response to avoid (repulsion from) elevated AM . Behavior B {5}
modulates swim depth, D, to mitigate rapid changes in swim
bladder pressure.

Only one behavior from the options of B {1, 2, 3, 4} is
implemented per time increment 4t. The exception is B{5},
which is a vertical-only behavior and always acts in concert
simultaneously with one of the behaviors from B {1, 2, 3, 4} that
provides the xy-plane orientation. Behavior B{5} is a vertically-
oriented response inclined off the horizontal xy-plane. The
horizontal xy-plane is perpendicular to the direction of gravity.
Since B{5} confers no orientation within the xy-plane — and
the fish must always be oriented in some way within the
xy-plane — that information is provided by one of the behaviors
from B {1, 2, 3, 4}. The orienting process works as follows: first,
the simulated fish chooses one of the behaviors from B {1, 2, 3, 4}
using the process steps in Table 6 and described in the sections
that follow. Second, the simulated fish determines whether a
vertically-oriented B {5} inclination is warranted; if so, then B {5}
overrides (supersedes) the vertical angle inclination off the xy-
plane set by the chosen behavior from B {1, 2, 3, 4}. For example,
assume the simulated fish chooses B{4} and this behavior turns
(re-orients) their body 5◦ to the left from the present heading
and upward vertically 10◦ off the xy-plane. Then assume the fish
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TABLE 6 Cognitive-based mechanistic fish movement behavior model: algorithm ensemble, steps, equations, and parameters.

Step Component Term(s), Equation(s) Equation # B {1} B {2} B {3} B {4} B {5}

1 Stimuli (behavior triggers)
i = 1, 2, 3, 4

GM, VM, AM, D 1, 11, 14–19 Absence of other triggers GM

i = 1
VM

i = 2
AM

i = 3
D

i = 4

2 Memory timescales slow = longer-term
fast = shorter-term

3, 8, 9

mslow
ai = 1,2,3,4

= 0.9999 (Tslow
50 = 3.85 hours)

Memory (habituation)
Iai

Exponentially weighted moving
average,
EWMA

(Bush and Mosteller, 1955)

mfast
ai = 1,2 = 0.5 (Tfast

50 = 2 seconds)

3 Perceived change in stimulus
intensity

Ei

Variant of the just noticeable
difference,

jnd
(Weber, 1846; Fechner, 1860)

2, 20–25
kslow

i = 1 = 0.001
kfast

i = 1 = 0.01
kslow

i = 2 = 0.001
kfast

i = 2 = 0.001 kslow
i = 3 = 0.6 kslow

i = 4 = 0.5
Environmental context

(of behavioral choice/decision)
Perception (multi-timescale)

Eslow
i , Efast

i

4 Behavioral choice/decision Mutual Inhibition Model or
Leaky Competing Accumulator

model
(Usher and McClelland, 2001)

4–7, 26–29 λB{1,2,3} = 0.1
ηB{1,2,3} = 0.01

cB{1,2,3,4,5} = 0
λB{4} = 0.005

ηB{4} = 0
λB{5} = 0.1
ηB{5} = 0

aB{1} = 0.30 aB{2} = 0.40 aB{3} = aB{2} − 0.01 aB{4} = 0.6 aB{5} = 0.7

5 Swim orientation Codling et al., 2004 32, 33 δB{1,2,3,4,5} = 1.0, κB{1,2,3,4,5} = 10000.0

6 Swim orientation
(step length)

Weibull distribution

34

αB{1,2,3,4} = 1.5, γB{1,2,3,4} = 0.3

kWeibullB{1,2,3} = 0.1 kWeibullB{4} = 0.7
kWeibullB{4} = 0∗

7 Movement x, y, z Cartesian coordinates 10

The ELAM model is designed to minimize the number of parameters, facilitate parameter simplicity, eliminate all permissible stochasticity, and plug-and-play alternative algorithms; however, future applications may find value in deviating from this initial
baseline approach. We constrain aB between [0, 1] in order to compare the performance with other, alternative algorithms that operate in the range of [0, 1] for their analogous parameters. Activity aB{3} is set just below the value of aB{2} so that in a tie-breaker
scenario then B {2} is the behavior implemented. aB values can play a role in determining the response precedence, so we set aB{5} > aB{4} > aB{2} > aB{3} > aB{1} . Behaviors B {4} and B {5} are an acute stimulus response, so we set them as uninhibited by the others
via η = 0.
*kWeibullB{4} = 0 when the fish is facing more with (than against/into) the water flow vector, which makes the individual re-orient.
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determines B {5} is warranted with a downward angle of 20◦.
Behavior B {4} and B {5} orientations are integrated as follows: the
B {5} downward angle of 20◦ supersedes the upward 10◦ inclination
of B{4}. Behavior B {5} does not modify the xy-plane 5◦ left turn
(re-orientation) of B{4}. For reference, 0◦ in the localized xy-plane
used in decision-making always points in the direction from the
fish’s tail to head.

Behaviors B {2, 3} often operate in tandem, in opposing fashion,
yielding emergent properties that we describe next.

3.7.1. Emergent properties from opposing
behaviors

Juvenile Pacific salmon are prey that must reach the ocean in
limited time. We propose that a salmon’s downstream migration
strategy involves balancing the opposing goals of:

(i) concealing their presence with B {3} by leveraging GM
associated with turbulence, acoustic noise, low visibility
(elevated turbidity), and physical cover (Anjum and Tanaka,
2020);

(ii) seeking faster water, B {2}, that expedites the salmon’s
downriver journey to the ocean.

Behaviors B {2} and B {3} are at odds as B {2} orients the salmon
toward the thalweg, e.g., river center, while B {3} leads toward
the river’s edge.

Note that from the Lagrangian perspective of an individual fish,
the orientation toward faster water does not have to correspond
with the water flow direction and often they do not coincide;
for example, near the riverbank, water flow may point downriver
(parallel to the riverbank) while the direction pointing toward faster
water is in line with the shortest path to the thalweg (perpendicular
to the riverbank).

Behaviors B {2, 3} work in combination by mutually inhibiting
each other, a dynamic that confers the advantageous emergent
properties of keeping salmon responsive to rapidly changing
conditions, maintaining downstream progress, and a generally
unpredictable position within the river. While the fish does
not benefit from the optimum river position of fastest water
for downriver migration, the salmon increases its survival
probability (Sabal et al., 2020). At an evolutionary scale, the
B {2, 3} combination increases the probability of salmon life cycle
completion and promotion of the species.

The notion of emergent properties arising from opposing and
mutually-inhibiting dynamics is not a novel concept. The mutually
inhibiting nature of B {2, 3} shares an analogy with the neural
inhibitions that operate at much smaller scale within an animal’s
brain (Usher and McClelland, 2001; Sukenik et al., 2021). At a very
different scale, turbulence both attracts and repulses fish (Smith,
2003; Smith et al., 2005; Liao and Cotel, 2013). In socially-driven
animal swarms, attraction and repulsion dynamics are the basis
of individual movement (Couzin et al., 2002, 2005; Ballerini et al.,
2008; Lemasson et al., 2009, 2013; Katz et al., 2011).

3.8. Context-based behavioral choice

In this section, we describe the second half of the perceptual
processing (model variables) sequence: Ei, ki → aB → eB → B.

Multiple stimuli compete to influence movement, so we must
organize the hierarchical repertoire of stimulus-responses for the
changing phases of a behavioral sequence (Sogard and Olla, 1993;
New et al., 2001). In our mechanistic approach, using the Mutual
Inhibition Model or Leaky Competing Accumulator model (Usher
and McClelland, 2001), the perceived changes Ei are translated into
a common currency for comparison across all the different sensory
modalities, stimuli i. The common currency is activity, aB, from
Equation 5. Activities aB are accumulated as sensory evidence eB
that support the triggering of its corresponding behavior. Sensory
evidence eB is compared across all the behaviors each time step to
choose the response. The behavior with the greatest evidence eB
is chosen for the next time increment 4t = 2 s (Figure 7 and
Table 6).

In mathematical form, the activity aB − and therefore evidence
eB − that supports each behavior B getting triggered increases
when the corresponding perceived changes Eslow

i and Efast
i cross

their respective thresholds kslow
i and kfast

i . In this way, the fish’s
movement decision (swim orientation and speed) is informed
by comparing the momentary perceived change to memories of
preceding experience. A succinct description of the environmental
condition that activates aB and contributes to eB for triggering
each behavior B is provided in the right column of Table 5 and
illustrated in Figure 7. The process is described in Table 6. We
describe the mathematics of how activities aB are computed in the
paragraphs that follow.

We constrain the activity constants aB to the range
[0.0 < aB ≤ 1.0]. The advantage of constraining activity
values is that we can, if ever warranted, compare the cognitive
algorithm separate from other parts of our model to other decision
methods with parameters also able to operate in the range [0, 1].
We describe the activities aB of the decision-making process
starting with behavior B {5}, then B {4}, and lastly the more
complicated B {2, 3}.

Activity aB supporting B {5} occurs when the perceived change
in depth, D, representing the perceived change in swim bladder
pressure exceeds threshold kslow

i = 4 as:

aB{5} (t) = aB{5} if Eslow
i=4 (t) ≥ kslow

i=4
= 0 otherwise

(26)

Activity aB supporting behavior B {4} occurs when the
perceived change in AM exceeds threshold kslow

3 as:

aB{4} (t) = aB{4} if Eslow
i=3 (t) ≥ kslow

i=3
= 0 otherwise

(27)

B {4} and B {5} are acute stimulus responses, and we are able
to set these behaviors as uninhibited by the others (η = 0 in
Equation 5, Table 6). Note that for the acute stimulus responses we
are able to simplify the decision process in two ways: first, B {4, 5}
require only a single timescale and, second, we are able to eliminate
inhibition (η = 0).

The activation of the nonacute behaviors B {2} and B {3} is
more complex in three ways. First, B {2, 3} require evaluation
at two timescales. The slow timescale resolves hydrodynamic
features that are generally attributable to the tidal cycle. The
fast timescale resolves local features such as riverbank-induced
hydrodynamics. Local features can come-and-go with the tides
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FIGURE 7

Graphical illustration of a simulated salmon’s perception of river hydrodynamics versus the pattern output by a numerical flow field model, together
with the underlying cognitive dynamics of our mechanistic behavior modeling approach. To simplify the illustration, the ELAM salmon is simulated
with steady hydrodynamics (unchanging with time) using a snapshot extracted from the flow field time series that is representative of the river flow
conditions when the tagged fish was actively swimming. Illustrated are the momentary experiences and behavioral choices of a zig-zagging
simulated salmon. The simulated salmon qualitatively resembles the zig-zag movement of a tagged salmon (black path) via behaviors B {2, 3} that
arise from perceived changes in VM and GM (Tables 4, 5). Perceived hydrodynamics (Ei, colored path) differ from the river flow field stimulus patterns
output from the hydrodynamic model (background color). Additional detail including TKE contours available in Supplementary Figure 1.

so, for instance, the riverbank-induced hydrodynamic feature of
elevated GM and low VM may be negligible or imperceivable
during slack tide whereas the pattern is pronounced in ebb tide.
Therefore, the pattern of elevated GM and low VM are reliable
for indicating a riverbank and/or shallower habitat only under
certain environmental conditions (contexts). Second, activating
B {2, 3} depends on the existing behavioral state, B, of the salmon.
Third, we find the activities aB need to be inhibited by the
other behaviors (η = 0.01) to operate properly within the
overall repertoire.

To switch to B {2} from any other xy-plane response from the
options of B {1, 3, 4}, the salmon must perceive a high-gradient
region where the longer-term (slow) perceived increase in GM is
Eslow

i = 1 (t) ≥ kslow
i = 1 while simultaneously perceiving a very small or

decreasing short-term (fast) change in GM of Efast
i = 1 (t) < kfast

i = 1,
and this latter condition will sustain B {2} once initiated.

aB{2} (t) = aB{2} if B (t − 1) 6= 2 and Eslow
i = 1 (t) ≥ kslow

i=1

and Efast
i = 1 (t) < kfast

i = 1

= 2 and Efast
i = 1 (t) < kfast

i = 1
= 0 otherwise.

(28)

Similarly, the initial switch to B {3} from any other xy-plane
response, B {1, 2, 4}, requires the salmon perceive a longer-term
(slow) environmental shift to faster water described mathematically
as Eslow

i = 2 (t) ≥ kslow
i = 2 while simultaneously perceiving a very small

or decreasing short-term (fast) change in VM of Efast
i = 2 (t) < kfast

i = 2
and the latter condition will sustain B {3} once triggered:

aB{3} (t) = aB{3} if B (t − 1) 6= 3 and Eslow
i = 2 (t) ≥ kslow

i=2

and Efast
i = 2 (t) < kfast

i = 2

= 3 and Efast
i = 2 (t) < kfast

i = 2
= 0 otherwise.

(29)

We set the value of activity aB{3} just below that of aB{2} so
that in a tie-breaker scenario where both B {2, 3} dominate other
behaviors, then B {2} is the one implemented.

Activity aB values play a role in determining the response
precedence so we set aB{5} > aB{4} > aB{2} > aB{3} > aB{1}.
Acute stimulus responses are the highest priority. B{5} is valued
higher in the precedence than B{4} but recall that a vertical angle
from B{5} does not override a B{4} xy-plane orientation so, in effect,
B{4} remains the highest priority in the horizontal plane.
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3.8.1. Zig-zag example of context-based
behavioral choice with steady river
hydrodynamics

We use a single 3-D output, or snapshot in time, extracted
from a river flow field time series in order to ignore, for this
example, the additional complexity introduced by time-varying
hydrodynamics. Simulated salmon swim orientation and speed
responses at 2− s intervals (Figure 7 bottom-left) correspond to
momentary perceived changes in each stimulus. Habituation to
each stimulus updates at multiple timescales described simply as
slow and fast. The propensity, or evidence eB, to respond to AM or
D increases when the perceived change in stimulus intensity, Eslow

3
or Eslow

4 , respectively, exceeds their corresponding threshold, kslow.
The activation of B {2, 3}, eliciting the zig-zag swim path

(Figure 7), is more complex than either behaviors B{4, 5} that
are responses to stimuli i = 3, 4, respectively, because perceived
changes in the responsible stimuli GM and VM are integrated at
both slow and fast timescales and the activities aB supporting
B {2, 3} depend on the existing behavioral state B. If a salmon is
implementing a non-B {2} behavior, then the simulated fish must
experience a high-GM region (Eslow

1 (t) ≥ kslow
1 ) to initiate B {2}.

Sustaining B {2} requires only a small or decreasing perceived
change in GM (Efast

1 (t) < kfast
1 ). Similarly, triggering B {3} requires

the salmon to experience fast water (Eslow
2 (t) ≥ kslow

2 ) and
maintaining B {3} requires only a small or decreasing perceived
change in water speed (Efast

2 (t) < kfast
2 ). Initial activation, or

triggering, of the behavior requires the maintenance criterion
also be met at the initiation moment (Table 5 and Figure 7).
Whichever behavior B has the maximum accumulated evidence, eB,
is implemented for the 2− s time increment (Figure 7 bottom).
B {1} is a default behavior that occurs during the absence of
evidence supporting other behaviors.

3.9. Sensory ovoid and points

Simulated salmon sense their 3-D environment using a
localized sensory ovoid (Figure 5) beyond which the fish has no
knowledge of the virtual world. We represent the ovoid using six
sensory points located at the cardinal positions (front, back, left,
right, above, below) surrounding the fish. The simulated fish is at
the center of the ovoid. We refer to the cardinal point distances
on the outer edge of the ovoid as the sensory query distance, SQD.
Sensory points, or SQDs, are a simple discretized version of the
ovoid that simulated fish use to orient in relation to local spatial
patterns in stimuli.

Our ovoid is not used to compute any of the trigger stimuli
(Table 5). Recall that our hydrodynamic trigger stimuli are local
rates of change in time computed at the fish centroid. Our sensory
ovoid is used only for orienting the fish toward the fastest nearby
water, B{2}, or toward the largest nearby GM , B{3}, in the detectable
range sensed by the cardinal points. Since the orienting stimuli VM
and GM are scalar quantities, the direction toward higher values
cannot be determined with a simple point measurement at the
fish centroid. Orientation toward larger values is determined by
comparing VM and GM at the available cardinal endpoint locations
on the exterior shell of the sensory ovoid to their values at the fish
centroid. Note that B{1, 4} orientations can be computed using just

the water velocity vectors at the fish centroid, so the sensory ovoid
is not used for these behaviors. B{5} operates relative to the vertical
(gravity) axis and, here too, the sensory ovoid is not needed.

In the real world, the sensory range of a fish depends on the
stimulus (Giske et al., 1998) and the SQD would be proportional
to fish size. In our model, for simplicity, ovoid size is the same
for imaging VM and GM . The size of our simulated sensory ovoid
is determined not by fish size but, rather, the spatial resolution
of hydrodynamics within the Eulerian mesh. Sizing the sensory
ovoid smaller than the spatial resolution of the river hydrodynamics
available in the Eulerian mesh results in the situation where VM
and GM have the same value at the outer edge (SQD) as at the
fish centroid. When the difference in stimulus values between the
centroid and outer edge of the sensory ovoid is less than the
numerical precision available from the hydrodynamic model —
meaning there are no significant digits — then the simulated fish
cannot orient to spatial trends in VM and GM .

The limiting factor determining SQD in computer simulations
is the numerical precision of hydrodynamic variable values stored
in the time-varying Eulerian mesh of the hydrodynamic model.
SQDCFD is the distance between a fish and its sensory point
location below which orienting stimulus differences have little-
to-no significant digits (Goodwin et al., 2006). A spatial trend
computed with SQD < SQDCFD is not only unreliable but often
misleading. Therefore, simulated fish require SQD ≥ SQDCFD for
orientation, and it is preferable that SQD� SQDCFD.

Our sensory ovoid is a construct that lets us leverage
the hydrodynamic model information commensurate with the
available spatiotemporal resolution. Orienting stimuli VM and
GM increase and decrease in intensity at different spatial rates
depending on where the fish is in the river. For instance, in
the thalweg, VM and GM may not change much across several
meters whereas near the riverbank these variables can often change
appreciably in less than a meter. Varying the ovoid size each time
step provides simulated fish the ability to discern VM and GM
trends of different spatial scales. We find that varying the ovoid each
time step is a better way to discern VM and GM spatial trends at
different scales compared to, for instance, adjusting the size so that
it is proportional to the Eulerian mesh element size at a location.
Using our approach, we find that even though the SQD may not
be optimally sized to detect a particular spatial trend at a given
moment in time, the temporal variation in SQD allows a simulated
fish to discern the necessary VM and GM spatial trends within a few
time steps at most.

Through trial-and-error on our mesh, we set the SQD so
that it changes each time step randomly according to a normal
distribution with a mean in the xy-plane of 5.0 m, a standard
deviation of 1.5, and a minimum radius of 0.1 m. The vertical (z-
coordinate) radius has a mean of 0.4 m and a standard deviation
of 0.1. In our approach, a more sophisticated sensory ovoid is
not particularly useful unless accompanied with a concomitant
improvement in hydrodynamic resolution. Thus, our use of a
sensory ovoid is trivial compared to the fundamental concept
in Oteiza et al. (2017).

When orienting in relation to VM and GM spatial trends, one or
more of the four xy-plane sensory points must have a

∣∣jnd
∣∣ ≥ 1%

in that variable’s value relative to the fish (centroid), otherwise
orientation remains unchanged from the previous time increment.
A jnd is used here, as opposed to the nsd, because this is a discrete

Frontiers in Ecology and Evolution 25 frontiersin.org

https://doi.org/10.3389/fevo.2023.703946
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-703946 June 10, 2023 Time: 15:10 # 26

Goodwin et al. 10.3389/fevo.2023.703946

comparison. The 1% rule is constant even as the ovoid size changes
each time step. If all cardinal point

∣∣jnd
∣∣ < 1%, then we assume

there is no relevant perceived difference or spatial trend in VM or
GM around the fish at the scale of time t′s sensory ovoid and hence
no orientation change. Vertical sensory points and orientation are
handled analogously to the xy-plane.

3.10. Swim orientation

Behavior B determines the preferred orientation, θo. Before
we describe the swim orientation algorithm that we use in this
study, it is worth noting the Ornstein-Uhlenbeck (O-U) model
(Uhlenbeck and Ornstein, 1930) for several reasons. The O-U
model is a powerful, longstanding approach to orientation that
is used frequently (Gurarie et al., 2017), and remains a constant
source of evaluation in our own work. The O-U model has
attributes similar to Equations 4 and 5 used in other parts of our
algorithm ensemble for cognitively deciding individual behavior
transitions. The O-U model describes and produces a stochastic
movement orientation that is implemented in the model, θ, based
on the idealized preferred direction θo from behavior B as follows:

dθ = ψ
(
θo − θ′

)
dt + cdW (30)

or as a complete, first-order approximation of the stochastic
differential equation in discrete form (Gillespie, 1996; Natvig and
Subbey, 2011):

θ (t + 4t) = θ′ (t) + ψ
(
θo (t)− θ′ (t)

)
4t + cζ

√
1t (31)

where ζ is a sample value from a standard normal distribution
N
(
µ = 0, σ2

= 1
)

with mean µ and σ standard deviation, ψ is
the drift term describing the strength of attraction to the preferred
orientation θo, θ′ (t) is the orientation at time t, c is a noise-scaling
factor analogous to its use in Equations 4 and 5 or it can be
thought of as a diffusion term where cζ

√
1t is the white noise,

Brownian motion, or a Wiener process describing randomness.
When ψ = 0, then there is no attraction to the preferred
orientation θo, only diffusion.

We find the mechanics of the Codling et al. (2004) algorithm
integrate better with our overall methodology. We use the Codling
et al. (2004) algorithm to compute the movement orientation that
is actually implemented in the model for a given time step, θ,
based on the idealized preferred direction θo from behavior B. In
our approach, we use the Codling et al. (2004) algorithm to set
the initial movement orientation θ whenever there is an updated
preferred direction θo due to a change in behavior B. Since one
of our goals is to eliminate all permissible stochasticity, we do
not use the algorithm during consecutive orientations when the
behavior B is not changing. Should stochasticity during consecutive
orientations be required in future work, we find the Codling et al.
(2004) and O-U algorithms both suffice.

In the Codling et al. (2004) algorithm, the swim orientation
is randomly drawn from a von Mises distribution T

(
θ, θ′

)
that

is dependent on a concentration parameter, κ, and mean turning
angle, µθ−θ′ , as follows:

T
(
θ, θ′

)
= (2πJo (κ))−1exp

[
κcos

(
θ− θ′ − µθ−θ′

)]
(32)

where Jo (κ) is the modified Bessel function of order zero, and the
mean turning angle is:

µθ−θ′ = − δ1t
(
θ′ − θo

) (
−π < θ′, θo, µθ−θ′ ≤ π

)
(33)

where θ is the movement orientation at time t +4t, θ′ is the
movement orientation at time t, and 0 < δ4t is the amplitude of
the mean turning angle. δ4t controls how quickly the swimming
orientation returns to the preferred direction θo during the re-
orientation process, which is a proxy for the sensing ability of the
animal (Codling et al., 2004). κ controls the amount of randomness
in the choice of each new orientation and is a proxy for the orienting
ability of the animal. A low value of κ corresponds to a poor
orientating ability, for instance, in a highly turbulent environment.
Setting κ = 0 collapses the von Mises distribution to a wrapped
uniform distribution. µθ−θ′ > 0 biases the random walk in the
preferred direction θo (Codling et al., 2004).

3.10.1. Swim orientation (step length)
Swim orientation in our model is further influenced by step

length, or re-orientation probability (Okubo, 1980). We use the
Weibull distribution to determine the fish’s propensity to maintain
the same orientation (step length). The Weibull distribution is often
used in fatigue (time-to-failure) analysis as well as in ecology for the
analyses of step length in animal movement and correlated random
walk models (Morales et al., 2004; McClintock et al., 2012, 2014).
We describe the Weibull probability density function (random
number) as:

Weibull =
α

γ

(
ζ

γ

)α−1
e−
(

ζ
γ

)α

(ζ ≥ 0) (34)

where α is the shape and γ is the scale parameter,
respectively, and ζ is a sample value from a standard normal
distribution N

(
µ = 0, σ2

= 1
)

with mean µ and σ standard
deviation (Table 6).

Our use of the Weibull distribution is simple. In our approach,
the fish’s orientation is allowed to change based on the preferred
direction θo of behavior B if the Weibull random number is
greater than or equal to a threshold value, kWeibull, that does
not change with time. If Weibull < kWeibull, then the simulated
fish’s orientation is not changed (i.e., continues straight-ahead)
although the movement trajectory may not be straight because of
the contribution from advection due to river hydrodynamics.

We do not apply the step length treatment to the vertical-
only behavior, B {5}, but it is applied to the vertical orientation
component of all other behaviors that act in 3-D whenever the
Eulerian mesh is three-dimensional. Shape and scale parameters of
the Weibull distribution as well as the threshold values are set as
part of model development and parameterization.

3.11. Swim speed

Simulated fish swimming speed is modulated by both behavior
and the environmental condition. The swimming speed for each
behavior B is based on a surmised interpretation of the stimulus-
response’s value to the animal. For instance, swim speed may be
slow, or otherwise bioenergetically efficient, for a default behavior
that is executed merely because there is a lack of important stimuli.
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In contrast, the swim speed may approach the species’ burst
propulsion limit for an avoidance response in fast water.

We set swim speed as body lengths (BL) per second, or BL s−1,
according to drift, cruise, and burst swimming modes (Beamish,
1978) with an assumed juvenile salmon size of 0.12 m (120 mm).
The swim speed of each behavior is set initially as:

• B {1} is a drift swim mode (0.25 BL s−1, 0.03 m s−1);
• B {2, 3, 4} are cruise modes (2.0 BL s−1, 0.24 m s−1).

If water flow is faster than cruise swimming during an AM
avoidance response, B {4}, then swim speed instantly increases to
1.9 VM up to the burst maximum of 10.0 BL s−1, 1.2 m s−1. The
burst speed is near the maximum BL s−1 measured in Bay-Delta
juvenile salmon (Lehman et al., 2017).

Vertical swimming, B {5}, depends on the xy-plane behavior
where speed is initially set from one of the following B {1, 2, 3, 4}
but is increased up to 1.9 VM , but no more than the burst
maximum, whenever the fish is failing to alleviate recent perceived
change in swim bladder pressure. Vertical overrides of the xy-
plane behavior speed typically occur when the simulated fish must
counteract strong vertical water currents, most common in deep
environments near infrastructure.

We simulate all fish identically as 120 mm in length even
though the mean fork length of tagged fish is slightly higher than
150 mm. Our reason is that salmon management is concerned with
fish as small as 60 mm (California Department of Water Resources,
2016). We arbitrarily select a single fish size between 60 and
150 mm, slightly closer to 150 mm. We do not use a distribution
of fish sizes in order to reduce heterogeneity and stochasticity
in the model wherever permissible. The assumed salmon size by
itself is not a critical assumption in the model. The same swim
speed (m s−1) can be obtained for a different sized fish with
simple counterbalanced shifts in the assumed drift, cruise, and burst
swimming body lengths per second (BL s−1) values.

3.12. Swim orientation and speed
integration

We find one last nuance required of B {2, 3} using the aid of
steady ebb tide flow hydrodynamics and the transit times of tagged
and modeled salmon within our river reach (Figure 8 upper-right
dyad). During ebb tide flow, tagged salmon zig-zag at a travel
rate that can only be qualitatively reproduced in simulation if the
ELAM fish is partially positive rheotactic, that is, the modeled
individual orients their swimming facing slightly into (against) the
oncoming water current (see the orientation of the swim vectors
in Figure 7 lower-left). Whenever water speed exceeds the fish’s
cruise swim speed of 2 body lengths per second (Beamish, 1978) we
prescribe that the rheotactic orientation of B {2} and B {3} increases
positively by 10%. The 10% is only a rheotactic increase in the
preferred orientation θo and not an absolute angle relative to the
water flow vectors.

In behavior rule computations thus far, the simulated fish’s 3-
D orientation is based on a local coordinate system tied to the
direction in which the salmon is pointing its head, which can
change every time increment. In the xy-plane of the local (fish

heading) coordinate system, 0◦ is straight-ahead, 180◦ is behind the
individual, 90◦ is to the left, and 90◦ (or 270◦) is to the right of the
individual. Water pressure (depth) varies parallel with gravity, so
we maintain the local and global vertical coordinate systems as the
same. When the local 3-D orientation and swim speed is computed,
we can then use how the salmon is oriented in the global Cartesian
mesh of the Eulerian-based hydrodynamic model to compute the
component swim vectors uvolitional, vvolitional, and wvolitional, which
completes the spatial displacement Equation 10.

3.13. Model time step

We find that simulated salmon need to make movement
decisions at 2− s increments in order to react quickly in fast
water. Longer time steps increase the number of mesh boundary
encounters as well as scenarios where simulated salmon are
hydrodynamically captured (entrained) that, by contrast, tagged
fish successfully avoid. Depending on the scenario, our cognitive
algorithm ensemble generally requires several discrete time steps
for an acute stimulus response to rise within the hierarchy of
competing behaviors and enable the simulated fish to successfully
realize an aversive maneuver before capture. We find that 2 s is
the longest increment permissible for the requisite number of time
steps to occur that allow acute stimulus responses such as B {4}
to achieve the avoidance observed in tagged salmon in rapidly-
changing hydrodynamics near infrastructure. Thus, the 2− s time
step is an upper-bound on the increment length for our river
analysis. We forgo smaller time increments because it increases
model runtime without a needed benefit for our study setting.

All hydrodynamic values are linearly interpolated spatially
from their nearby mesh storage locations (e.g., cell vertex/node,
cell center, or cell face center) to the precise fish centroid location
and seven surrounding sensory points every 2 s. First, all stimulus
values are interpolated spatially in linear fashion to the precise
fish position and seven sensory points for each of the adjacent
3−min intervals on either side in time from the available
hydrodynamic model output. Then, second, stimulus values are
linearly interpolated to the 2− s increment of the fish’s decision
moment from the adjacent 3−min interval values.

Most parameters of the fish cognition algorithm ensemble
(Table 6) are intrinsically linked to the time step increment
in their present form. Changes to increment length require
counterbalancing other parameter values in order to compensate
and retain the same cognitive dynamics achieved with another step
length. Parameter re-balancing, however, occurs in a nonlinear,
multidimensional space that can be challenging to negotiate.
Practically, changing the time increment length usually involves
recalibrating the model. Insulating model performance from
increment length may be possible as a future improvement and,
presently, may be found in limited form in components such as
swim orientation step length.

3.14. Lagrangian encounters with the
Eulerian mesh boundary

A key but often overlooked issue that can arise and have
large, unintended effects on the destination of simulated volitional
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FIGURE 8

Setup of the ELAM analysis (upper-left), example tagged and simulated salmon paths with a passive particle (upper-right), movement mode
heatmaps (lower-right), and tabulated downriver entrainment and movement mode proportions (lower-left). Spatial extent of the hydrodynamic
model is based on available river gage (Figure 1) and bathymetric data. ELAM model spatial domain is based on the extent of salmon acoustic-tag
telemetry data from 2008 to 2009 (Romine et al., 2013) and 2014 (California Department of Water Resources, 2016; Romine et al., 2017). Tagged
salmon exits are used to assess the accuracy of simulated individual (particle, salmon) entrainment. Example swim paths of tagged salmon (black
path) and ELAM fish (path colored by behavior B, Tables 4, 5) are provided in dyads for different tidal environments (ebb, flood, ebb+flood tide
flows), which can be compared to the passive particle (white path). The example simulated particle and salmon paths within each dyad are released
from the same location (white circle) near where the tagged fish is first detected. The ELAM salmon and particle are simulated with steady
hydrodynamics (unchanging with time) using a snapshot extracted from the flow field time series that is representative of the river flow conditions
when the tagged fish was actively swimming. The underlying cognitive dynamics of each example ELAM salmon are illustrated in greater detail in
Supplementary Figures 1, 3–5 along with candidate stimulus TKE. Heatmaps are generated from the simulated individuals (particles, salmon)
responding to time-varying hydrodynamics changing every 3 min across all simulation windows. Heatmap values are computed the same as in
Figure 3 and, just as in Figure 3, only modeled fish detections are heatmapped, that is, the paths are not implied from the position sequence. Note
that modeled individuals are detected perfectly at 2− s increments throughout the domain, unlike tagged salmon. One reason why simulated
salmon exhibit less milling near the piers (movement mode #4) in year 2009 (*) compared to year 2014 may be that the bridge is not rendered in the
2009 mesh (Figure 5) and, thus, its hydrodynamic impact on the river is not perceivable to ELAM salmon.

individuals in bounded 2-D or 3-D environmental domains is their
interaction with the boundary of the computational Eulerian mesh.
River hydrodynamic modeling generates the mesh as part of the
development process. We simulate fish within the original mesh of
the hydrodynamic model in all of our work regardless of element
type and geometric mesh tessellation. The hydrodynamic domain
has boundaries at the water surface, riverbank, and river bottom.
The domain tessellation can change each 3−min timestep, and
this is relatively common in modern hydrodynamic models that use
adaptive meshing methods.

The behavior repertoire is built and parameterized to make
every attempt within reason so that simulated salmon respond

only to hydrodynamic stimuli including near boundaries such as
the riverbank and bottom bathymetry. Limiting interaction with
physical boundaries is a key reason why our timestep is 2 s.
As a backup for when our simulated fish do physically interact
with a boundary, every practical attempt is made to recover
hydrodynamically-mediated decisions within a single timestep of
the behavior model.

When a fish’s sensory ovoid runs up against a physical boundary
in the Eulerian mesh, compressing one of the cardinal point
distances toward the fish, the individual is re-oriented away from
the feature for that timestep alone. Our model works in double
precision, yet even still the numerical processes within a computer
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are neither infinite nor perfect. Situations arise where double
precision calculations store a fish adjacent to a boundary by an
infinitesimal distance on the other (dry, non-water) side. Then,
at the next timestep, the model interprets the same position as
outside the meshed domain. We employ heuristics in an attempt to
recover fish violating the boundary by repositioning the individual
to the nearest mesh cell center, typically, a very short distance
from the point of violation. Hydrodynamic models typically use
tessellation methods in which there is a graded approach to cell sizes
where they are small near physical boundaries and larger nearer
the thalweg or wide unobstructed water flow regions. Therefore,
our heuristics generally result in very small location displacements
while recovering hydrodynamically-mediated behavior within a
single timestep. As a third backup, when the boundary interaction
heuristics are insufficient, then the modeled fish is removed from
simulation. Removals are seldom. Next, we provide examples of
boundary interaction scenarios that do not always have obvious
conceptual or computational heuristic solutions.

Mesh boundary encounters in the following scenarios can
result in the loss of simulated individuals, at times, depending
on the exact circumstances. First, the scenario of a simulated
individual in 3-D located near the water surface and riverbank.
At the next time step, the water surface drops but simulated
movement behavior (an imperfect abstraction of the real world)
keeps the individual near the previous xy-position where there is
no longer water, or even a mesh if the grid is adaptive. Second,
the scenario of two individuals at the same xy-position but at
different depths, one at the water surface and one at the river
bottom. At the next time step, the water surface drops. If we
lower the individual at the water surface to maintain its depth,
the one at the bottom cannot be handled similarly because it
would then be placed under the river. If we chose to do nothing
for the one at the bottom yet lower the individual at the water
surface, then the ELAM model now treats simulated individuals
differently according to depth — a model complexity that can have
unintended consequences. Third, and similar but not exactly the
same example as described earlier, the scenario of an individual
at the riverbank an n-th decimal place (spatially) inside the river
domain. At the next time step, computer precision/truncation
results in the individual now an n-th decimal place outside the
meshed domain. If the mesh has adapted during the timestep
change, then sometimes there is no clear solution heuristic for
identifying the most appropriate interior cell in which to place the
fish. Fourth, the scenario of an individual in a wetting-and-drying
scenario (Lai, 2010) where the Eulerian mesh changes with river
inundation and water may not be spatially contiguous at all times
near a riverbank or in the floodplain. A simulated individual near
the riverbank or in the floodplain can be cut off from the river
during drying cycles and find itself trapped with no way out when
its refuge dries entirely.

Some of the above issues have robust solutions for passive
particles and/or certain types of mesh geometries (tessellations).
We want the same boundary encounter heuristics applied across
all simulated fish, particles, and 2-D/3-D mesh element shapes to
prevent such attributes from contributing to differences between
applications. To date, we have found neither an optimum nor
computationally-efficient solution heuristic for all combinations of
possible mesh tessellation, element shapes, boundary topologies,

and time-varying mesh/element/boundary changes that can
arise in 2-D and 3-D.

3.15. Synchronizing observed and
modeled passage/entrainment

Passage (entrainment) is often a critical biological criterion
determining the engineering success of water operations
management or the design of an in-river structure. To assess
the performance of our approach, we want to quantitatively
reproduce the passage/entrainment proportions of tagged salmon
using the ELAM model. Synchronizing real and simulated worlds
for comparative analysis, however, is not straightforward. Tagged
salmon in 2008–2009 (Romine et al., 2013) and 2014 (Romine
et al., 2017) may occupy our spatial domain prior to the simulation
window and/or remain in the area afterward (Figure 8).

Transects immediately downriver of the junction (Figures 3, 8)
are used in our analysis to determine the final passage/entrainment
(permanent exits) of tagged salmon (Table 2). The available
telemetry data does not afford us the ability to move the transects
further downriver. Tagged fish that occupy our domain before the
simulation window and remain in the area afterward are not part
of our analysis as these individuals represent a movement mode
that our model does not attempt to reproduce. Non-downriver
movement may be rooted in the tag being eaten by a predator not
perfectly filtered previously (Romine et al., 2014), in a dead salmon
on the riverbed, or long-duration milling/riverbank movement
modes. We only use tagged fish with a predator probability
less than 0.85 in the range [0, 1] (Romine et al., 2014) at the
time of their final, permanent exit for comparison with modeled
entrainment (Figure 3e and Table 2). We do not count tagged
fish that linger beyond our simulation window as part of the
real-world entrainment proportion regardless of when they enter
the domain (Figure 8). However, we do count tagged salmon
that permanently exit during our simulation window even if they
occupy the area beforehand.

Year 2009 predator probabilities from Romine et al. (2014)
are formatted such that we can identify and remove suspected
predators at a tag’s first-ever detection (Figures 3d, 8 and Table
2). Year 2014 probabilities are formatted differently, so we assume
all initial tag detections are salmon. Tagged salmon detected for
the first time in our domain during the simulation windows,
but that are not part of the passed/entrained tally are often fish
released into Georgiana Slough that remain downriver of the
transect; that is, these tagged fish reveal themselves in our domain
only within the small spatial region downriver of the transect in
Georgiana Slough. Our conceptual tradeoffs result in tagged salmon
passage/entrainment into Georgiana Slough and downriver into the
Sacramento River that total 100%.

Simulated salmon are tallied as they exit the ELAM model
domain downriver of the junction (Figure 8) instead of the transect
to allow individuals the opportunity to move upriver back into the
junction area and select a different route from their first choice.
In this way, the modeled and empirical passage proportions are
comparable as it is the final passage decision of the observed
(telemetry) fish that are factored. The spatial extent of the ELAM
model domain is shortened from the river flow field mesh to
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more closely align with available telemetry field data (Figure
8). Simulated individuals, salmon or particles, that do not exit
downriver (Figure 8) result from one of the following reasons:

• out-of-bounds release;
• mesh boundary interaction requiring removal;
• exits upriver;
• freely remains in the domain.

Simulated salmon exiting the domain at the upstream
boundary are not factored into modeled passage/entrainment,
which considers only downriver entrainment. Simulated salmon
released on a particular day are allowed up through the end of
the following day to exit after which they are removed from
simulation and labeled as remaining in the domain. We do
not attempt to capture the dynamics of salmon that linger in
the domain longer than 24− 48 h. Simulated individuals that
remain in the domain are often releases near the end of the
simulation window. However, some non-exiting particles are
caught in an eddy and swirl in the cul-de-sac of the Delta Cross
Channel inlet region, and some salmon exhibiting a riverbank
movement mode are removed downriver of the junction due to
drying mesh elements.

Simulated individual exits are equivalent to measuring their
passage/entrainment at the transects so long as they do not
incur a mesh boundary interaction between the transect and
domain extent necessitating its removal from simulation. Fish
removed due to boundary interaction issues are not considered in
passage/entrainment proportions. Our conceptual tradeoffs result
in simulated entrainment into Georgiana Slough and downriver
into the Sacramento River totaling 100%.

3.16. Release of simulated individuals

Five simulated individuals are released at the location (xy-
position) and time of each initial tag detection within our
simulation window (Figure 8). We avoid releases associated with
tagged fish that have been in the area for days or weeks. Releasing
five simulated individuals per tagged salmon is an arbitrary
judgment based on balancing model runtime and the replicates
needed to average out the required/unavoidable stochasticity in our
cognitive algorithm ensemble (Table 6). Replicates also serve as
a contingency against losing individuals during simulation from
mesh boundary interactions. We believe the above approach makes
the best use of our limited field data (Figure 3).

Vertical positions from the underwater acoustic-tag telemetry
(z-coordinate values) are not accurate enough to determine water
column locations, so we have to artificially generate the release
depths at each xy-position. We assume the Sacramento River’s
depth is too shallow for salmon to exhibit a lognormal depth profile
(Smith et al., 2010; Goodwin et al., 2014). Instead, here, we use a
simple normal, or Gaussian, distribution N

(
µ, σ2) with a mean

depth µ = − 2.5 m and a standard deviation σ = 0.75 as follows:

Release depth = µ + σζ (35)

where ζ is a value drawn from the standard normal distribution
N
(
µ = 0, σ2

= 1
)
. In some cases, a release is out-of-bounds

due to a depth (z-coordinate) generation that is under the river
or imprecision in the field telemetry xy-position placing the fish
outside the river channel in the xy-plane (Figures 3, 8). In 3-D
simulations for year 2009, a release is out-of-bounds if not within
the river domain in the horizontal plane at the fish’s depth. In 2-D
modeling for year 2009 and 2014, a release is out-of-bounds if not
located within the horizontal plane of the river channel as depth
does not factor into the simulations. We do not manually modify
out-of-bounds release locations to convert them into in-bounds
positions. Simulated individuals (salmon or particles) released out-
of-bounds are immediately removed from simulation and play no
further role in our results.

A minimum proportion of simulated individuals (salmon or
particles) must exit the domain downriver within the simulation
window for modeled entrainment to be valid in our analysis,
either in comparison with real-world patterns or, later, as part
of a prediction about the future. We arbitrarily require that the
proportion of simulated individuals exiting the domain downriver
be greater than the proportion of total tagged salmon exits
(Table 2), less ∼10%. In other words, since 86.6% and 85.1% of
tagged salmon permanently exit during each seven-day simulation
window for year 2009 we require that ≥ 75% of simulated
individuals must exit the domain downriver. We require ≥ 35%
of simulated fish must exit within each 2014 three- or four-day
window (Figure 8) since only 43.0% of tagged salmon permanently
exit during the timeframe of 22–24 March. The criteria we use
is arbitrary but a useful way to flag and eliminate the use of
outcomes where, for example but not encountered in this work, too
many modeled fish are removed from simulation due to boundary
violations described earlier. If the proportion of downriver domain
exits does not meet the minimum thresholds, then there may be
reason to doubt the synchrony of the simulation relative to the
real world and, therefore, invalidates model results regardless of
the accuracy achieved. In our study, the downriver exit proportions
of simulated individuals (salmon and particles) always exceed
86% (Figure 8).

4. Results

Once the ELAM model is built and parameterized, in this case
using the 2009 data alone, we simulate salmon and passive particles
through the river reach. Later, we run the same model without
any modification to year 2014 river conditions that include a novel
fish guidance structure not present in year 2009 (Figure 1). To
assess our stimuli responses (Tables 4, 5) and cognitive algorithm
ensemble (Table 6), we first compare the movement swim paths of
tagged and simulated salmon. Then, second, we compare the key
quantitative metric at our location for water operations engineering
and management: the proportion of salmon that enter Georgiana
Slough versus continue downriver using the Sacramento River.
Third and last, since near-term future predictions generally do not
have the advantage of knowing beforehand how fish will enter
the domain spatially or temporally, we evaluate many different
spatiotemporal release distributions.

As passive particles are subject to the same analysis assumptions
as modeled salmon, they can tell us whether simulated outcomes
(paths, entrainment) are primarily due to our model setup
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idiosyncrasies such as the release assumptions and transect
locations. Simulated particles also serve another important purpose
in waterways engineering design. Passive particles are analogous
to the historical use of colored dye in scaled physical models
of river infrastructure, which has long served as an important
engineering method for assessing in-river hydraulic structure
design and management alternatives. To simulate passive particles,
all the behavior computations still occur just as with modeled
salmon, but we override the computed volitional swim speed
vectors (uvolitional, vvolitional, wvolitional) to 0 m s−1 just prior to
the implementation of equation [10]. Overriding the swim speed
to zero eliminates the volitional movement contribution of all
behavioral stimulus responses.

4.1. Swim paths

4.1.1. Year 2009 hindcast
Our first comparison of model versus real-world data leverages

information about when and where tagged salmon enter the
domain. We compare simulated individual (particle, salmon)
movement paths with tagged fish two different ways: qualitative
comparisons and heatmaps of their movement modes.

First, to qualitatively illustrate simulated behavior and paths
across diverse tidal (ebb, flood, ebb+flood) environments without
the complexity of varying hydrodynamics, we select date and time
blocks when the river flow is relatively steady (unchanging with
time) and tagged salmon are actively swimming. We use a single
3-D output, or snapshot in time, extracted from the original flow
field time series for each example tidal (ebb, flood, ebb+flood)
environment. Using the extraction (Figure 8 upper-right dyads), we
simulate a passive particle (white path) and salmon (path colored by
behavior B from Tables 4, 5) released at the same location (white
circle) near where the tagged fish (black path) is first detected
during the steady hydrodynamic window.

Tagged salmon paths and displacement differ markedly from
passive particles across the diverse ebb, flood, and ebb+flood
tide flow environments. Our stimuli responses (Tables 4, 5)
and cognitive algorithm ensemble (Table 6) result in volitional
swim speed vectors (uvolitional, vvolitional, wvolitional) that modify the
particle path to more closely resemble that of tagged salmon in
a variety of examples (Figure 8 upper-right dyads). In ebb tide
flow, the simulated fish qualitatively resembles the zig-zag path of
a tagged salmon via behaviors B {2, 3} emerging from responses to
VM and GM .

Eulerian-Lagrangian-agent method modeled fish qualitatively
reproduce other, different movement patterns of tagged salmon
during ebb+flood and reversing (flood) river conditions near
slack tide. In the combined ebb+flood flow condition, ELAM
salmon exhibit zig-zagging in the upper portion of the reach
where water flows downriver while closer to the junction the
model reproduces fish avoidance of Georgiana Slough. In the flood
tide condition, the model reproduces salmon location holding or
milling near the bridge piers where water flow direction reverses
and moves upriver.

An explanation for simulated salmon not following the flow
during tidal shifts (i.e., both the ebb+flood and flood tide
conditions) can be visualized in Supplementary Figures 3–5 (part

G in the upper-right). Without the advective contribution from
fast moving water, the dynamic of opposing behaviors B {2, 3}
results in the emergent property of milling. The additional 10%
positive rheotactic orientations of B {2} and B {3} aid the simulated
salmon in not being appreciably swept down- or up-river. The
emergent result appears to be a simulated milling that can, at
times, resemble a correlated random walk. Here, however, the
movement pattern does not stem from a correlated random
walk parameterization in the classic sense; instead, the movement
emerges from two competing, opposing behaviors with often-
contradictory orientations.

The 10% increase in positive rheotactic orientation of B {2}
and B {3} aids, but is not solely responsible for preventing,
the simulated fish from being swept with the water. Since the
10% is only an increase and not an absolute orientation angle,
the addition is not sufficient to offset a preferred direction
in line with downstream flow. Near-slack tide, when water is
moving slowly either downriver (Supplementary Figures 3G,
4G) or upriver (Supplementary Figure 5G), the preferred
orientations of B {2} and B {3} also aid the individual in not being
appreciably swept down- or up-river. In the downriver water
flow scenario near the junction with Georgiana Slough, milling
is aided by repulsion to acceleratory stimuli, B {4}, as seen in
Supplementary Figure 4G.

Second, we categorize all of the simulated salmon
responding to time-varying hydrodynamics used to compute
passage/entrainment according to their predominant swim path
pattern using the same visual inspection process earlier for
tagged fish. Heatmaps and the movement mode proportions of
simulated fish (Figure 8) and tagged salmon (Figure 3) highlight
the differences and similarities in the swim paths of individuals
used to compute passage/entrainment. Heatmaps are based on
detected positions, which are not sampled equally between real and
simulated worlds. Detected positions from underwater telemetry
in the real world are not perfect (Figure 3) whereas modeled
fish locations are known with certainty at 2− s increments
throughout the domain.

Simulated fish swim paths are more concentrated along the
river thalweg than for tagged salmon (Figure 3 vs. Figure 8
heatmaps). The larger proportion of zig-zagging in simulated
salmon is anticipated given that this movement mode is a focus
of our behavior rule development because it is, by far, the most
predominant pattern of tagged salmon in our river reach (52.8%
of tagged fish). Note the bridge is not rendered in the 3-D year 2009
mesh (Figure 5) and, thus, the piers’ hydrodynamic signature is not
perceivable to ELAM salmon for these simulations. Nonetheless,
in the reversing flood tide flow scenario, simulated salmon in
year 2009 still resemble some forms of milling or location holding
without the pier-induced hydrodynamics (Figure 8). The lack of
the bridge piers in the rendered 2009 hydrodynamics, however,
is likely one reason why simulated salmon exhibit less milling
near the piers (movement mode #4, Figure 8) than modeled
fish in year 2014.

4.1.2. Year 2014 out-of-sample prediction
(engineered fish guidance)

We apply our cognitive algorithm ensemble (Table 6)
developed and calibrated using year 2009 data to out-of-sample,
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year 2014, river conditions that include a floating wall or
surface-oriented guidance boom called the “floating fish guidance
structure” (FFGS, Figures 1, 9). The surface guidance boom extends
below the water surface to a depth of 5 ft or 1.52 m (California
Department of Water Resources, 2016; Romine et al., 2017). The
boom and year 2014 hydrodynamics are modeled with a 2-D
depth-averaged model (Lai, 2010).

We find that year 2014 simulated salmon swim paths in
2-D are not as heterogeneous as 3-D trajectories from year
2009. At least two factors are responsible. First, year 2014
lacks vertical heterogeneity. Second, horizontally, the 2-D depth-
averaged hydrodynamic model output has a more diffuse laterally-
distributed high-velocity core compared to the flow field rendered
with an explicit 3-D flow field model (Figure 4). That is, in our 2-D
flow field simulation, the higher velocity core is less concentrated
in the river thalweg and distributed across a wider portion of the
river’s width compared to 3-D rendering of the flow field. A 2-
D representation of the river does not perfectly correspond with
a particular depth from an explicit 3-D rendering of the flow
field since 2-D and 3-D modeling assumptions are different. The
more diffuse high-velocity core in 2-D flow field rendering has
a concomitant impact on hydraulic derivatives, particularly GM .
The impact of a more diffuse high-velocity core on GM results in
wider cross-sectional excursions of the simulated fish. The greater
amplitude of 2-D zig-zag paths can also be attributed to the physical
domain of the river. Natural channel cross-sections are often
u-shaped (Figure 5 upper left), so simulated salmon deeper will
have less width (amplitude) before encountering hydrodynamics
that trigger re-orientation compared to fish nearer the water surface
where the river is widest.

Despite inherent tradeoffs involved with 2-D hydrodynamic
simulation relative to 3-D, we can still use year 2014 outcomes
to explain how salmon guidance and entrainment operates in the
context of a salmon’s past hydrodynamic experiences integrated
at multiple scales. The simulated salmon swim paths in Figure 9
are responding to time-varying hydrodynamics at the same time
when tagged fish are observed swimming through the river reach.
Simulated salmon paths in Figure 9 are included in the Figure 8
heatmaps. Simulated salmon perceptually sense and respond only
to river hydrodynamics associated with the boom’s presence in the
water flow field, that is, modeled fish do not physically interact with
the FFGS structure rendered in the mesh and they can pass through
to the other side by, conceptually, swimming under in 2-D.

We find that caution should be exercised when attributing
observed salmon movement and entrainment to a surface guidance
boom’s configuration and alignment. When the FFGS is deployed
(on), hydrodynamics that emanate from the structure result in
a filament of GM that starts at the boom downriver endpoint
and extends to the riverbank apex at the junction point where
the river bifurcates (Figure 9). Salmon initially deflected at the
boom toward the Sacramento River can be subsequently attracted
to the GM filament, drawing them toward Georgiana Slough
(Figure 9A dashed gray region). However, not all boom encounters
are followed subsequent attraction to the GM filament (Figure 9D
dashed gray region). Salmon can be hydrodynamically deflected
toward the Sacramento River at the boom (Figure 9A) and also
by the GM filament downriver of the structure (Figure 9B dashed
gray region). If the perceptual context is different, however, the

filament can attract salmon into Georgiana Slough (Figure 9C
dashed gray region).

Entry into Georgiana Slough is not always a result of filament
attraction, as river flow can re-orient a salmon toward Georgiana
Slough even if the salmon is initially deflected toward the
Sacramento River (Figure 9E dashed gray region). Salmon can also
respond to the boom by milling behind the structure (Figure 9F
dashed gray region) or in front between the FFGS and dock on the
opposite riverbank (Figure 9H dashed gray region).

River flow alone can direct salmon into the Sacramento River
when the boom is not deployed (Figure 9G dashed gray region).
Also, the GM filament exists in shorter form when the FFGS is off,
extending upriver from the riverbank apex point of bifurcation.
At times, the shortened filament can act in combination with GM
emanating from the riverbank near the boom to attract salmon into
Georgiana Slough even when it requires the fish to cross the critical
streakline or water flowlines entering separate routes downriver
(Figure 9I dashed gray region).

In summary, GM can both repulse, B {2}, and attract, B {3},
nearby salmon. Broadly, influence of the guidance boom on salmon
depends on the context of the fish’s decision-making at the time of
the boom encounter. Specifically, perceived hydrodynamic stimuli
depend not only on the fish’s momentary sensing but also on its
memories of past hydrodynamic experiences that are integrated at
multiple scales.

Figure 10 summarizes all computational movements of
simulated salmon. The increase in riverbank boundary interactions
in 2-D (Figure 10) compared to 3-D and 2-D extractions of year
2009 hydrodynamics is a result of releasing simulated salmon where
tagged fish are first detected. Some tagged fish show up for the first
time at the riverbank where the geometric configuration of Eulerian
mesh elements are complex because of wetting and drying. As the
water surface rises and falls with river flow, mesh elements along
the riverbank are identified as wet or dry by the 2-D hydrodynamic
model. Since the ELAM model does not permit simulated fish to
enter or cross dry mesh elements, the geometric configuration of
wet elements at the river’s edge can, at times, be complex and
in a practical sense trap some individuals from moving into the
river toward the thalweg. Simulated fish that remain trapped along
the riverbank for the duration of the simulation window in year
2014 show up in Figure 10 as mesh boundary encounters, but are
otherwise not factored into our analyses. For instance, the trapped
simulated individuals are treated as out-of-bounds releases and do
not contribute to the swim path heatmaps.

4.2. Passage/entrainment

The model performs well in the quantitative performance
metric of greatest interest to our study, passage/entrainment
(Figure 11). Final passage/entrainment is the permanent, final exit
of individuals into either Georgiana Slough or the Sacramento
River downriver of the junction (Figure 8). Root-mean-square
error (RMSE) is a simple yet robust metric that quantifies the
difference in the final passage percentages (i.e., ultimate measured
fate or entrainment) between the tagged and simulated salmon
across 7− day contiguous multi-day windows for year 2009 and
3− and 4− day contiguous windows for year 2014. The ELAM
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FIGURE 9

Year 2014 tagged and ELAM salmon response to the engineered surface guidance boom (FFGS) and the resulting entrainment. The ELAM model is
built and calibrated with 2009 data, then applied without modification to year 2014 river conditions with the FFGS. Simulated salmon swim paths are
responding to time-varying hydrodynamics at the same time that tagged fish are observed swimming through the river reach. Simulated salmon
paths in the figure are included in Figure 8 heatmaps. Simulated salmon paths are colored by the behavior B (Tables 4, 5) and the tagged fish
trajectory is colored black. Movement dynamics of simulated and tagged salmon near the FFGS are provided as dyads, where the left side is a
zoomed-out view of the river reach and the right is a zoomed-in view of the FFGS with GM contoured as a fill color and river water flowlines colored
separately. Each dyad (A–I) represents a different category of context-based salmon response to surface boom hydrodynamics. Additional details:
the tagged salmon in panel (A) returns later and the one in panel (I) several days later. Paths in panel (B) illustrate a tagged and ELAM salmon that
begin around midnight while the hydrodynamics are plotted for 8 am when the fish pass the FFGS and junction. In panel (E), we add a light gray
geometric line and arc angle to ease visual interpretation of the tagged salmon direction before re-orientation toward Georgiana Slough. The
tagged salmon path in panel (H) is longer than displayed and truncated here to ease visual comparison where primary similarities exist with the
simulated fish.

Frontiers in Ecology and Evolution 33 frontiersin.org

https://doi.org/10.3389/fevo.2023.703946
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-703946 June 10, 2023 Time: 15:10 # 34

Goodwin et al. 10.3389/fevo.2023.703946

FIGURE 10

The distribution of behaviors B {1, 2, 3, 4, 5} over time within the simulated salmon population throughout the river reach that underlie the
movement mode heatmaps (Figure 8), simulated salmon paths near the FFGS in year 2014 (Figure 9), and modeled entrainment (Figure 11). The
sum total of simulated salmon making decisions within the ELAM model domain at any given time (black) is decomposed into the number
implementing each constituent behavior. Behavior proportions are overlaid, not stacked, with behaviors least represented in the population plotted
overtop more predominant responses. Note how flow hydrodynamics as viewed by the gage stations (Figures 1, 2) change temporally and also by
location within the river reach. Simulated salmon behaviors are updated every 2 s in response to river hydrodynamics that update at 3−min
intervals. Note that B {5} is a vertical-only response that occurs simultaneously together with an xy-plane orientation set by one of the following
behaviors from B {1, 2, 3, 4} and can only be implemented in the year 2009 3-D mesh.

model generally reproduces past and predicts the near-future
passage/entrainment with an RMSE ≤ 10 (Figure 11).

We run sensitivity analyses to evaluate some key uncertainties
in the model and its intended future use. Specifically, the standard
deviation following the ± symbol (Figure 11) is generated by
varying the random number generator seed that is part of the
algorithm ensemble (Table 6) and, for 3-D, we also vary the random
guesses of the release depth (z-coordinate).

Simulated salmon and passive particles that make up the
passage/entrainment proportions are responding to time-varying
hydrodynamics, and the classified movement modes of all these
modeled individuals are heatmapped (Figure 8). A temporal
distribution of behaviors (Figure 10) throughout the river reach
underlies resultant passage/entrainment (Figure 11). No single
hydrodynamically-mediated response behavior is solely responsible
for the passage/entrainment pattern at the junction.

Passive particle passage/entrainment (Figure 11 blue shade
background) represents neutrally-buoyant individual movement
when the perceptual decision-making behavior is turned off.
Passive particles are analogous to an entity merely following
the flow/flowlines.

4.3. 3-D vs. 2-D

In 2-D simulations, both the vertical z-coordinate (depth-
oriented) hydrodynamics and fish swim orientation/speed
are eliminated. In the 2-D slice extractions for year 2009, a
2-D xy-plane horizontal slice is extracted from just under
the water surface for each output in the original 3-D flow
field time series. Simulated salmon passage/entrainment is
resilient to the simpler 2-D descriptions of the river (Figure 11).
Also, we provide an example comparison of a 3-D swim path
(Supplementary Figure 1) and its 2-D counterpart within
an extracted slice of the same hydrodynamic condition
(Supplementary Figure 2).

The 3-D vs. 2-D passage/entrainment outcome suggests that
the analysis of salmon with modeled perceptual decision-making
may not always require the maximum permissible hydrodynamic
resolution. Elimination of the vertical hydrodynamics and
swim orientation/speed alone does not appreciably change the
simulated salmon entrainment or trajectories, e.g., comparing
Supplementary Figures 1 vs. 2, in our relatively shallow system
domain. Nonetheless, modeling hydrodynamics as depth-averaged
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FIGURE 11

Comparison of tagged versus modeled salmon passage/entrainment. The ELAM model is developed with year 2009 data (left and middle panels),
then applied without modification to out-of-sample, year 2014, river conditions that include a surface-oriented boom for guiding salmon (right
panels). Passive particle passage/entrainment is plotted with a blue shade background. Each dot represents a comparison of tagged salmon versus
simulated individual (fish or particle) passage/entrainment on a percentage basis (%) downriver into either Georgiana Slough or the Sacramento
River. There is one dot for the Georgiana Slough proportion and one for the Sacramento River. There are two black dots (Georgiana, Sacramento)
for each simulation window (Figure 2), which represent the total cumulative passage/entrainment; for instance, in year 2009, there are two black
dots for the cumulative passage during 1–7 January and another two black dots representing the total entrainment across 16–22 January, resulting
in four total black dots. Red dots are smaller in magnitude because they represent the daily portion of the total (window) percent that went
downriver in each route. The root-mean-square error (RMSE) is based on the cumulative passage/entrainment on a simulation window basis, i.e.,
the black dots. No 3-D model is used for year 2014; instead, a 2-D depth-averaged model is used to render year 2014 river hydrodynamics with the
surface guidance boom.

in lieu of 3-D phenomena does appear to influence the character
of year 2014 swim path cross-sectional excursions compared to
those in year 2009 regardless of whether the simulated salmon
movement is generated from 3-D or 2-D slice representations of
the water flow field.

4.4. When salmon entry pattern is
unknown

Future predictions of fish movement behavior for informing
water operations engineering and management do not always
have the benefit of knowing how salmon will enter the domain
of interest. We revisit year 2009 and 2014 passage/entrainment
results without the benefit of tagged salmon to inform the release
of simulated individuals (fish and passive particles) and with
the added simplification that B {4} is a cruise speed response
regardless of the river flow field. The B {4} simplification stems
from more recent continuing efforts to simplify the model wherever
possible, finding that the parsimony has an undetectable impact on
simulated passage/entrainment.

While one can discount the timing of releases in steady
(unchanging with time) hydrodynamics, e.g., Smith et al. (2010),
when the environment itself varies with time then both the
time sequencing and spatial distribution of individual entries into
the domain could impact model outcome. To release simulated
fish and passive particles into the domain without the aid of
tagged salmon data, we arbitrarily use three different quantities
of individuals per 24-h period, three spatial configurations (i.e.,
point, normal, log-normal distributions), and up to twelve different
time intervals (Figure 12). Spatially, we release all simulated
individuals within the same cross-sectional transect located at “abc”
(Figure 8). Temporally, we release individuals separately and in
clusters (Figure 12 upper right). Simulated individuals are released
irrespective of the river flow condition at the moment of release.

We plot the results of the sensitivity analysis in the form of root-
mean-square error (RMSE) of the release alternative outcomes. The
RMSE quantifies the difference in final exit passage/entrainment
proportions (ultimate measured fate) between tagged salmon and
the simulated individuals. A result is not plotted if the number of
permanent exits downriver is less than 75% of the total attempted
releases, which occurs only in two instances: point releases of 1, 440
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FIGURE 12

Modeled passage/entrainment without the benefit of tagged salmon to inform the release of simulated individuals. Simulated individuals (fish and
passive particles) are released using three different quantities per 24-h period, three spatial distributions (point, normal, log-normal) and, in time, up
to twelve different ways (upper right). All simulated individuals are released within the same cross-sectional transect located at “abc” (upper left).
Model accuracy in the form of root-mean-square error (RMSE) for each release alternative is plotted separately using a unique line and color
combination (upper middle). The RMSE of simulated fish passage/entrainment relative to tagged salmon is plotted using black or shades of orange
while passive particles use shades of blue (upper middle). RMSE quantifies the difference in final exit passage/entrainment proportions (ultimate
measured fate) between tagged salmon and simulated individuals (bottom half).

passive particles in the year 2009 3-D domain when released at
intervals of 6 and 21 min apart.

Simulated fish passage/entrainment is resilient to alternative
releases when RMSE is based on a contiguous passage/entrainment
fate integrated over multiple days: 7− day windows for year 2009
and 3− and 4− day windows for year 2014 — the same method in
Figure 11. Passive particles can resemble the passage/entrainment
during 2014 hydrologic conditions when released using a point or
normal spatial distribution, but log-normally distributed passive
particles biased toward the outside bend of the river perform poorly
for both year 2014 and 2009.

5. Discussion

We describe a cognitive approach to the mechanistic modeling
of fish behavior responses to river hydrodynamics at the scale
that water operations infrastructure is designed and managed.
The ELAM model quantitatively describes and reproduces
selective tidal stream transport patterns of downstream-migrating

juvenile Pacific salmonids and predicts their guidance and
passage/entrainment patterns in out-of-sample data across diverse
environmental contexts. We find that a mix of behaviors
(Figure 10) underlies our modeled swim paths (Figure 8) and
passage/entrainment outcomes (Figure 11).

Our theoretical approach suggests that a behavioral mix is
most likely to emerge in regions dominated by nonacute stimuli.
ELAM analysis helps conceptualize the nuanced influence that
engineered structures have on the movement of downstream-
migrating salmon (Table 5: Engineering design relevance). The
intended use of the ELAM model is to inform how future fish
passage/entrainment outcomes may result from water operations
infrastructure management and design. A numerical behavior
model in which simulated fish quantitatively reproduce observed,
tagged salmon passage/entrainment patterns (Figure 11) aligns
with the tool’s intended purpose.

Reproducing past animal movement patterns (hindcasting) is
one way to establish confidence in a model’s validity (Getz et al.,
2018; Leitch et al., 2021). A model’s accuracy should stem from the
underlying mechanisms, and comparing quantitative predictions
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to new observational data is one of the strongest tests of scientific
theory (Dietze et al., 2018).

Our goal at the outset of the study was to develop
a decision-support tool capable of quantitatively reproducing
passage/entrainment proportions within an arbitrary root-mean-
square error (RMSE) of approximately ten, similar to previous
work in other environmental contexts (Goodwin et al., 2006, 2014).
In this system, ELAM model accuracy visibly degrades as RMSE
exceeds approximately twelve (Figure 11) and RMSE much below
ten has diminishing benefit.

A key finding of our work is that the repertoire of
hydrodynamic responses in a tidal setting are theoretically
consistent with — a superset of — the behaviors that juvenile
Pacific salmonids exhibit in simpler, steady flow reservoir settings
(Figure 13). Salmon often navigate both reservoirs and dams
in the upper watershed (Martinez et al., 2021) followed by
tidal environments closer to their ocean entry. The ability to
mathematically describe, reproduce, and predict fish movement
behavior across such diverse environments strengthens water
operations decision-support in application to scenarios outside the
range of conditions to which the tool is calibrated, a typical need of
engineering and management design future forecasting.

The model herein is an abstraction of reality and the underlying
mechanics are not a holistic description of salmon movement
behavior or the cognitive architecture of fish. There is no such
thing as a perfect ecological forecast (Dietze et al., 2018). Numerous
questions remain for future study. In the model’s minutiae,
for instance, we identify at least two instances where practical
functionality deviates from anticipated theory. First, E4 differs
from the nsd construct of other stimuli, Equation 20 vs. 2; that
is, our current formulation for describing perceived changes in
intensity does not appear to work as anticipated when using
depth as a proxy for salmon swim bladder pressure. Second,
Ifast
a2 outperforms I2 in Eslow

2 from Equation 24; that is, we
find that I2 in Eslow

2 does not work and that Equation 24 is
the construct that works within our modeling approach for an
immersed individual to perceive meaningful large spatiotemporal
scale changes in river water speed due to the tides. Perhaps the
deviations are the result of simulated abstraction and limited
mensuration of the real world.

At a broader level, our work raises the question of how many
timescales animals may use and how the number might be related
to environmental and social complexity (Rodriguez-Santiago et al.,
2022; Tump et al., 2022; Li et al., 2023). Our work provides
a basis upon which further improvement and advancement is
likely. Further improvement must confront nontrivial tradeoffs that
we discuss next.

5.1. Model realism vs. usefulness

The ELAM is similar to other models in that it is a simple,
finite, and abstract representation of reality. Perhaps the single
biggest challenge of our work is finding the best balance between
model realism and usefulness in the context of how the tool is to
be used. Tradeoffs between model realism and complexity are a
common problem (Getz et al., 2018). Increasing model complexity
can come at the expense of concomitant deleterious impacts on

tool transferability to settings beyond which the tool is calibrated
(Yates et al., 2018).

Realism can be added in the form of more detailed
hydrodynamics and/or behavior rules. The practical downside
of increasing the model’s complexity for realism alone is the
additional computational burden incurred, which then reduces the
resources available to explore and improve the model elsewhere.
Determining the most important real-world features for a model to
reproduce is paramount, yet rarely straightforward. The demands
of scientific inquiry and engineering construction deadlines are
rarely in perfect synchrony.

Hydrodynamic modeling impacts the realism of simulated
trajectories. Additional flow field heterogeneity and stochasticity
provided by DES or LES compared to RANS (Figure 4) would
likely result in more heterogeneous, and thus realistic, simulated
trajectories. As is, our modeled salmon entrainment predictions
(Figure 11) are generally insensitive to vertical hydrodynamics and
vertically-aligned movement behavior B {5} in the relatively shallow
Sacramento River. Nonetheless, secondary currents (Dinehart
and Burau, 2005; Fong et al., 2009; Constantinescu et al.,
2011a; Moradi et al., 2019; Yan et al., 2020; Schreiner et al.,
2023) and water column heterogeneity should not be entirely
discounted as a factor in salmon entrainment (Ramón et al.,
2018). Selective tidal stream transport (Creutzberg, 1961) may be
driven by multiple factors (Benson et al., 2021; Gross et al., 2021b)
including vertically-aligned hydrostatic pressure (Tielmann et al.,
2015) and horizontal, cross-sectional gradients in water turbidity
(Bennett and Burau, 2015).

Adding explicit behavioral variation to our simulations
through distributions of animal characteristics, such as size or
orientation tendencies (movement modes), would likely improve
the realism of simulated trajectories. Presently, we eliminate
(zero-out) all permissible stochasticity and heterogeneity not
explicitly required to meet our primary objective — reproduce
and predict future passage/entrainment — in order to minimize
the number of tunable parameters. We find that discerning
meaningful parameter influences on key mechanics of the
model is far more challenging when other forms of variability
(stochasticity) are present in the model, e.g., attributes with the
sole purpose of increasing the “wiggle” realism in simulated
fish trajectories. While discerning parameter influence on model
performance amid stochasticity is a challenge that can be met
with Monte Carlo or similar methods, again, increasing the
computational burden within a study has tradeoffs with those
resources becoming unavailable elsewhere where they might have
a greater overall impact. ELAM model parameter values herein
do not change during simulation and are identical across all the
analyses described, the only exception being the random number
seed varied for computing the standard deviations in modeled
entrainment (Figure 11).

There are many opportunities for future improvement relevant
to the data presented herein and in application to other
systems. For example, alternative algorithms exist for every
ensemble constituent (Table 6). Continuing work can improve
our understanding of fish and the mechanics required to meet
fish passage research and water operations goals, just as this work
builds upon previous work (Figure 13 and Tables 1, 3). In the
next section, we discuss some of the more noticeable aspects
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FIGURE 13

Results to date and future potential improvements from iterative near-term ecological forecasting (Dietze et al., 2018) in the context of fish passage,
guidance, and movement prediction for water operations management and infrastructure design. The salmon movement behavioral repertoire
developed in our tidal study is a conceptual superset of the fish hydrodynamic responses found in simpler environments represented with steady
flow. Old notation from past applications: to a single dam 1Lower Granite Dam (Goodwin, 2004), 2multiple dams (Goodwin et al., 2006), and
3basin-wide (Goodwin et al., 2014) where GM and the term strain in prior works1,2 are interchangeable for the data and acclimatization is used1,2

instead of the terms habituation and memory used herein.

of our modeling approach, shortcomings, limitations, and future
improvement opportunities.

5.2. Fish swim paths

Simulated salmon paths emerge from behaviors that depend
on past experience, resulting in movement trajectories that differ
among individuals experiencing the same momentary condition.
In our approach, two hypothetical fish experiencing the same
condition at a moment in time will exhibit different behaviors
and, therefore, movement paths because their past histories
are not identical.

While examples can be found in our study in which two
simulated salmon — or a simulated and tagged fish — trace
nearly the same path (e.g., Figures 8, 9), more generally, pairs
of individuals (modeled versus modeled; modeled versus tagged)
do not have identical trajectories that coincide both spatially
and temporally. Thus, our study highlights a surprising but
useful paradox: that is, one-to-one paired synchrony between

simulated and tagged salmon paths, while desirable, is not a
requisite for satisfactory hindcasting and future prediction of route
passage/entrainment. Upon inspection, there are several reasons
for the paradox.

One reason for the paradox is that movement dynamics near
the junction are more important for determining entrainment
than behavior elsewhere within the river reach. Therefore,
paths do not have to coincide perfectly both spatially and
temporally throughout the entire reach. The most important
factors for the correspondence between modeled and tagged
fish passage/entrainment proportions in our tidal study are that
each of the sample populations (i) volitionally control much
of their displacement and fate within the river channel, in
contrast to passive particles, and (ii) make decisions similarly-
enough in similar-enough proportions across a broad range of
conditions. Location holding is one way that a tagged salmon
may sample river hydrodynamics analogous to a simulated salmon,
but at a later time after milling in a region for a while.
Another reason for the paradox is that the sample sizes, while
somewhat relatively small once parsed to our simulation windows
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(Figure 3 upper left), are sufficient to average out a variety of
characteristics both in salmon movement and in experienced
water flow patterns as evidenced by the sensitivity analysis
(Figure 12).

5.2.1. Movement mode heatmaps
We use heatmaps to compare swim path patterns and

movement modes across our samples of virtual and real fish.
The relatively concentrated simulated salmon swim paths along
the river thalweg (Figure 8), compared to tagged fish (Figure
3), can likely be improved by distributing the modeled fish
further throughout (across) the river’s width by increasing the
presently-negligible stochasticity in swim orientation. Increasing
swim orientation stochasticity, however, will come at the expense
of slowing down their speed-over-ground that is already slower
than tagged fish. Speed-over-ground could be increased by
implementing faster swim velocities (e.g., larger fish), but
bigger individuals will bias the decision-support tool away
from resembling the smaller-sized salmon important to water
operations management. A distribution of small-to-large salmon
fork lengths is likely a desired next step, but not part of
the study herein.

Another possibility for reducing the discrepancy between
simulated and tagged salmon path concentrations is modifying
how the sensitivity of perceived changes in GM and VM are
handled. Presently, GM and VM perceived changes are handled
via threshold values that do not change with time. Perhaps
the threshold values, instead, depend on previous hydrodynamic
experience, which would add yet another layer of contextuality
to behavior.

Further, the GM trigger and attraction behavior may themselves
be contextualized via multimodal signal integration (Gil-Guevara
et al., 2022) with a turbulence measure (Figure 13). While our
development efforts with year 2009 data reveal that TKE is
sometimes not present in areas where salmon repeatedly re-orient
(Figure 6 and Supplementary Figures 1, 3, 5), perhaps the less
pronounced TKE values have value in eliciting less concentrated
paths when used in combination with our existing hydrodynamic
triggers (Table 5). A challenge within the above endeavor is to
realize a more distributed concentration of simulated salmon swim
paths across the river’s width without incurring a concomitant
increase in boundary interactions.

Other observed discrepancies between simulated and tagged
salmon evident from the heatmaps (Figure 3 vs. Figure 8)
include more tagged salmon exhibiting reach milling and riverbank
tendencies, although this is a natural byproduct of our focus on
zig-zagging behavior. Interestingly, heatmaps reveal similarities
between tagged and simulation salmon milling near the bridge
despite the piers (and associated hydrodynamics) being absent from
the year 2009 flow field renderings.

5.2.2. Synchronizing modeled and tagged fish
swim paths

A better end-state of the model would preserve the existing
entrainment fidelity while gaining full synchronization between
real and simulated fish trajectories (path plus timing), which
requires reproducing the emergence of different movement modes
in the same proportions. Manual classification was best able to

handle anomalies in the real-world fish data for this present
study, but future work should focus on automated methods
that can assist the development and parameterization of more
realistic reproductions of tagged fish movement modes and
individual trajectories.

A solid next step would be a quantitatively rigorous
movement mode classification (Romine et al., 2014; Vilk et al.,
2022) combined with trajectory similarity measures such as
the Fréchet distance or dynamic time warping (Magdy et al.,
2015; Cleasby et al., 2019; Su et al., 2020; Tao et al., 2021)
for gauging the one-to-one correspondence between pairs of
simulated and tagged salmon swim paths. Larger (longer) river
spatial domains and temporal windows would facilitate the
analysis of movement mode emergence, allowing us to better
understand whether modes are more closely correlated with specific
individuals, a particular sequence of environmental experiences, or
a mix of factors.

Existing travel time discrepancies between simulated and real
fish may be improved through the previously mentioned tactic of
releasing modeled salmon with a distribution of sizes (fork lengths).
Larger fish swim faster if the assumed body lengths per second
remains unchanged, although it is also possible to modify the
assumptions of drift, cruise, and burst swimming BL s−1 for
our identically-sized 120 mm salmon. With the model as is, we
discuss three possible explanations for the slower transit time
of the simulated salmon example in ebb flow (Figure 8 and
Supplementary Figures 1, 2): swimming depth, rheotaxis, and
RANS flow field modeling, all of which relate to hydrodynamic
model fidelity that we discuss in the next section.

5.2.3. Hydrodynamic model fidelity
Rivers have more heterogeneity than we can fully measure

or model (Figure 4), and the issue is relevant to fish movement
analysis as evident in the comparison of real and simulated travel
times in Figure 8 and Supplementary Figures 1, 2 during ebb flow.
Our fish behavior simulations using 2-D xy-plane horizontal slices
use the hydrodynamics extracted from just under the water surface
where river flow is typically fastest (Supplementary Figure 2). In 2-
D, simulated individuals cannot move along the river bottom where
water speed is slower and sometimes approaches zero. Given that 2-
D simulated fish transit times (Supplementary Figure 2 particle:
46 min; salmon: 1 h 1 min) are similar to the results from 3-D
(Figure 8 and Supplementary Figure 1 particle: 46 min; salmon:
1 h 3 min), we can conclude that vertical heterogeneity in river flow
contributes negligibly to the travel time of these specific individuals
over the duration they journey the reach in this flow condition.

Notice that the tagged fish transits the stretch in 41 min
while the passive particle takes 46 min. The result appears at first
inconsistent with our finding that simulated salmon must orient
against the flow, which slows ELAM fish relative to a passive
particle. Orienting the simulated 120 mm sized salmon more with
the flow (negative rheotaxis), however, increases the zig-zag period
(wavelength) that reduces similarity between simulated and tagged
fish swim paths.

Another possible explanation for the longer simulated salmon
transit time resides in the notion that RANS modeling represents
an average flow field condition of the river (Figure 4). RANS
flow field modeling can miss high-velocity regions or cores
(Constantinescu et al., 2011b). We surmise that real-world flow
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field heterogeneity provides tagged salmon opportunities in the
real world to exploit regions of faster-than-RANS water that is
unavailable to simulated fish and may at least partially explain the
slower transit times of the modeled fish in ebb flow (Figure 8 and
Supplementary Figures 1, 2).

5.2.4. Behavioral choice/decision model fidelity
Mathematical models of decision choice, and the dynamics

that underlie them, are an active area of research not only in
ecology and ethology but other fields as well, especially the
field of economics, and have been for more than a half-century
(Table 1). There are many different choice/decision models to
choose from. The scale of our study and the assumptions we
invoke do not make our study or findings the best platform
to advocate for one theoretical approach (theory, model) over
another. Others may find in work at the same scale (but different
environmental context) or at different scales (the laboratory)
that there are advantages/disadvantages to a particular theoretical
approach which differ from our experience here. In this study,
using sensory evidence accumulators at our available scale, we find
that for the rise and fall of competing behaviors in the hierarchical
repertoire to generate the type of fast response dynamics we
observe in tagged fish in particular areas (e.g., near the riverbank)
that we need the contribution of inhibition in our decision
model. In our approach, inhibition facilitates a better transition
between behaviors B{2, 3} by keeping their sensory accumulators,
eB (Equations 4–7), in a more stable harmony compared to the
same formulation without inhibition. Without inhibition, we find
that B{2, 3} responses in some contexts are simply too slow to
resolve themselves when needed because the impending behavior
must catch-up and overtake the accumulated evidence of another
behavior’s eB and by the time the former outraces the latter
the simulated fish encounters a boundary, is captured, or is
entrained, for instance.

5.3. Fish passage/entrainment

Synchronizing real and simulated worlds in order to compare
salmon passage/entrainment proportions is not straightforward.
Tagged salmon may occupy the river reach domain prior to our
simulation window and/or remain in the area afterward (Figure
8), which limits the number of tagged salmon that we can leverage
in short windows. Analyzing the entire 2008–2009 and 2014 field
seasons (Figure 2) with larger spatial domains extending upriver
and downriver would allow us to piece apart further nuances of
salmon movement modes, as previously mentioned, as well as
incorporate more of the available fish field data. ELAM applications
that far exceed previous limitations are becoming viable with
hardware improvements (Rodi, 2017) and the ability to work
with trillion-cell hydrodynamic solutions on a common computer
(Imlay et al., 2018).

5.3.1. Release distribution
Decoupling the cognitive algorithm ensemble from a realistic

entry of fish into the river reach domain results in simulated
individuals that cannot sample the environment perfectly in line
with tagged salmon. We can use alternative release distributions

to assess the model’s prediction performance in the context of an
unknown future, but in which post-construction monitoring may
provide data on how real fish responded to the management action.
We measure model accuracy using RMSE based on multi-day
contiguous windows (Figures 11, 12). Daily passage/entrainment
numbers are inherently more variable due to the fewer available
numbers of tagged salmon (Table 2) and simulated fish that make
up the proportions. There is value in integrating field and model
passage/entrainment data over multiple days.

5.4. Guiding fish swim paths with surface
booms and engineered hydrodynamics

Fish guidance is a major focus of water operations management
and engineering in many rivers worldwide. Fish guidance has been
attributed to turbulence plumes (Coutant, 1998, 2001; Zielinski
et al., 2021) and also to velocity VM attraction triggered by
a stimulus (Goodwin et al., 2006, 2014). The VM attraction
hypothesis of fish guidance assumes the two hypotheses are
compatible as turbulence is correlated in many settings with GM
and AM identified as trigger proxies (Figure 13).

Analyses of fish guidance along surface booms using 3-D
hydrodynamic modeling that led to the VM attraction hypothesis
have yielded different triggers, and the exact trigger remains
unclear. Initial studies using the VM hypothesis attributed the
trigger to GM only for later analysis to suggest AM (Figure 13).
Our study here advances past contradictions toward a consistent
explanation worth evaluating further; that is, GM and AM play
different roles near guidance structures. Here, we find that
GM triggers VM attraction along booms which corroborates
some findings in laboratory experiments (Swanson et al., 2020).
Acceleration AM on the other hand acts to repulse salmon.

A topic for future research is whether GM attraction (triggered
by VM) acts in combination with VM attraction (triggered by GM)
to elicit salmon guidance along infrastructure and, if so, the relative
contribution of GM attraction. Also worthy of further investigation,
as mentioned previously, is how turbulence may act in combination
with GM and VM as a trigger. Regarding acceleration, our findings
add to the body of evidence that AM can repulse fish (Haro et al.,
1998; Kemp et al., 2005; Enders et al., 2009a, 2012; Vowles et al.,
2014).

5.5. Other behavioral
stimuli — temperature, dissolved gases,
sound, and bubbles

Many of the concepts and theory that we leverage do not
originate from studies on fish or hydrodynamics. Therefore,
our approach may be extendable in aquatic systems to other
environmental variables (Table 1). Insonified bubble curtains with
light stimuli were deployed at the Sacramento River junction with
Georgiana Slough in years 2011 and 2012 (California Department
of Water Resources, 2012, 2013; Perry et al., 2014) and remain a
future management option in the Bay-Delta to improve system-
wide salmon survival.
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5.6. Engineering best practices for
predicting fish response to water
operations

To facilitate iterative near-term ecological forecasting (Dietze
et al., 2018) that can support water operations infrastructure
engineering and management, we need best practices. We can begin
developing engineering best practices for using fish movement
simulations to inform civil infrastructure design and water
operations management in the context of future environmental
conditions that cannot be fully known in advance. While fish
in the future observed during post-action monitoring are likely
to experience hydrodynamics that differ in some ways from the
assumptions in management design, there are several ways to
maximize the utility of fish movement prediction given inherent
and unavoidable limitations.

The first way to maximize the utility of fish movement
prediction in design is to simulate their response to alternative
designs, with each engineering concept evaluated across numerous
future environmental conditions. Best practice would be to
simulate across, or bracket, the likely future environmental
conditions. Unfortunately, the drawback of the first method
is the large number of simulations that can quickly outrace
available resources.

The second method compares future design alternatives only
in the context of the same conditions as past observations. The
benefit of the second method is that past observations can inform
some of the model’s initial conditions, e.g., fish entry patterns,
and simulated future outcomes can be benchmarked relative to
historical data in the null case of zero changes. The downside of
the second method is the limitation of the design analysis to only
past observed conditions that may not be relevant to the future.

The third method compares the performance of alternative
design concepts relative to one another, with no relation back to
past observed historical patterns. The benefit of the third method is
that the analysis of future designs can use environmental conditions
that differ from the past and fewer contexts (simulations) are
needed for a trend to emerge that may identify a particular design as
most robust across diverse environmental states. The downside of
the third approach is that at least two design alternatives are needed
to make a minimal, relative comparison.

5.7. Real-time fish prediction with
theory-informed machine learning

Emerging new forms of automation can help address existing
ELAM model shortcomings. Easier and faster implementation of
the ELAM is needed to scale-up our approach for informing water
operations management and design. We are working to encode
our cognitive approach, such as multiplex signal disentanglement
via multi-timescale perceptions, into a reduced-order form using
theory-informed neural networks. The potential is motivated by the
recent revolution of physics-informed neural networks (Karniadakis
et al., 2021), reinforcement learning (Reddy et al., 2018; Ullman,
2019; Gunnarson et al., 2021; Li L. et al., 2021; Zhu Y. et al.,
2021), and emerging concepts for improving machine learning
by constraining them with psychological theory (Bhatia and He,

2021; Peterson et al., 2021). A reduced-order form of the ensemble
algorithms in our approach may work better for the tight schedules
that are common in engineering design projects. Machine learning
has the potential to improve cognitive modeling by circumventing
complicated assumptions about perception, attention, and memory
that burden many existing methods (Bhatia and He, 2021; Peterson
et al., 2021).

At the same time, hydrodynamic RANS, DES, and LES models
will only grow in capability. As 3-D modeling of rivers becomes
more sophisticated, cognitive-based approaches to mechanistic
and machine learning based fish prediction may find particular
value in new, in situ measurement technologies such as Infrared
Quantitative Image Velocimetry or IR-QIV (Schweitzer and
Cowen, 2021). River-wide, centimeter-scale IR-QIV hydrodynamic
measurements can not only inform hydrodynamic modeling but
also, paired with biologgers measuring fish orientation and swim
speed, provide the real-time data streams needed to inform
on-the-fly ELAM theory-informed machine learning. On-the-fly
ELAM theory-informed machine learning has potential to provide
real-time fish prediction of behavioral response, whether seconds
or days in advance, greatly reducing the present time it takes to
implement an ELAM prediction analysis.

5.8. Ethohydraulics with environmental
modeling to improve waterways
engineering

Recursively applying near-term predictions of fish movement
followed by later comparison with observed data improves
ecological research relevance to society by informing sustainable
decision-making (Johnson et al., 2020) and accelerating the
pace of scientific discovery (Dietze et al., 2018). Our present
approach to behavior modeling is an outcome of iterative, trial-
and-error work (Figure 13) to account for fish cognition in
the interpretation and near-future prediction of their movement
near water operations infrastructure. In the grand scheme of
needed decision-support tools, our approach is a scaffold upon
which future improvement is encouraged. There are many
avenues for future improvement and research. For instance,
the model does not presently account for foraging or seasonal
influences on feeding behavior. Also, the environment can
modify the cognitive dynamics of a species (Austin and Dunlap,
2023), so the potential exists that salmon decision-making is
changing whilst we’re interpreting their movement behaviors
from past years.

In civil and environmental engineering, a practical difficulty
is the effort needed to develop 3-D representations of a river
compared to less-realistic 2-D renderings (Robinson et al., 2019),
especially when predicting future hydrologic conditions. Simulated
salmon swim paths in 2-D are not as realistic yet sufficient to predict
passage/entrainment as well as some specific trajectory patterns.
In our study, the 2-D hydrodynamic features are sometimes
less concentrated in the river thalweg resulting in simulated fish
trajectories with wider cross-sectional excursions. Nonetheless,
our findings suggest that a cognitive approach to mechanistic
fish movement behavior modeling does not always require the
maximum possible resolution in river hydrodynamics.
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By juxtaposing the findings from multiple studies, we can
deduce further hypotheses for future evaluation to build a more
holistic understanding of salmon movement behavior as well
as for other downstream-migrating species (Figure 13). The
potential appears to exist for a single parameterization capable of
predicting near-future, out-of-sample juvenile Pacific salmonids
across diverse reservoir, dam, and tidal environments – and in
different river basins – sufficient for water operations management
and engineering design. Further, we speculate the repertoire
(Table 5, Figure 13) is relevant to other species with a goal to move
downriver and that inverted forms of the stimuli-responses may
describe aspects of upstream-moving fish (McElroy et al., 2012;
Zielinski et al., 2018, 2021; Zeng, 2022; Kerr et al., 2023; Luis and
Pasternack, 2023).

Here, we demonstrate how prior experiences and the temporal
sequencing of stimuli are central to understanding salmon
movement behavior in rivers. Practically, our findings show that
it is possible to construct an abstracted form of animal cognition
for a mechanistic behavior model that can operate at the scale
of real-world waterways infrastructure, a critical step toward
making quantitative near-term predictions of fish movement a
reality for improving water resources planning, management, and
engineering design.
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