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Cyclommatus stag beetles (Coleoptera, Lucanidae) are very interesting insects, because 
of their striking allometry (mandibles can be longer that the whole body in large males 
of some species) and sexual dimorphism. They mainly inhabit tropical and subtropical 
forests in Asia. To date, there has been no molecular phylogenetic research on how these 
stag beetles evolved and diversified. In this study, we constructed the first phylogenetic 
relationship for Cyclommatus using multi-locus datasets. Analyses showed that 
Cyclommatus is monophyletic, being subdivided into two well-supported clades (A 
and B). The clade A includes the island species from Southeast Asia, and the clade B is 
formed by the continental species. The divergent time estimates showed these beetles 
split from the outgroup around 43.10 million years ago (Mya) in the late Eocene, divided 
during the late Oligocene (around 24.90 Mya) and diversified further during the early 
and middle Miocene (around 18.19 Mya, around 15.17 Mya). RASP analysis suggested 
that these beetles likely originated in the Philippine archipelago, then dispersed to the 
other Southeast Asian archipelagoes, Indochina Peninsula, Southeast Himalayas, and 
Southern China. Moreover, relatively large genetic distance and stable morphological 
variations signified that the two clades reach the level of inter-generic differences, i.e., 
the current Cyclommatus should be separated in two genera: Cyclommatus Parry, 1863 
including the clade A species, and Cyclommatinus Didier, 1927 covering the clade B 
species. In addition, the evidence we generated indicated these beetles’ diversification 
was promoted probably by both long-distance dispersal and colonization, supporting an 
“Upstream” colonization hypothesis. Our study provides insights into the classification, 
genetics and evolution of stag beetles in the Oriental region.
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1. Introduction

Cyclommatus Parry (1863) is one of the most interesting genera in the Lucanidae family, with 
more than 60 species, distributed across the continental area of the Indochina Peninsula, Sino-
Himalaya region, Southeast Asia archipelago, and parts of New Guinea (Fujita, 2010). These stag 
beetles exhibit highly intraspecific variability owing to male polymorphism with impressive 
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mandibles, sexual dimorphism and color varieties. So far, some of them 
have been good models for the studies of behavior and functional 
morphology, or popular pets and valuably private collections (Kojima, 
1996; New, 2010; Gotoh et al., 2014, 2016; Goyens et al., 2015; Liu et al., 
2017). These saproxylic beetles also play an important role in forest 
ecosystems (Araya, 1993; Tanahashi et  al., 2009; Songvorawit et  al., 
2017). However, the taxonomic position of the genus has been 
a-controversial issue. Their phylogenetic relationships are lacking 
studies. The origin, dispersal and diversification of these beetles remain 
poorly known.

Historically, Cyclommatus taxonomy has been revised several 
times mostly basing on external morphology. The genus Cyclommatus 
was created by Parry in 1863. Two generic names before Parry’s 
proposition, Lucanus (Cyclophthalmus) Hope and Westwood (1845) 
and Megaloprepes Thomson (1862), were both preoccupied names. 
Didier (1927) divided Cyclommatus Parry into two generic taxa, 
basing on both morphological characters and distinct geographical 
distributions: Cyclommatus (s. s.) Parry (1863), containing the species 
with well-developed mandibles mainly from the insular area of 
Southeast Asia, and Cyclommatinus Didier (1927) in which the 
species show rather uniform male mandibles and that are distributed 
in the continental region of Sino-Himalaya. Shortly afterwards, Nagel 
(1936) designated the new genus Cyclommatellus consisting of three 
species, with a peculiar sixth-antennal joint in larger male. Arrow 
(1938, 1950) did not agree with Didier’s and Nagel’s classifications 
that was mainly based on charactyers of large males, being often 
obsolete or absent in smaller males and females. The opinion of 
Arrow, i.e., Cyclommatinus and Cyclommatellus were synonyms of 
Cyclommatus Parry, was followed by most of the taxonomists 
(Benesh, 1960; Mizunuma and Nagai, 1994; Krajčík, 2001; Fujita, 
2010; Huang and Chen, 2017). Meanwhile, Didier and Séguy (1953) 
did not follow Arrow’s opinion in their catalogue. Maes (1992) listed 
the two synonymized genera as subgenera of Cyclommatus without 
any taxonomic discussion. Thus, the molecular phylogeny analysis 
could be very useful to resolve the morphology-based controversy. 
Unfortunately, only a handful of studies provided a few availably 
molecular data about this genus (Kim and Farrell, 2015; Liu et al., 
2017; Yuan et al., 2021). To provide robustly phylogenetic framework 
and taxonomic utility of Cyclommatus stag beetles, we performed a 
multi-locus analysis.

Moreover, all collected data show that Cyclommatus stag beetles 
are endemic or restricted to the tropical and subtropical forests, either 
in continental areas or islands (Krajčík, 2001; Fujita, 2010; Huang and 
Chen, 2017), which seems to indicate a low dispersal capacity of these 
beetles. Similarly, low dispersal abilities were observed in other stag 
beetle species, such as Lucanus cervus (Thomaes, 2009) and Lucanus 
datunensis (Lin et al., 2011); they also inhabit tropical and subtropical 
forests. Therefore, Cyclommatus stag beetles could be an excellent 
model for testing specific biogeographic hypotheses. There is an 
interesting topic about the origin of this genus and how it spreads 
from Southeast Asia islands to Southern China. To test whether the 
establishment of Cyclommatus satisfies the “Upstream” hypothesis 
(the colonization of continents by island fauna) or the “Downstream” 
hypothesis (the colonization of islands by continental fauna) (Filardi 
and Moyle, 2005; Jonsson et  al., 2011), we  also made a spatio-
temporal analysis.

Considering these issues, we used a combination of six DNA regions 
(COI, 16S rDNA, 28S rDNA, Cytb, Wingless, ITS) of 25 representative 
Cyclommatus stag beetles in order to: (1) discuss the phylogenetic 

relationship between the two clades of the Cyclommatus stag beetles; (2) 
explain the current geographical distribution pattern of Cyclommatus 
stag beetles during evolution.

2. Materials and methods

2.1. Ethics statement

The sample collection in this study was approved by the Anhui 
University Academic Ethics Committee, Anhui Province, China.

2.2. Taxon sampling

A total of 115 specimens of 25 taxa of Cyclommatus stag beetles were 
used in this study. Several were collected in the field by members of our 
research team, other specimens were donated by universities or research 
institutes, and some by private collectors; they were preserved in 100% 
ethanol at −20°C for molecular analyses. Six species closely related to 
Cyclommatus were selected: Lucanus swinhoei Parry, 1874, 
L. maculifemoratus taiwanus Miwa, 1936, Noseolucanus denticulus 
Boucher, 1996, Prismognathus davidis Deyrolle, 1878, P. prossi Bartolozzi 
and Wan, 2006 and P. triapicalis Houlbert, 1915; they were used for 
outgroup comparisons in phylogenetic analyses. According to the 
collecting data of the samples, we drew a distribution map of the species 
(Figure 1). The voucher specimens and their extracted genomic DNA 
are deposited at Anhui University, Hefei, China, and in addition, details 
of the specimen vouchers and specimen locations are listed in 
Supplementary Table S1.

2.3. DNA extraction, amplification, and 
sequencing

Genomic DNA was extracted from the thoracic muscle tissues of 
adult beetles preserved in absolute ethanol using the Blood and Tissue 
Kit (Qiagen, Germany) according to the manufacturer’s protocol. 
Extracted DNA was kept in a freezer at −20°C until needed for the 
Polymerase chain reaction (PCR). The primer sets in the present study 
used to amplify three mitochondrial genes 16S rDNA, COI, Cytb, and 
three nuclear genes 28S rDNA, ITS, and Wingless are shown in Table 1 
(Simon et al., 1994; Hosoya et al., 2001; Marcilla et al., 2001; Abouheif 
and Wray, 2002; Balke et al., 2004; Ward and Downie, 2005; Monaghan 
et al., 2007; Wild and Maddison, 2008).

PCR amplification reaction was conducted in 25 μl volumes 
reactions, containing 12.5 μl 2× EasyTaq SuperMix (dye), 10 μM of each 
primer 1 μl, 2 μl template DNA, and 8.5 μl sterile double-distilled water 
(ddH2O). The PCR amplification conditions were as follows: initial 
denaturation at 94°C for 2 min, followed by 35–37 cycles of denaturation 
at 94°C for 40 s, annealing at 52–58°C for 50 s, and elongation at 70°C 
for 1 min, and finally 7 min extension step at 72°C. Amplifications were 
purified using the Template DNA Amplify Kit (Ensure Biologicals). 
Sequencing the successful PCR products, using the ABI PRISM Big Dye 
terminator v3.1 sequencing kit (Life Technologies, United States) and 
cycling on the ABI PRISM 3730xl automated sequencers (Life 
Technologies, United States) at Sangon Biotech Company, China. The 
sequences were deposited in GenBank with the accession number 
(Supplementary Table S1).
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2.4. Sequence alignment, selection of 
models and phylogenetic analyses

All sequences were viewed, assembled, and edited in Geneious 
Prime v2019.1.1.1 Sequences for each of the six DNA regions were 

1 https://www.geneious.com

aligned and then inspected by eye for accuracy and trimmed to 
minimize missing characters in MEGA v7.0 (Kumar et al., 2016). We use 
PartitionFinder v2.1.1 (Lanfear et  al., 2017), a small program in 
PhyloSuite v1.2.1 (Zhang et al., 2020), to select the best-fitting model 
selection and best data partition scheme. The total of six partitions were 
determined to be  optimal using the greedy algorithm under the 
corrected Akaike Information Criterion (AICc): (1) 16S, (2) COI, (3) 
Cytb, (4) 28S, (5) ITS, (6) Wingless. Finally, best-fitting models were 

FIGURE 1

Collection sites and species distribution map of Cyclommatus stag beetles. The map is drew using ARCGIS v10.2 (http://www.esri.com/sofware/arcgis) 
based on the geospatial data from the National Geomatics Center of China.

TABLE 1 Information on the primers used in this study.

Gene Primer name Sequence (5′-3′) Reference

COI COI-F1 CAACATTTATTTTGATTTTTTGG Simon et al. (1994)

COI-R1 TCCAATGCACTAATCTGCCATATTA Simon et al. (1994)

16S rDNA 16S-F1 CCGGTTTGAACTCAGATCATG Hosoya et al. (2001)

16S-R1 TAATTTATTGTACCTTGTGTATCAG Hosoya et al. (2001)

Cytb Cytb-F2 GAGGAGCAACTGTAATTACTAA Balke et al. (2004)

Cytb-R2 AAAAGAAARTATCATTCAGGTTGAAT Balke et al. (2004)

28S rDNA 28SDD GGGACCCGTCTTGAAACAC Monaghan et al. (2007)

28SFF TTACACACTCCTTAGCGGAT Monaghan et al. (2007)

ITS ITS-2F CTAAGCGGTGGATCACTCGG Marcilla et al. (2001)

ITS-2R GCACTATCAAGCAACACGACTC Marcilla et al. (2001)

Wingless Wg550F ATGCGTCAGGARTGYAARTGYCAYGGYATGTC Wild and Maddison (2008)

WgAbRZ CACTTNACYTCRCARCACCARTG Wild and Maddison (2008)

Wg578F TGCACNGTGAARACYTGCTGGATG Ward and Downie (2005)

WgAbR ACYTCGCAGCACCARTGGAA Abouheif and Wray (2002)
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selected for each partition under the AICc: the GTR + I + G model for 
(1), (2), (3), (4), (5), and the GTR + G model for (6).

Phylogenetic analyses were conducted based on maximum 
likelihood (ML) and Bayesian inference (BI). An ML tree was 
constructed using the IQ-TREE webserver2 (Nguyen et al., 2015). In 
the ML analysis, the “automatic” option was set under the optimal 
evolutionary model, and the ultrafast Bootstrap approximation 
method with 10,000 replicates was used to construct the phylogenetic 
tree. We  also implemented a Bayesian analysis as performed in 
MrBayes v3.2 (Ronquist et al., 2012; Trifinopoulos et al., 2016). Four 
Markov chains were run simultaneously and sampled once every 
1,000 generations, for a total of 10.5 × 108 generations. The initial 
25% of trees were discarded as burn-in. Analysis was settled based 
on the average standard deviation of frequency division being less 
than 0.01. Phylogenetic trees were viewed and edited in FIGTREE 
v1.4.4.3

2.5. Divergence time estimation

BEAST v2.6.0 (Bouckaert et al., 2014) software was used to perform 
the analysis for time divergence estimation, which combined two 
mitochondrial genes (COI and 16S rDNA). A strict molecular clock was 
applied in a Markov chain Monte Carlo (MCMC) simulation running 
for 10.5 × 108 generations with samplings every 1 × 104 generations using 
BEAST. For the beetles, substitution rates of 0.017 per lineage in a 
million years (Myr) for COI and 0.0054/lineage/Myr for 16S rDNA were 
found to be  optimal (Papadopoulou et  al., 2010). TRACER v1.7 
(Rambaut et al., 2018) was used to analyze the output results of the 
Effective Sample Size (ESS) for the posterior distribution of estimated 
parameter values. Next, the first 25% of the run was discarded as 
burn-in, all post-burn-in trees from the four independent runs were 
combined using the software LOG COMBINER v2.6.0 (Bouckaert et al., 
2014). Used TREE ANNOTATOR v2.5.1 (Bouckaert et al., 2014) to 
summarize information from the individual post-burn-in trees onto a 
single maximum clade credibility (MCC) tree. The final tree was 
described using FIGTREE v1.4.4.

2.6. Ancestral area reconstruction

To further explore the origins and dispersal routes of Cyclommatus, 
the ancestral distribution of the genus sequences was reconstructed 
based on the combination of COI and 16S rDNA. Ancestral range 
reconstruction analysis was conducted with the program RASP v4.2 (Yu 
et al., 2020) based on the MCC tree from the BEAST, which incorporates 
the following models:

Dispersal-Extinction-Cladogenesis (DEC, Ree and Smith, 2008; 
Massana et al., 2015), DEC + Jump parameter (DEC + J, Matzke, 2014a), 
Dispersal Vicariance Analysis with Likelihood implementation (DIVA 
LIKE, Ronquist, 1997; Matzke, 2014a), DIVALIKE+ Jump parameter 
(DIVALIKE + J, Matzke, 2014b), Bayesian inference for discrete Areas 
with Likelihood implementation (BAYAREALIKE, Landis et al., 2013; 
Matzke, 2014a), BAYAREALIKE + Jump parameter (BAYAREALIKE + J, 

2 http://iqtree.cibiv.univie.ac.at/

3 http://beast.bio.ed.ac.uk/figtree

Matzke, 2014b), as implemented in BioGeoBEARS (Matzke, 2013, 
2014a,b; R Core Team, 2021). Choose the best model according to the 
corrected AICc and Akaike weights from the previously mentioned six 
models. The distribution range of Cyclommatus, was based on 
specimens collected information and fieldwork. Then, the areas were 
encoded as: (A) the main islands in Southeast Asia; (B) the mainland 
from the Indochina Peninsula to the southeast of the Himalayas.

3. Results

3.1. Phylogenetic relationships

Phylogenetic inferences using maximum likelihood (ML) and 
Bayesian inference (BI) showed a highly similar topology, which was 
divided into two major clades within the Cyclommatus stag beetles, 
indicated by us as clade A and clade B (Figure 2). The outgroups formed 
an independent clade, separated from other high support specimens. 
The clade A includes 36 specimens representing 19 taxa and is primarily 
found in the Southeast Asian Islands (Figure 2). However, C. mniszechi 
Thomson, 1856 is also found in Southeast China, and not only on 
Taiwan Island. There are several species from New Guinea, such as 
C. eximius Möllenkamp, 1909, C. imperator Boileau, 1905, C. pulchellus 
Möllenkamp, 1900, C. margaritae Gestro, 1877 and C. weinreichi 
Lacroix, 1972. The species located in the Philippines include C. alagari 
De Lisle, 1968, C. suzumurai Mizumura and Nagai, 1991, and C. zuberi 
Parry, 1876. The remaining species, for example, C. elaphus Gestro, 
1881, C. truncatus Schenk, 2000, C. dehaani Westwood, 1842, 
C. canaliculatus Ritsema, 1891, C. cupreonitens Boileau, 1901, 
C. tarandus Thunberg, 1806, and C. metallifer Boisduval, 1835 are 
mainly distributed in Indonesia. The clade B includes 79 samples 
representing 10 taxa distributed mainly in the continental area from 
Indochina to the Himalayan area. C. bicolor Bomans, 1991 is from 
Thailand and C. scutellaris Möllenkamp, 1912 is broadly distributed in 
southern China. C. vitalisi Pouillaude, 1913, C. assamensis assamensis 
Séguy, 1955, C. assamensis yingjiangensis Huang and Chen (2017), 
C. nagaii Fujita (2010) and C. albersi Kraatz, 1894 are all distributed in 
the southwestern regions of China. The remaining taxa C. saltini 
Bomans, 1991, C. asahinai asahinai Kurosawa, 1974 and C. asahinai 
nanlingensis Schenk, 2016 are mainly located in southeastern China 
(Figures 1, 2).

3.2. Genetic distances calculation

Genetic distances (K2P-distances) using the COI gene were 
calculated between the clade A and clade B at 0.176 (Table 2), while the 
average mean genetic distance within the genus is 0.160.

3.3. Divergence-time estimation

The estimation of divergence time showed that Cyclommatus stag 
beetles (Figure 3) date back to 43.10 million years ago (Mya) in the Late 
Eocene [95% highest posterior density (HPD) confidence interval: 
27.61–66.39 Mya]. Then, in the Late Oligocene (circa 24.90 Mya) [95% 
HPD, 16.24–36.55 Mya, node 1], Cyclommatus stag beetles were divided 
into clade A and clade B. Clade A showed interspecific divergence 
during the Early Miocene circa (ca.) 18.19 Mya [95% HPD, 12.43–25.95 
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Mya, node 2], while clade B experienced divergence during the Middle 
Miocene around 15.17 Mya [95% HPD, 9.58–22.60 Mya, node 3].

3.4. Reconstruction of ancestral areas

We used the RASP to analyze the ancestral distribution area of 
Cyclommatus stag beetles AICc scores showed that the best model for 
this stag beetle dataset in this analysis was the DIVALIKE model 
(Table 3). Based on this model analysis, at least two geographically 
isolated events (v) and one dispersal event could explain the genus 

distribution pattern (Figure  4). Most of the other events were 
presumed to be  speciation within the distribution range, and the 
distribution range of descendent species are the same as that of their 
ancestor (y).

According to this model the ancestor of Cyclommatus stag beetles 
most probably inhabited the Philippine Islands (Southeast Asian 
islands), then dispersed to other Southeast Asian islands, the 
Indochinese peninsula, the southeastern Himalayas, and finally to 
southern China (Figure 4). Initially, a geographic isolation event divided 
this population into two groups: clade A (Southeast Asia) and clade B 
(Southern China). Later, clade A diversified by expanding their range to 
the main island area of Southeast Asia, and subsequently, experienced 
isolation events such as the distribution of C. mniszechi in southeastern 
China (area B). Finally, the species of clade B diversified gradually 
through the colonization of the mainland from the Indochina Peninsula 
to the Southeast Himalayas.

4. Discussion

4.1. Phylogenetic analyses

Phylogenetic inferences using ML and BI showed a highly similar 
topology, which confirmed that Cyclommatus stag beetles belong into 
a monophyletic group. The results are consistent with previous 
studies (Kim and Farrell, 2015; Tsai and Yeh, 2016; Wu, 2016), 
although their biological samples were not fully sufficient. The 
phylogenetic analysis also showed that the samples formed two 
genetically distinct population clusters (i.e., clade A and B). Clade A 
species are mainly distributed in Southeast Asian islands, while clade 
B covers mainly the southern part of China. Two well supported 
genetic separations implied that species of clade A and clade B could 
belong to two different taxa, respectively. Furthermore, the 
K2P-distance between clade A and clade B provided informative sign 
to assess their generic relationship. The average inter-genetic K2P 
distance is 0.220 (range 0.174–0.259) in Lucanidae (Wu, 2016). 
Within a few of closely related lucanid genera, such as between 
Falcicornis Planet, 1894 and Dorcus MacLeay, 1819; Rhaetus Parry, 
1864 and Rhaetulus Westwood, 1871, the K2P-distances values are 
0.173 and 0.174, respectively (Wu, 2016; Chen, 2018). The 
K2P-distance value between the clade A and clade B (=0.176) in our 
study suggests that the two clades could represent different genera. 
Additionally, morphological comparison (the terminology used in 
this study from Holloway (2007) of the two clades indicated some 
variability, and their differences were supported by Wan (2007), 
Fujita (2010), Huang and Chen (2017). In species of clade A, the 
males usually have well-developed mandibles, which can be even 2–3 
times their body length (total length of head, pronotum and elytra), 
and in their genitalia the parameres are long and pointed; their 
permanently everted internal sac are relatively short, usually no more 
than twice the length of aedeagus; the female spermathecal gland and 
spermatheca are clearly separated, and the bursa copulatrix is short 
(e.g., in C. miniszechi). In reverse, the male mandibles are less 
developed in the clade B species, usually not exceeding the total 
length of the head and pronotum; the parameres are rounded and 
blunt, the permanently everted internal sac relatively long, at least 
twice the length of aedeagus; the spermathecal gland and 
spermatheca of female are almost attached to the base of bursa 
copulatrix, and the bursa copulatrix is long (e.g., in C. assamensis).

FIGURE 2

Bayesian topology showing the relationships within Cyclommatus stag 
beetles and outgroups. Numbers next to each node represent Bayesian 
posterior probabilities (first number) and partitioned maximum 
likelihood bootstrap support (second number). The phylogenetic tree is 
based on Bayesian inference analysis of concatenated DNA sequence 
data from 16S rDNA, COI, 28S rDNA, ITS, Cytb, and Wingless.

TABLE 2 The genetic distance for the Cyclommatus stag beetles (Kimura 
2-parameter).

Clade A Clade B Outgroup

Clade A

Clade B 0.176

Outgroup 0.217 0.213
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In summary, the well-separated topology, relatively high genetic 
differences and stable morphological variations between the clade A and 
clade B showed that they could reach the level of inter-generic 
differences. Consequently, the current Cyclommatus stag beetles could 
be  divided in the typical genus Cyclommatus Parry (1863) and the 
resurrected genus Cyclommatinus Didier (1927). Despite having no 
molecular data for Cyclommatellus Nagel (1936) in this study, we suggest 
to include it in Cyclommatus Parry (1863) basing on the morphological 
characters. Taxonomic notes on the genera Cyclommatus Parry (1863) 
and Cyclommatinus Didier (1927) are presented, which include new and 
revised status for Cyclommatinus. Type species, synonimies, generic 
diagnosis, updated species checklist with distribution data of the two 
genera are also given.

4.2. Biogeography and evolutionary trends

Our results are consistent with the “Upstream” colonization 
hypothesis in Cyclommatus stag beetles, which a general colonization 
from Southeast Asia islands to mainland Asia, and from tropical 
archipelagos to subtropical continents, with Southeast Asian being the 
source of mainland Asian lineages. This diversification pattern is similar 
to those previously found in other taxa (van der Kaars, 1991; Grismer 
et al., 2017; Williams et al., 2017; Chen et al., 2018; Liang et al., 2018; 
Poyarkov et al., 2022). Therefore, islands can be a source and a sink for 
continental biodiversity (Bellemain and Ricklefs, 2008; Weinell et al., 
2021). The direction of species dispersal from continents to islands has 
also been recorded in Asia (Matuszak et  al., 2016), which is the 
“Downstream” colonization hypothesis. However, it is necessary to 
synthesize the diversity patterns of other endemic genera within this 
large geographic range to produce a comprehensive understanding of 
regional source-sink dynamics between continents and islands.

Our biogeographic analysis shows that Cyclommatus stag beetles 
appear to have originated from the Late Eocene to the Early Oligocene 
transition (ca. 43.10 Mya). During this period, the global climate shifted 
from warm and humid to cold and dry, especially in Southeast Asia 
(Zachos et al., 2005). At the same time, the continuously humid forests 
shrunk and fragmented (Bain and Hurley, 2011; Buerki et al., 2013), 
which may have promoted the initial diversification of Cyclommatus 
stag beetles.

At the beginning of the Oligocene, the global climate began to cool 
sharply and sea levels dropped, leaving more islands in Southeast Asia 
exposed and connected, allowing species to spread southward to the 
islands in Southeast Asia (Tan et  al., 2020). At this time, the 

Qinghai-Tibet Plateau and its tectonic morphology had been initially 
formed, and the arid areas began to retreat inland, while most of the 
inland arid areas began to gradually diverge from the humid areas 
affected by the East Asian monsoon (Harrison et al., 1992; Kutzbach and 
Ruddiman, 1993; Zhisheng et al., 2001; Qiang et al., 2011). These factors 
may have facilitated the differentiation of Cyclommatus stag beetles to 
form two clades corresponding to clade A and clade B during the late 
Oligocene (ca. 24.90 Mya).

In the Late Jurassic, western Sulawesi, Java, and Borneo separated 
from Australia and united with the Sunda lands during the Cretaceous 
(Hall, 2013). During the Tertiary period, Sulawesi separated from 
Borneo, forming the Makassar Strait, which became a barrier for 

FIGURE 3

Divergence time estimation of Cyclommatus stag beetles based on 
COI and 16S rDNA gene. Divergence time estimates are represented 
next to the nodes (in millions of years) with horizontal bars indicating 
95% highest posterior density intervals.

TABLE 3 Statistical results from RASP of Cyclommatus stag beetles.

Model LnL Number of 
parameters

d e j AICc AICc_wt

DEC −8.6 2 0.0024 1.00E-12 0 21.31 0.12

DEC + J −7.92 3 9.00E-10 4.80E-10 0.0043 22.07 0.084

DIVALIKE −7.05 2 0.0038 1.00E-12 0 18.21 0.58

DIVALIKE+J −7.01 3 1.50E-08 1.00E-12 0.0049 20.26 0.21

BAYAREALIKE −14.91 2 0.0055 0.01 0 33.93 0.0002

BAYAREALIKE+J −10.61 3 1.00E-07 1.00E-07 0.0096 27.44 0.0057

Comparison of the fit of different models of geographic-range evolution and model-specific estimates for the different parameters. LnL referred to log-likelihood; d, rate of dispersal; e, rate of 
extinction; j, the likelihood of founder-event speciation at cladogenesis; AICc, the corrected Akaike information criterion. The AIC model weight is used to compare all the models together to select 
the best one. The preferred model is indicated by the bold and red lines.
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species exchange between Borneo and Sulawesi with the central and 
northern Borneo and Palawan land surfaces in the Early Miocene (Hall, 
2013). Thus, we speculated that it promoted the species diversity of the 
clade A through geographical isolation due to islands and straits, in the 
Early Miocene (ca. 18.19 Mya). After, it was the main uplift stage of the 
Qinghai-Tibet Plateau, the arid inland areas of Asia began to expand 
further (Harrison et al., 1992; Kutzbach and Ruddiman, 1993), and the 
monsoon gradually became stronger in the period of the Middle 
Miocene. Subsequently, the global temperature began to drop (Zachos 
et al., 2005). These events are believed to have accelerated the prosperity 
of most groups in the clade B of Cyclommatus stag beetles. In previous 

studies, there are several Asian taxa with distributions which are similar 
to our clade B group (e.g., Che et al., 2010; Gao et al., 2013; Klaus et al., 
2016; Chen et al., 2018; Yan et al., 2020).

In the late Miocene, affected by the impact of the Indian Asian 
plate, Cyclommatus stag beetles differentiated many times. 
C. mniszechi, which is an clade A taxon, gradually spread from 
Southeast Asian islands to the Asian continent (8.02 Mya). The 
southern China populations of this species resemble the clade B 
species in external morphology, indicating that this species adapted 
its phenotype to the continental habitat environment after spreading 
from the Taiwan island to the mainland. This species could be used 

FIGURE 4

Spatiotemporal reconstruction of Cyclommatus stag beetles based on the best-fitting model (DIVALIKE) inferred using RASP and the maximum clade 
credibility tree from BEAST analyses. Color circles reflect biogeographic designations (for species at tips), and different colors within the pie charts at the 
nodes represent the probabilities of different geographical areas. A, the main islands of Southeast Asia; B, the continental region from Indochina Peninsula 
to the Southeast Himalaya region.
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as an example of the spread to the continent from the islands. In 
general, our study strengthens the idea that Borneo and Indochina 
are evolutionary hotspots for the biodiversity in Southeast Asia (de 
Bruyn et al., 2014).
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