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Climate change significantly alters species distributions. Numerous studies

project the future distribution of species using Species Distribution models

(SDMs), most often using coarse resolutions. Working at coarse resolutions in

forest ecosystems fails to capture landscape-level dynamics, spatially explicit

processes, and temporally defined events that act at finer resolutions and that

can disproportionately affect future outcomes. Dynamic Forest Landscape

Models (FLMs) can simulate the survival, growth, and mortality of (stands of)

trees over long time periods at small resolutions. However, as they are able to

simulate at fine resolutions, study landscapes remain relatively small due to

computational constraints. The large amount of feedbacks between biodiversity,

forest, and ecosystem processes cannot completely be captured by FLMs or

SDMs alone. Integrating SDMs with FLMs enables a more detailed understanding

of the impact of perturbations on forest landscapes and their biodiversity. Several

studies have used this approach at landscape scales, using fine resolutions. Yet,

many scientific questions in the fields of biogeography, macroecology,

conservation management, among others, require a focus on both large scales

and fine resolutions. Here, drawn from literature and experience, we provide our

perspective on the most important challenges that need to be overcome to use

integrated frameworks at spatial scales larger than the landscape and at fine

resolutions. Future research should prioritize these challenges to better
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understand drivers of species distributions in forest ecosystems and effectively

design conservation strategies under the influence of changing climates on

spatially and temporally explicit processes. We further discuss possibilities to

address these challenges.
KEYWORDS

climate change, dynamic landscape modelling, species distribution modelling, species
conservation, environmental niche models
1 Introduction

Forests are among the most species rich ecosystems, and forest

associated species in turn support ecosystem functioning and

provide numerous ecosystem services (Brockerhoff et al., 2017).

The conservation of biodiversity in forests is amongst others

challenged by land use and landcover change (henceforth referred

to as landcover), which is exacerbated by climate change, and

uncertainties associated with impacts of management and

conservation strategies in the face of climate change (IPBES,

2019). To halt further biodiversity losses in forest ecosystems, we

urgently need a better understanding of current and future

combined impacts of landcover and climate change on biodiversity.

There are several different approaches to simulate the effects of

such changes on spatio-temporal forest dynamics with individual

requirements regarding resolution and scale. Approaches that can be

used at large (global) scales and with small resolutions are Dynamic

Global Vegetation Models (DGVM) and Species Distribution Models

(SDMs). DGVMs can be used to simulate the interactions between

climate and changes in the vegetation at a global scale while

accounting for competition and disturbance (Krinner et al., 2005).

The general approach of SDMs is to identify variables, amongst a set of

predictor variables, that determine most of the variation in species

presence to subsequently predict the relative suitability of the area

under investigation for the species to occur (e.g. Phillips et al., 2006).

Like DGVMs, they can be used at small resolutions and large areas,

but also at high resolutions provided that the needed data are available.

At the other resolution and scale spectrum are Individual Based Forest

Models (IBMs), such as forest gap models. These are used to simulate

the growth, development and mortality of individual trees within a

forest stand (Maréchaux et al., 2021) and thus require large amounts

of data at high resolution and are used at small scales. In between these

two extremes are Forest LandscapeModels (FLMs). FLMs are spatially

explicit and designed to simulate the survival, growth, and mortality of

(stands of) trees at a landscape level while accounting for landscape

level interactions such as seed dispersal and natural disturbances like

pest outbreaks. They were specifically designed to be able to address

landscape level management issues (Scheller and Mladenoff, 2007;

Shifley et al., 2017). Maréchaux et al. (2021) provide a good overview

of general advantages, limitations and challenges of using DGVMs,

SDMs and IBMs, but leave FLMs undiscussed. Yet, FLMs are capable
02
to combine the simulation of detailed (stand) processes and cross-scale

interactions (Temperli et al., 2013).

Many scientific questions in academic fields like biogeography,

macroecology, as well as conservation management require a focus

on both large regional to global scales and fine resolutions that

could be relevant for management. Although biodiversity

conservation generally takes place at human-scale landscapes

(landscape scale hereafter) (Wu and Qi, 2000), the scale at which

conservation is most effective depends on various factors. It varies

with the species and communities under consideration, with goals

such as conserving single populations or metapopulations, and with

various anthropogenic factors. For instance, conserving a migrating

bird may require cross-country approaches whilst conserving a

viable population of a single species may only require a local

approach (Brito and Grelle, 2006; Sodhi et al., 2011). However,

successful conservation often requires larger (cross-country) scales

(Kark et al., 2015). Considering this, SDMs and FLMs may be the

most useful approaches to get a better understanding of current and

future combined impacts of landcover and climate change on

biodiversity in forest ecosystems as they both can be used at

relatively large scales and with relatively high resolutions. Here

we first briefly discuss both types of models and their limitations

after which we offer our perspective on a possible way forward.
1.1 Species distribution models

A growing body of studies has assessed the impacts of climate

change on the distribution of numerous species using SDMs (or

habitat suitability models or ecological niche models, which we here

collectively refer to as SDMs). Although SDMs can be used at

landscape scales and with high resolutions, these studies are

generally conducted at large spatial extents (regional to global) and

at coarse resolutions (generally > 30-arc seconds) and thus frequently

neglect impacts compounded by landcover change (Titeux et al.,

2016). Yet, decision making on managing or conserving species or

ecosystems require fine resolutions. Assessments using coarse

resolutions might therefore fail to capture small-grain processes

that are critical for landscape-scale dynamics, such as limitations

imposed by spatially explicit processes (propagule dispersal,

disturbance propagation) or the effects of temporally defined
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perturbations on the ecosystem or microclimate (Elkin et al., 2012).

The main reason that the mentioned studies are generally done at a

coarse resolution is related to data limitations. Detailed data on

microclimate and current landcover, let alone on future microclimate

and landcover, are hardly ever available at large scales as they require

large investments in monitoring or remote sensing. Moreover, using

macroclimate data in fine scale predictive studies of effects of climate

change on species’ presence leads to faulty predictions (Bütikofer

et al., 2020; Maclean and Early, 2023). Projections in landcover

change are currently only available at coarse spatial resolutions

(Titeux et al., 2016) and are also considered unreliable (Stanton

et al., 2012). Commonly applied downscaling methods typically focus

on only a few landcover types and thus do not capture the full impact

of changes in landcover on biodiversity (Titeux et al., 2016).

Furthermore, changes in land management regimes and the

intensity of use can have large impacts on biodiversity, yet such

changes are generally ignored in predictive studies (Titeux et al.,

2016). For example, Howard et al. (2023) found that changes in

climate suitability were of little importance for the local colonization

and extinction of birds. This finding highlights the inability to

correctly predict small scale changes in species’ presence and calls

for alternative approaches. Also, the needed occurrence data should

be accurately georeferenced and available at a fine resolution, which is

often not the case. Using occurrences with location uncertainties in

high resolution studies may lead to misleading interpretations of the

predictions of SDMs (Mitchell et al., 2017; Gábor et al., 2020). It is

thus challenging to produce well performing SDMs at high

resolutions. Instead of using correlative SDMs, which typically

ignore dynamic processes and interactions, process-based models

may be better at capturing the impacts of climate change on species

presence at high resolutions. Process based models incorporate

ecological processes and interactions and provide a mechanistic

understanding of species’ responses to climate change, yet they

often are complex, data and computationally demanding (Kearney

and Porter, 2009; Urban et al., 2016).
1.2 Forest landscape models

In contrast to SDMs, FLMs such as LANDIS-II (Scheller et al.,

2007) and iLand (Seidl et al., 2012) are process-based; they are

primarily designed to capture the ecological processes of forest

ecosystems in a spatially explicit manner. They simulate the impact

of environmental changes on forest ecosystem dynamics typically at

smaller extents (1,000–10,000 km2) and at finer resolutions

(typically up to 1ha) than SDMs (Shifley et al., 2017). These finer

resolutions allow for the simulation of processes driving forest

dynamics that act at small scales (Elkin et al., 2012; Albrich et al.,

2020). They can simulate the impacts of a variety of anthropogenic

and natural disturbances such as pest outbreaks, storms, and fire, on

forest structures and dynamics at a landscape/watershed/

management scale and long time frames, and do this within a

gridded landscape in which each grid cell represents single trees

(e.g. iLand) or aggregates of species-age cohorts and their biomass
Frontiers in Ecology and Evolution 03
(e.g. LANDIS-II). They account for growth, competition,

reproduction, dispersal and mortality of individual tree species,

linked through ecological processes to changing environmental

drivers, thus making them suitable to capture the influence of

climate change. Additionally, they were built to scale up stand-

level processes to the landscape-level (e.g., seed dispersal), to track

biomass accumulation, decomposition and forest composition and

structure and to simulate the effect of natural and anthropogenic

disturbances and land use change. Resulting outputs from FLM

simulations typically include, amongst others, proportions of

specific tree species, proportions of dead wood, total standing

biomass, and average age of the trees per grid cell. These outputs

can thus be used to assess the likelihood the landscape is suitable for

forest associated species. However, when used for assessments of

ecosystem change impacts on biodiversity, FLMs have thus far

either considered top-down impacts on biodiversity or have been

limited to changes in the distribution of tree species (Sebald et al.,

2021) or a limited number of wildlife species (Hof and Hjältén,

2018; Tremblay et al., 2018). Hof and Hjältén (2018) for instance

used LANDIS-II to simulate the impacts of restoration on the

suitability of a forest landscape for the white-backed woodpecker

(Dendrocopos leucotos) by extracting data on dead wood, the age of

forest stands, and the density of broadleaved trees directly from the

simulation outputs. They however based their assessment of

suitability on the presence of forest characteristics associated with

white-backed woodpeckers, rather than on actual presence data of

the species. This approach is therefore sensitive to bias. Other

studies have used indicators for biodiversity (e.g., deadwood upon

which many red-listed species depend) (Thom et al., 2017) and have

thus neglected other crucial aspects related to forest biodiversity,

such as biogeochemistry (Xiankai et al., 2008), the vertical structure

of the forest (Storch et al., 2018), its spatial heterogeneity and the

presence of large, old trees accommodating dendromicrohabitats

(Asbeck et al., 2021a). Furthermore, assessments of impacts of

perturbations on biodiversity more often than not focus on one

driver of change at a time (Titeux et al., 2017, but see, e.g., Lanzas

et al., 2021). Current efforts are thus few or somewhat limited, and

usually focus on relatively small spatial extents considering the

needs for effective conservation management. Yet, assessments of

impacts of environmental changes, including aspects like

biogeochemistry and natural disturbances, on biodiversity at large

spatial scales are needed as they will provide better guidance for

decision making by stakeholders regarding management

and conservation.
1.3 Spatial bias in use of models

Both SDM and FLM based studies are highly likely not spread

evenly across the globe. A search in Scopus with the search string

(TITLE-ABS-KEY(“species distribution model*”) OR TITLE-ABS-

KEY(“environmental niche model*”)) resulted in 9925 hits of

which, based on the top 10 countries, 41% was tagged as being or

originating from a country in Europe, 35% from Northern America,
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10% from China, 9% from Australia, and 6% from Brazil. Regarding

FLMs, using the search string (TITLE-ABS-KEY (“Forest landscape

model*”) OR TITLE-ABS-KEY (“Forest landscape simulation

model*”)) returned 246 documents from, again based on the top

10, Northern America (56%), Europe (22%), China (20%), and

Japan (2%). Although this does not mean that these studies were

conducted in study regions in the countries specified, there is a

likelihood that the majority in fact is, suggesting a bias towards

certain areas. Unfortunately, seeing the large variability in

landscapes, regarding biotic, abiotic, and cultural factors, it is

impossible to generalize findings from one area to others.
1.4 Integrated framework

In brief, applying individually SDMs and FLMs is subject to the

three aforementioned limitations: 1. SDM based projections of

species distributions are generally done at coarse spatial

resolutions, 2. FLM based simulations are typically done for a

limited number of species, indicators, or drivers of change and

focus on relatively small areas, and 3. efforts are not spread evenly

across the globe. These limitations are currently hampering

trustworthy projections of impacts of climate change and

management practices on forest biodiversity at a scale relevant for

biodiversity conservation. Furthermore, the large number of

feedbacks between biodiversity, forest, and ecosystem processes

unfortunately cannot completely be captured by either SDMs or

FLMs alone. Assessments using SDMs or FLMs on their own largely

exclude broader complexities associated with climate-induced

impacts on biodiversity at a scale relevant for biodiversity

conservation. Tehrani et al. (2021) used for instance SDMs in

which they used several climatic and land cover (e.g. forest types)

variables as predictors, but unfortunately not in a dynamic manner.

Albeit a nice approach, such efforts fail to take the changeability of

forests into account.

The first step to get a better understanding of the impacts of

forest management in the face of climate change on species’

presence may well be to integrate correlative SDMs with process
Frontiers in Ecology and Evolution 04
based FLMs. Integrated modelling frameworks in which two or

more models are linked with one another have been used to assess

the combined effects of changes in e.g. landcover, climate, and

natural disturbance regimes on the distribution of species. Pearson

et al. (2004) for instance used a multiscale hierarchical modelling

framework in which land-cover data was integrated in a correlative

bioclimatic model in a scale-dependent hierarchical manner,

whereby an SDM was used to obtain the climatic requirements of

species at a continental scale and land-cover requirements at a

nationwide scale. This hierarchical approach was also followed by

others for different purposes, e.g., by Regos et al. (2016, 2018) to

predict the impacts of climate change scenarios as well as fire

regimes on the effectiveness of protected areas to conserve bird

species, predominantly in grassland areas. Pais et al. (2020) coupled

a fire-landscape dynamic model with a carbon sequestration model

and an SDM to identify fire-smart management strategies in a

mountain farmland area that promoted amongst others biodiversity

conservation. Yet, the used resolution for (parts of) these

frameworks was still rather coarse (1km2). FLMs are particularly

suitable to simulate the dynamics of forest landscapes using fine

resolutions (1ha and smaller). Linking correlative SDMs with

process based FLMs therefore seems a promising approach to

project impacts of changing conditions on forest biodiversity at

fine resolutions and large scales. Instead of directly extracting

relevant habitat suitability data from FLM simulation outputs as

has been done by Hof and Hjältén (2018), FLMs are linked to SDMs

by using the FLM simulation outputs in SDMs as predictor variables

to evaluate the suitability of a given area for a specific species or

species group based on actual species occurrences. A flowchart of an

example of an integrated framework, based on previous efforts by

Pearson et al. (2004) and Regos et al. (2020), in which an FLM is

coupled with an SDM is given in Figure 1. This example framework

consists of three steps in which climate, biophysical, and forest

characteristic variables are integrated at different scales. Step one is

to use regional-scale, coarse-resolution species occurrence data and

climate change scenarios to derive climate suitability maps for the

target species. Step two is to derive forest characteristic maps for

scenarios of e.g. climate change, natural disturbances, and forest
FIGURE 1

Flowchart of an integrated framework in which a dynamic forest landscape model (FLM) is coupled with a species distribution model (SDM).
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management scenarios from a landscape scale FLM, using forest

inventory and remotely sensed data at fine resolutions. Finally, step

three is to use fine-resolution species occurrence data together with

the outcomes of the regional-scale SDM and the landscape-scale

FLM as predictors in the final set of landscape-scale, fine-

resolution SDMs.

Such type of approach has been used but, to the best of our

knowledge, only a handful of times. A search in Scopus using the

search string TITLE-ABS-KEY ((“forest landscape model*” OR

“forest dynamic model*” OR “forest simulation model*” OR

“forest succession model*”) AND (“species distribution model*”

OR “ecological niche model*” OR “habitat suitability model*”))

resulted in only 8 documents (May 2023). In Web of Science the

search string (“forest landscape model*” OR “forest dynamic

model*” OR “forest simulation model*” OR “forest succession

model*”) AND (“species distribution model*” OR “ecological

niche model*” OR “habitat suitability model*”) (topic) resulted in

7 hits (February 2024). A closer analysis of the hits revealed that not

all works actually integrated SDM type models with FLM type

models (Dijak and Rittenhouse, 2009; Huang et al., 2018; Tremblay

et al., 2018; Wang et al., 2018; Garcıá-Valdés and Morales-Castilla,

2016) and those that did, generally focused on relatively small study

areas and/or on a restricted number of taxa (Di Febbraro et al., 2015

[4 species], Hoecker and Turner, 2022 [3 species], Walsh and

Hudiburg, 2019 [2 species]), or used large resolutions (Garcıá-

Valdés et al., 2020 [10 arcminutes]). Yet, other works that did use

such an approach did not come up in our search strings. Larson

et al. (2004) linked a population viability model for one bird species

to landscape simulations from a habitat suitability index model.

Pearman-Gillman et al. (2020) used relatively coarse scale (500m2

to 3,000m2) simulation outputs of an FLM as predictor variables in

SDMs to assess the habitat suitability for 10 species. Although we

may have missed more works, applying such frameworks at large,

yet detailed (1ha), scales for many species may thus have not been

done so far. This is likely due to the increased complexity that often

comes with increased accuracy.

The current limitation for biogeographers and macro-ecologists

to use such an approach is most likely the scale at which the fine

resolution FLMs operate. For example, Suárez-Muñoz et al. (2021)

simulated a landscape of 3,900 km2 with a 1ha resolution, Gustafson

et al. (2022) simulated landscapes of respectively 530 km2 and

640 km2 at a 30m resolution, and Duveneck et al. (2015) simulated

13M ha, but at a 6ha resolution. Simulating such large areas with

FLMs as has been done by Duveneck et al. (2015) at fine resolutions

still appears to be challenging. Here we discuss the major challenges

that need to be overcome in order to use such integrated frameworks

at larger spatial scales often relevant for biodiversity conservation,

and at finer resolutions based on literature and our, users of FLMs

and SDMs, own perspective, them being: 1) data availability for

initialization and parameterization is limited, 2) regions comprise

multiple landscapes, 3) inferences cannot be made, 4) availability of

accurate species occurrence and response data, and 5) uncertainty of

predictive performance of models. Tackling these challenges should

be a priority if we are to better understand drivers of species
Frontiers in Ecology and Evolution 05
distributions and effectively design conservation strategies,

especially for species with large geographic ranges.
2 Challenges

2.1 Data availability for initialization and
parameterization is limited

Challenges related to the use of integrated frameworks in which

FLMs are linked with SDMs at regional scales are first and for all

related to data availability. Albeit less than Individual-based or

Stand-based Forest Models, the parameterization and initialization

of FLMs still require large amounts of data, which is a general

limitation of high-resolution forest models (McKenzie et al., 2019;

Maréchaux et al., 2021). The first challenge is that FLMs require

maps representing initial landscapes, observed or expected climate,

site conditions (e.g., soil characteristics) and forest structure (e.g.,

species composition, cohort biomass or cohort ages) which are not

always available “wall to wall” at fine scales. Even though satellite

remote sensing technologies are constantly increasing their

capabilities to deliver such data (Shugart et al., 2015), additional

challenges (e.g. related to imagery correction, registration, and

interpretation, and uncertainties related to mapping; Mairota

et al., 2015) are associated to their judicious use. For instance, an

FLM, such as LANDIS-II, coupled with a mechanistic extension

such as PnET-Succession (De Bruijn et al., 2014), requires large

amounts of landscape and species-specific parameters (e.g., data on

soils, biogeochemistry, growth parameters, and tree species-specific

life traits). Default input parameters are typically available for some

of these. However, the majority requires calibrations based on

observed landscape changes and compositional trajectories, whose

measurements are among the largest challenges in modelling the

impacts of environmental change (Keane et al., 2015; Scheller,

2018). Suárez-Muñoz et al. (2021) give an overview of the needed

data, and they also provide a step-by-step guide to initialize and

calibrate dynamic FLMs. Based on personal experiences, collecting

the needed data, initializing and calibrating a dynamic FLM can

easily take up to a year of full time work, a sentiment that is echoed

by Furniss et al. (2022).
2.2 Regions comprise multiple landscapes

A major specific challenge of using FLMs at large extents and

fine resolution, is that large regions that include multiple landscapes

(e.g. the Mediterranean biogeographic region) will require different

sets of parameters and calibration runs for each landscape. This is

first computationally very demanding (Maréchaux et al., 2021) and

second, not easily solved by mosaication, i.e., by modelling each

landscape separately and then aggregating the several results ex

post, a process that increases uncertainty (Boulanger and Pascual

Puigdevall, 2021). The main problem is that species parameters

expressing tree species-specific life traits are not rigidly separated
frontiersin.org
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across landscapes but are changing gradually following

environmental gradients (Gutiérrez et al., 2016), and can also

vary over time adding further uncertainties. The environmental

drivers of parameter values are rarely well understood, let alone

implemented. Alternatively, several representative landscapes per

region could be modelled (i.e. parameterized and calibrated) so that

each set of landscape/region specific parameters could be used for

similar conditions with relative confidence.
2.3 Inferences cannot be made

Yet another challenge is that inferences from one study

landscape often cannot be made to another landscape (Walsh and

Hudiburg, 2019; Charney et al., 2021; Maréchaux et al., 2021) and

that locally sampled information, such as establishment

probabilities of tree species and amount of dead wood, cannot

always be used for projections elsewhere. FLM outputs can be

sensitive to local and global derived species parameters (Huber

et al., 2018; McKenzie et al., 2019), thus leading to uncertainty of

responses in the study landscape itself, hampering transferability.

Landscapes that are already parameterized are often used for several

studies and are thus assumed to function as representative

landscapes for larger regions, even if in reality they are not,

leading to flawed inferences. The reason that parameterized

landscapes are used as representatives follows from the large

amount of time it takes to collect the needed data and initialize

and calibrate an FLM (McKenzie et al., 2019). But the selection

criteria behind the choice of the specific landscape is rarely

representativeness for other regions, being more often a need to

capture specific processes and unique landscapes, such as protected

areas or no management areas, or address specific scientific or

environmental objectives targeted at that landscape. Increasing the

size of a parameterized landscape requires additional data,

computation time and storage space. Yet, inferences from

outcomes of, e.g., the effects of anthropogenic or natural

disturbances and other perturbations on a particular ecosystem or

specific species may not be valid across time and space (Johnstone

et al., 2016). A major flaw, dubbed the Modifiable Areal Unit

Problem (Openshaw, 1984), may already arise due to data

aggregation, in which the area-specific data are aggregated into

larger area units or recombined into zones with the same size but at

a different location. In turn, each combination leads to different

values, different conclusions and possibly flawed inferences (Jelinski

and Wu, 1996). Furthermore, inferences may be faulty due to the

large range of different effects of disturbances, the large range of

management strategies and the variation in plant and animal

species responses to disturbances and perturbations (Thompson

et al., 2000). In addition, there may be confounding factors, such as

landscape scale effects.
2.4 Availability of accurate species
occurrence and response data

Yet another challenge is related to the quality of species

occurrence and response data. When high resolution FLMs are to
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be linked with SDMs, accurate species occurrence data with a high

resolution are needed. Many studies applying SDMs use data

(partly) collected by citizens, such as those made available by the

Global Biodiversity Information Facility (www.GBIF.org) (Feldman

et al., 2021). Such data can be fraught of bias, caused by e.g.

differences in accessibility to surveyors and mis-identification

(Dickinson et al., 2010; Kosmala et al., 2016), for which statistical

approaches may need to be taken to deal with them (Bird et al.,

2014). Nevertheless, citizen science data can make a valuable

contribution to species conservation and provide reliable

predictions (Tiago et al., 2017; Van Eupen et al., 2021). The main

challenge we see with using citizen science data in integrated

frameworks is that they are unfortunately often provided with a

low resolution.

In addition to species occurrence data – available for many

species across large parts of the globe, yet important gaps exist

(Feldman et al., 2021) – species requirements and response data to

specific disturbances are needed as well. The increasing source of

small-scale data from biodiversity monitoring programs can

potentially be used for such purposes. New and ongoing studies

that assess the impact of forest management and natural disturbance

regimes on forest biodiversity offer a unique and rich source of

information that can be used for integrated frameworks (e.g., Müller

et al., 2019; Koivula and Vanha-Majamaa, 2020; Asbeck et al., 2021b).

These studies often track biodiversity or ecosystem responses across

time scales pertinent for simulation modelling and have significantly

advanced our understanding of how plants and animals may respond

to, e.g., changes in forest structure, climate, and disturbance

dynamics. However, inferences from such studies are often

restricted to very small spatial scales, viz. within or between stands.

Integrated frameworks, such as presented in Figure 1, in which FLMs

are linked with SDMs can “scale-up” such high-resolution

biodiversity data obtained from field experiments, long-term

monitoring programs, national inventories, published literature or

remote-sensing to the spatial scale that is relevant for biodiversity

conservation, such as large landscapes/regions. It is however key that

the landscape-scale SDMs mentioned in step 3 in the framework

should be fit at high resolutions. Coarse resolution SDMs are not able

to capture the fine-scale variations in suitability of the area for the

species under consideration resulted from fine-scale variations in

resources and microclimates (Bütikofer et al., 2020; Maclean and

Early, 2023). We therefore advocate that more biodiversity

monitoring programs, especially focused on assessing impacts of

perturbations – be it forest management or conservation strategies or

natural disturbances – are needed.
2.5 Uncertainty of predictive performance
of models

It is important to realise that although SDMs can make useful

predictions of e.g., impacts of climate change on species distribution

ranges and FLMs can make useful simulations of such impacts on

forest ecosystems, the predictions and simulations need not

necessarily be of high quality (Petter et al., 2020; Wang and

Jackson, 2023). This is for instance an issue when imprecise
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occurrence data are used for high resolution predictions in SDMs

(Mitchell et al., 2017; Gábor et al., 2020). Unfortunately there is,

more often than not, no meaningful way to assess the quality of

models, especially when used to predict into future. There may be

further need to explore the predictive power of SDMs and accuracy

of FLMs under different climate scenarios. Hindcasting, using

historical records, or using virtual species to assess the predictive

performance of SDM predictions may be the only way, as has been

done by e.g. Morán-Ordóñez et al. (2017) and Santini et al. (2021).

Hindcasting has also been suggested as an option to validate the

internal processes of FLMs (Scheller, 2018). Alternatively, multiple

variants of a model can be developed to evaluate structural

uncertainties in the models (Huber et al., 2020). Outcomes from

such exercises may however be even more challenging to transfer

and communicate to forest managers.
3 The way forward

Amajority of scientists and conservation managersmay currently

not be able to dedicate sufficient resources, including computing

power, to build integrated modelling frameworks at large spatial

scales and fine resolutions. As mentioned, our proposed framework

(Figure 1) consists of three steps. First, regional-scale, low resolution

species occurrence data and climate change scenarios are used in

SDMs to derive low-resolution climate-suitability maps for targeted

species. These low-resolution maps subsequently need to be

resampled to the needed resolution in the final step. In the second

step, landscape scale FLMs are used to produce high-resolution forest

characteristic maps for scenarios of interest, using high-resolution

forest inventory and remotely sensed data. Finally, step three is to use

high-resolution species occurrence data together with the outcomes

of the regional-scale SDMs and the landscape-scale FLMs as

predictors in the final set of landscape-scale SDMs to obtain high-

resolution maps of habitat suitability for targeted species under

scenarios of interest (e.g. various scenarios of climate change and

forest management). Although this exact approach has, to our

knowledge, not been used before, similar approaches, albeit at

smaller scales or at lower resolutions, have been used by, amongst

others, Pearson et al. (2004), Di Febbraro et al. (2015), Walsh and

Hudiburg (2019), Pearman-Gillman et al. (2020), Regos et al. (2020),

and Hoecker and Turner (2022). Clearly, to use such an approach at

the scales needed for effective conservation and at high resolutions,

we need reasonable short-cuts. Identifying the problems related with

the use of modelling outputs to infer responses of one specific study

region through space and time, the best way forward in the

foreseeable future may be to set up a range of representative

landscapes for parameterisation for FLMs, covering a large range of

biogeographical regions or ecotones. This could also help to identify

gradients of parameters that could be used for calculating parameters

in other areas based on available environmental variables. This

approach should lower the problems related with faulty inferences

through space. For the integration with SDMs, target species for

biodiversity conservation will likely differ per region, ecosystem, and
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the interests of stakeholders. In addition, data regarding species

requirements should be available, which is taxa dependent. For

generality, it may be a good idea to target either keystone,

indicator, or umbrella species or functional groups (see e.g., Walsh

and Hudiburg, 2019). However, among such (groups of) species,

further selection should be made as resolution of the integrated

frameworks and the target species’ requirements need to be

consistent with one another. One of the main problems in

landscape ecology is to define resolutions (extent-grain) relevant to

the perception limits of the organisms under investigation (Wiens,

1989; Kotliar and Wiens, 1990).

Ideally, integrated frameworks should also include social values

placed on biodiversity, as different management objectives might

need to be prioritized over a landscape, as for instance attempted by

Lucet and Gonzalez (2022). Current standard processes of involving

societal stakeholders and their values are iterative (e.g., Miller and

Morisette, 2014; Murgue et al., 2015): model projections are shared

with selected stakeholders who may rate or rank their preferred

landscapes for desirable futures. Iterations help identify

stakeholders’ common interests and conflicts. One should

however be aware that correctly reporting results from modelling

efforts to stakeholders can be challenging, particularly those relating

to uncertainty around average model results (Petr et al., 2019).

Incorporating social values is also central to assessing unavoidable

trade-offs and capture uncertainty in biodiversity conservation

(Palacios-Agundez et al., 2015; Lischka et al., 2018). Efforts have

already emerged within the area of “dynamic integrated socio-

environmental systems” to capture the coupled role of human

actions and ecosystems dynamics (Liu et al., 2007; Aguilar and

Kelly, 2019). There is a need of integrated models to be tailored to

particular human and ecological conditions. Determining the

“right” socio-ecological spatial scale might be a central question

to such integrated frameworks.

In conclusion, we advocate for the development and application

of more – and especially larger scale and finer resolution – efforts to

integrate FLMs with SDMs, making use of the existing frameworks

(e.g., workflows for data acquisition and preparation), parameterised

landscapes which are representative for biogeographical regions, as

well as the increasingly rich sources of data on environmental factors

and species presence, and on species responses to environmental

changes. We should however continue placing a great focus on fine

resolution – landscape-scale impact assessments and data collection.

These efforts should be a priority if the goal is to significantly improve

our understanding of the drivers of species distributions in forest

ecosystems. In turn, such knowledge would allow us to more

effectively design conservation strategies, especially for species with

large geographic ranges.
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