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Dakota skipper distribution
model for North Dakota, South
Dakota, and Minnesota aids
conservation planning under
changing climate scenarios
Kevin W. Barnes1*, Luke B. Toso2 and Neal D. Niemuth3

1United States Fish and Wildlife Service, Habitat and Population Evaluation Team, Hadley,
MA, United States, 2United States Fish and Wildlife Service, Ecological Services, Bismarck,
ND, United States, 3United States Fish and Wildlife Service, Habitat and Population Evaluation Team,
Bismarck, ND, United States
Species distribution models are useful conservation planning tools for at-risk

species, especially if they are linked to planning efforts, conservation delivery, and

a changing environment. The Dakota skipper (Hesperia dacotae) is an endemic

butterfly of mixed and tallgrass prairie of the northern Great Plains that is listed as

federally threatened in the United States and Canada. We modeled broad-scale

habitat suitability for the Dakota skipper by relating occurrence observations

collected via non-probabilistic population surveys and a stratified sample of

pseudo-absences to environmental predictors using a machine learning

approach (i.e. Random Forest classification model). Predictors were

summarized at two local scales and one landscape scale to reflect a potential

spatial hierarchy of settlement responses. We used recursive feature elimination

to select the top 25 covariates from a suite of predictor variables related to

climate, topography, vegetation cover, biomass, surface reflectance, disturbance

history, and soil characteristics. The top model included six bioclimatic, one soil,

and 18 local- and landscape-scale vegetation variables and indicated an

association with undisturbed grasslands with higher perennial grass and forb

cover and biomass. The model performed well, with kappa and AUC estimates of

0.92 and 0.99, respectively, for 20% of data withheld for validation. To

understand how climate change might affect Dakota skipper distribution, we

applied the model using future 30-year bioclimatic predictions. Predicted

suitable habitat declined and the climate envelope associated with Dakota

skipper occurrence shifted north into Canada. While it is unknown to what

degree the bioclimatic relationships in the model are biologically meaningful or

are simply correlative with our non-probabilistic sample of occurrences, our

results present an urgency to improve data collection for Dakota skipper

populations and better understand climatic relationships, as climate change
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could have profound effects on populations and conservation planning.

Regardless of climate or model uncertainty, our results demonstrate the

importance of maintaining sufficient quantities and quality of grass on the

landscape to support populations of Dakota skipper.
KEYWORDS

butterfly, conservation, Dakota skipper, grassland loss, pollinator, species
distribution model
Introduction

The Dakota skipper (Hesperia dacotae) butterfly is endemic to

mixed- and tallgrass prairies of central North America and has

experienced severe and continued population declines throughout

portions of its historic range. Population declines may have been the

result of a suite of factors but are primarily attributed to the

degradation and loss of native grassland habitat to row crop

agriculture. Subsequently, it has been listed as threatened under

the Species at Risk Act in Canada and the Endangered Species Act

in the United States. Estimated grassland loss from historic levels

varies with grassland type and location but ranges from 70% to 99%

in mixed- and tallgrass prairie ecosystems (Samson and Knopf,

1994; Lark et al., 2015; Niemuth et al., 2022). Grassland conversion

is expected to continue as technology, agricultural subsidies, new

crop varieties, and altered climate enable conversion of additional

previously uncultivated lands (GAO (Government Accountability

Office), 2007; Stephens et al., 2008; Rashford et al., 2011; Lark et al.,

2015; Otto et al., 2018). Habitat is also being lost and fragmented by

energy development, expansion of human infrastructure, and

altered disturbance regimes and ecosystem processes (Augustine

et al., 2021; Post van der Burg et al., 2022). Agricultural

intensification, especially widespread use of pesticides such as

neonicotinoid insecticides, also contributes to habitat degradation

and declines in arthropod populations (Krupke et al., 2017; Stanton

et al., 2018; Longing et al., 2020; Main et al., 2020). Climate change

may also be contributing to Dakota skipper population declines.

Changes in temperature and precipitation are modifying the climate

envelope for prairie vegetation, which is essential for Dakota

skipper survival (Barnett and Facey, 2016). These changes are also

altering the phenology of Dakota skipper emergence and flight

period, which will affect Dakota skipper detection, distribution, and

persistence (Dearborn and Westwood, 2014; Barnett and Facey,

2016; Post van der Burg et al., 2020; Vasiliev and Greenwood, 2021).

With ongoing declines of grasslands and grassland-dependent

species, numerous programs have been instituted to conserve

grasslands in the North American central grasslands occupied by

Dakota skipper. For example, the U.S. Fish and Wildlife Service

currently spends >$50 million (USD) annually on acquisition of

easements in the U.S. northern Great Plains, which have perpetually

protected >1.2 million ha of grasslands and small wetlands
02
(Niemuth et al., 2014; USFWS (U.S. Fish and Wildlife Service),

2019). The primary focus of these efforts is migratory bird

conservation and a variety of spatial models and decision-support

tools related to migratory birds are used to assess and prioritize

parcels for acquisition (Reynolds et al., 2006; Niemuth et al., 2017).

The process used to prioritize parcels for acquisition also considers

species other than migratory birds, particularly those listed under

the Endangered Species Act (USFWS (U.S. Fish and Wildlife

Service), 2016). Combined with other conservation efforts, these

programs could provide significant benefits to Dakota skipper

populations if these efforts are targeted precisely. However, our

lack of comprehensive understanding on past and present patterns

of Dakota skipper occupancy makes it difficult to focus conservation

efforts to best benefit this species.

The historic and current distribution of the Dakota skipper has

been challenging to define because this butterfly is small (wingspan

2.4-3.2 cm; Royer and Marrone, 1992), difficult to distinguish from

other similarly small skippers, appears to have limited dispersal

capabilities, and is only identifiable as an adult during a single short

flight period lasting two to four weeks from mid-June through early

July (Dana, 1983; USFWS (U.S. Fish and Wildlife Service), 2014;

USFWS (U.S. Fish and Wildlife Service), 2018a). Historically, the

Dakota Skipper is known to have occurred in the states of Illinois,

Iowa, Minnesota, South Dakota, and North Dakota in the United

States and the provinces of Manitoba and Saskatchewan in Canada

(USFWS (U.S. Fish and Wildlife Service), 2018a). The Dakota

skipper is believed to be extirpated from Illinois and Iowa and

occupied habitat within the remainder of its range is greatly

reduced, with some estimates suggesting only 2% of the original

Dakota skipper habitat remains (Dana, 1991). With reductions in

range, population size, and genetic diversity, many populations

have high likelihood of extirpation (USFWS (U.S. Fish and Wildlife

Service), 2018a). These factors are exacerbated by apparent limited

dispersal capabilities; consequently, this species has a small effective

population size and substantial genetic structuring because of

isolation and low effective immigration rates (Britten and

Glasford, 2002; USFWS (U.S. Fish and Wildlife Service), 2018a).

Limited dispersal and small effective population size amplify the

effects of habitat loss and fragmentation on Dakota skipper

populations and highlight the need for comprehensive

conservation strategies that consider the spatial context of Dakota
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skipper habitat and populations. Spatial structuring of populations

is especially important considering climate change, which is

projected to alter land use (Niemuth et al., 2014), vegetation

species composition and structure (Klemm et al., 2020), timing

and volume of precipitation (Dore, 2005), and biological life

functions such as the timing of emergence (Dearborn and

Westwood, 2014). All these factors will likely influence the size,

persistence, and conservation of Dakota skipper populations

(Cochrane and Delphy, 2002; Vasiliev and Greenwood, 2021).

Past conservation efforts for Dakota skipper were constrained

by a limited understanding of Dakota skipper population

distribution. Prior to 2014, the range of the Dakota skipper was

assumed to be well defined but shrinking (Royer et al., 2008;

USFWS (U.S. Fish and Wildlife Service), 2014). However, surveys

conducted from 2014-2022 revealed numerous new populations in

what was believed to be suitable habitat that was not previously

surveyed and in marginal habitat at the limits of the species known

range; these discoveries expanded the range of this species beyond

what was previously understood (USFWS (U.S. Fish and Wildlife

Service), 2018a; North Dakota Natural Resources Trust, 2022).

Understanding the spatial distribution of habitat and

subpopulations is critical to Dakota skipper management as the

species is a resident with limited dispersal ability. To address the

uncertainty with the distribution of the Dakota skipper, and

subsequently target conservation for this species, several efforts

have been conducted to model potential Dakota skipper habitat in

the United States and Canada. These modeling efforts largely

focused on soil types and have been constrained by factors such

as small sample sizes, limited types of environmental predictor

variables, or small geographic modeling extents (Post van der Burg

et al., 2020; Seidle et al., 2020; Dearborn et al., 2022).

To build on previous modeling efforts and better inform Dakota

skipper conservation in the US portion of Dakota skipper range, we

developed a species distribution model by relating a suite of

environmental predictor variables to Dakota skipper observations

in Minnesota, North Dakota, and South Dakota. The goal of this

effort was to develop a high-resolution species distribution model

that could be used for targeted conservation planning and delivery.

Applications of this model include prioritizing areas for protection,

restoration or enhancement; avoidance and mitigation planning for

energy development; informing recovery planning (i.e. future

surveys, population monitoring, and species reintroductions); or

attracting partners and funding. Finally, this model would allow

future analyses that could help optimize specific conservation goals,

such as increasing connectivity, or better understanding the effects

climate change or land cover changes within or near

suitable habitats.
Methods

Study area

We based the study area on four adaptive capacity units

established in the Dakota Skipper Species Status Assessment and

Recovery Plan (USFWS (U.S. Fish and Wildlife Service), 2018a;
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USFWS (U.S. Fish and Wildlife Service), 2021; Figure 1). Adaptive

capacity units are planning unit boundaries that represent various

environmental conditions and a species’ ability to adapt to changes

within these systems given their distribution, genetic diversity, and

other population characteristics (USFWS (U.S. Fish and Wildlife

Service), 2018a). We restricted our analysis to the US portion of

these units north of 43° 30' N latitude. The study area includes

portions of North Dakota, South Dakota, and Minnesota. We did

not include southern portions of the adaptive capacity units in Iowa,

southeastern South Dakota, and Illinois due to a lack of recent

observations or designated critical habitat, and to avoid model

extrapolation. We did not include the Canada portion of the

adaptive capacity units because an environmental predictor

dataset used in the analysis (i.e., Rangeland Analysis Platform

layers) has not been made publicly available there.

The study area is composed primarily of cropland, with

moderate amounts of managed pasture and hay, and remnant

native prairie (USDA-NRCS (United States Department of

Agriculture, Natural Resources Conservation Service), 2022). The

area includes numerous pothole wetlands (USDA-NRCS (United

States Department of Agriculture, Natural Resources Conservation

Service), 2022). It has flat topography however there are some areas

with greater topographic relief in the western portion (e.g.,

badlands; Bluemle, 1991). Climate trends predominantly vary east

to west, with drier conditions in the west and wetter conditions in

the east (Bluemle, 1991). Cropland is less dominant in the west,

especially where topographic relief is restrictive, and here is where

the most remnant native mixed grass prairie remains (USDA-NRCS

(United States Department of Agriculture, Natural Resources

Conservation Service), 2022). Cropland and tree cover are more

dominant in the eastern portion of the study area and little native

tall grass prairie remains (USDA-NRCS (United States Department

of Agriculture, Natural Resources Conservation Service), 2022).
Response variables

We used Dakota skipper occurrence data to develop spatial

models identifying potentially suitable habitat (Figure 1). We

obtained occurrence data from 2010-2022 Dakota skipper survey

observations conducted by trained biologists using standardized

protocols consisting of a modified Pollard walk through grassland

habitat believed to support the Dakota skipper (USFWS (U.S. Fish

and Wildlife Service), 2018b). These data are a more geographically

precise subset of the United States Fish and Wildlife Service’s

Dakota skipper occurrence dataset used in the Species Status

Assessment and Recovery Plan (USFWS (U.S. Fish and Wildlife

Service), 2018a; USFWS (U.S. Fish and Wildlife Service), 2021).

Surveys were conducted by meandering within parcels and

recording occurrence locations for every Dakota skipper

observation. Absence data were not recorded along the surveyor’s

course of travel; however, parcels that were surveyed and lacked a

single detection were recorded as absent. Occurrence point

locations had an accuracy of <1 m – 30 m, depending on the GPS

device used. There was a total of 1,272 occurrence observations

spread throughout the study extent, with the majority of
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observations being disjunct clusters of observations (Figure 1).

These were predominantly in northwest North Dakota, with

additional clusters in South Dakota on the Prairie Coteau, and

in Minnesota just northeast of Fargo, North Dakota. To reduce

spatial autocorrelation and pseudo-replication, we spatially thinned

these data using an algorithm from the R package BiodiversityR

(Kindt and Coe, 2005). The algorithm determined distances

between occurrence locations less than 100 m and randomly

removed occurrences from the dataset until all occurrences were

greater than 100 m apart. Spatial thinning resulted in 408

occurrence locations.

We ran a separate algorithm to establish pseudo-absences, or

locations that were available to Dakota skippers but occurrence is

unknown. Pseudo-absence data are important for defining the

environmental conditions that are available to the species for

comparison to where they were observed and are often used to

create species distribution models under a use-available framework
Frontiers in Ecology and Evolution 04
(Manly et al., 2007; Barbet-Massin et al., 2012). While we could

have used absence data from parcels that were surveyed where the

species was not found, we did not include these data because the

survey methods were not conducive for spatial modeling; surveys

were not randomly stratified across ecological settings or

environmental conditions, nor were they conducted in a fashion

that would allow for the estimation of detection probability for this

cryptic species. We obtained 408 pseudo-absences using a random

selection of points that were geographically and environmentally

stratified (Barbet-Massin et al., 2012). We generated 20,000 random

pseudo-absences with a minimum distance of 100 m between points

across the study area. Within two strata, we randomly selected

pseudo-absences where 66% were located >1.6 km and <52 km from

any occurrence, and 33% were located ≥ 52 km from an occurrence

(Figure 1). This was done to increase the sensitivity of model

predictions by including more pseudo-absence data in regions

near occurrences where conditions should be more similar, while
FIGURE 1

Map showing the locations of training and validation data (i.e., occurrence and pseudo-absences) used to generate a distribution model that predicts
suitable habitat for the Dakota skipper across the study area. The study area is symbolized according to distance-based sampling strata for pseudo-
absences (i.e., yellow and purple regions) and shown in relation to adaptive capacity units (i.e., cyan polyline) used in recovery planning.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1304748
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Barnes et al. 10.3389/fevo.2024.1304748
providing a subset of points that can account for more coarse scale

associations across the region where conditions should be less

similar. For both strata, points were randomly selected

proportional to estimated landcover within the strata to ensure

we were accounting for the various environmental conditions that

were present. For example, if half the strata were composed of

cropland, half the pseudo-absences were randomly selected in

cropland regions. To determine environmental strata, we used

land cover classes from 2019 National Land Cover Database

(Dewitz and U.S. Geological Survey (USGS), 2021) where some

classes were aggregated; cover classes included open water (class

11), development (classes 21-24), bare ground (class 31), forest

(classes 41-44, and 95), shrub (class 52), grass (classes 71, 81, and

90), and crop (class 82).
Predictor variables

With occurrence and pseudo-absence data defined, we explored

a variety of covariates to identify relationships with Dakota Skipper
Frontiers in Ecology and Evolution 05
occurrence. We developed 207 predictor variables for model

selection that were derived from six raster datasets in Google

Earth Engine (Gorelick et al., 2017; Table 1; Supplementary

Table 1). These were selected based on several known

associations. For example, the Dakota skipper is often found in

native undisturbed grasslands with perennial forbs and grasses

(McCabe, 1981; Royer et al., 2008). We included a dataset that

classified disturbed and potentially undisturbed landcover (PUDL;

Fields and Barnes, 2019), and another that estimated percent cover

and net primary productivity (NPP) for several vegetation

functional groups, such as perennial grasses and forbs (i.e.,

Rangeland Analysis Program layers; Jones et al., 2021). We

included several topographic and edaphic variables given their

importance in other predictive models (Dearborn et al., 2022;

Post van der Burg et al., 2020; Seidle et al., 2020); these included

topographic indices from Geomorpho90 (Amatulli et al., 2020) and

soil properties from Soils Grids 2.0 (Poggio et al., 2021). We

included other exploratory variables that were intended to help

define the species’ climate envelope and any unique spectral

characteristics related to vegetation cover where they were
TABLE 1 Datasets used to derive predictor variables for a distribution model that predicts suitable habitat for the Dakota skipper.

Dataset Native
resolution

Processing notes Landscape-
scale summary

Supporting information Data
source
citation

Rangeland
Analysis
Platform
Layers

30 m We calculated median values from annual (2010-
2021) estimates of percent cover and net
primary productivity of tree, shrub, perennial
forb and grass, annual forb and grass, litter, and
bare ground. We then summarized the data
using moving window analysis.

We extracted values at
the native resolution and
used 90-m and 810-m
radius circular moving
window analysis to
obtain mean values.

Dakota skipper association with
perennial grasses and forbs.
(McCabe, 1981; Dana, 1991; Royer
and Marrone, 1992; Swengel and
Swengel, 1999; Rigney, 2013)

Jones
et al., 2021

Potentially
Undisturbed
Lands Layer

10 m We summarized disturbed and potentially
undisturbed tree, shrub, grass, crop, water, and
developed/bare land cover using a moving
window analysis to estimate percent cover.

We used 15-m, 90-m,
and 810-m radius
circular moving window
analysis to obtain
mean values.

Dakota skipper association with
intact native prairie. (McCabe, 1981;
Royer and Marrone, 1992;
Webster, 2007)

Fields and
Barnes,
2019

GeoMorpho90 90 m We used all topographic indices, including raw
elevation, and first order, second order, and
ruggedness indices.

We extracted values at
the native resolution.
Note, some variables in
this dataset are derived
at landscape scale(s)
(e.g., 3x3
pixel windows).

Dakota skipper association with
some topographic relief (Dana,
1991; Royer and Marrone, 1992;
Webster, 2003; Royer et al., 2008)

Amatulli
et al., 2020

SoilGrids250
v.2.0

250 m We calculated mean edaphic values across six
soil depths for all soil condition metrics.

We extracted values at
the native resolution.

Dakota skipper association with
certain soil conditions (McCabe,
1981; Royer and Marrone, 1992;
Royer et al., 2008; Rigney, 2013)

Poggio
et al., 2021

AdaptWest
Downscaled
Current and
Projected
Climate Data

1000 m We used bioclimatic indices from downscaled
PRISM norms (1990-2020) for model training
and CMIP6 predictions for future projections.

We extracted values at
the native resolution.

Dakota skipper association with
certain climatic conditions
(McCabe, 1981; Dana, 1991; Royer
et al., 2008; Bink and Bik, 2009;
Koda and Nakamura, 2012; Rigney,
2013; Dearborn and
Westwood, 2014).

Wang
et al., 2016;
AdaptWest
Project,
2022;
Mahony
et al., 2022

Sentinel-2
Level-
2A Indices

10 m We filtered images for the years 2018-2022 and
used scene classification to mask clouds, cloud
shadows, snow, and dark area, saturated, or
defective pixels. We calculated various indices
for each image and then calculated 25th, 50th,
and 98th percentile values for each index.

We used bilinear
resampling and
extracted values at a 30
m resolution.

Detailed spectral information on
associated vegetation. See citations
for first two datasets for associated
vegetation and condition.
fr
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observed; these included several bioclimatic indices from

AdaptWest Project downscaled PRISM and CMIP6 climate

models (Wang et al., 2016; AdaptWest Project, 2022; Mahony

et al., 2022), and a suite of Sentinel-2 remote sensing indices,

respectively. Bioclimatic indices were also available as future 30-

year predictions under different climate scenarios, which makes

their inclusion appealing for better understanding current

associations and predictions, and how those predictions might

change in the future under different climate scenarios. There has

been little investigation of landscape-scale associations for the

Dakota Skipper; therefore, we used a multi-scale approach where

we included predictor variables at their native scale or summarized

their values using moving window analysis within two smaller local

areas of potential use (e.g., 15 m or 90 m radius circles) and at one

larger landscape-scale (e.g., 810 m radius circle). We extracted

predictor values at response variable point locations and split the

dataset by strata using 80% to train the model and 20% to validate

model performance. We resampled all predictor variable rasters to a

final resolution of 30 m for model application.

While predictor variables are representative of the period Dakota

skipper data were obtained (i.e., 2010-2022) we did not temporally

match observations and predictor variables. This is important to note

because cropland expansion was high during this period (Fields and

Barnes, 2019). However, all occurrences in our training and

validation datasets were within grasslands, as represented by the

land cover data we used (Fields and Barnes, 2019). These land cover

predictions were based on 2016-2018 Sentinel-2 imagery (Fields and

Barnes, 2019), and the Rangeland Analyses Program data were

summarized using median annual estimates over 2010-2021. This

could mean that model predictions are not representative of current

land cover or vegetation conditions.
Model development and validation

We developed a distribution model that predicts suitable habitat

for the for the Dakota skipper using a Random Forest classification

model (Breiman, 2001). The model was trained by relating

occurrences and pseudo-absences to a suite of predictor variables.

We then applied the model spatially to obtain habitat suitability

predictions across the study area. The classification model generated

two types of predictions: 1) a habitat suitability index prediction

based on the percentage of suitable habitat classification votes across

the ensemble of decisions trees; and 2) a binary classifier of suitable

and unsuitable habitat determined by the majority vote across the

ensemble of decision trees. To train a parsimonious model, we used

a recursive feature elimination (“rfe”) algorithm from the R package

caret to identify a subset of predictor variables (Kuhn, 2022; R Core

Team, 2022). This algorithm fits a model with all predictor variables

and the variables are ranked by importance and model performance

is assessed using area under the receiver operating characteristics

curve (AUC); another model is then fit with a subset of the top-

ranking variables, and again model performance is assessed and

variables are ranked by importance. We tested 25-, 15-, 10-, and 5-

variable model subsets. We ran this algorithm using 10-fold cross
Frontiers in Ecology and Evolution 06
validation with 10 repeats to incorporate variation due to feature

selection and reduce selection bias (Ambroise and McLachlan,

2002), and retained variables from the subset with the highest

out-of-bag AUC (i.e. 25 variable subset). We then used the caret

package to determine the optimal number of variables per split.

Again, we used 10-fold cross validation with 10 repeats and

performance assessed using AUC. We tested 10 different variables

per split by denoting a ‘tunelength’ of 10 (i.e., 2,4, 7, 9, 12, 14, 17, 19,

22, and 25), and determined the number of variables per split that

had the highest AUC. We then used the randomForest package to

train a model with the retained subset of variables, 1,000 trees, and

the optimal number of variables per split (i.e., four), and then

assessed model performance, variable associations, and variable

importance (Liaw and Wiener, 2002). We retrained the model

with randomForest instead of using the trained model from caret

because we ultimately used Google Earth Engine to train and

spatially apply the model; the randomForest algorithm is more like

the algorithm used in Google Earth Engine than the repeated 10-fold

cross validation methods used with caret for variable selection and

tunning. We used R instead of Google Earth Engine for model

validation given the greater flexibility and availability of functions

for validation analysis. We report validation metrics including

accuracy, AUC, kappa, and F1 scores, from 20% validation data

that were held out. We visually inspected plots of model residuals for

spatial autocorrelation using a spline correlogram function from the

ncf package (Bjornstad, 2022) to calculate spatial dependence (i.e.,

covariance) as a continuous function of distance up to 200 km. We

visually inspected plots of residuals to assess if they were randomly

distributed around zero by plotting absolute residuals versus fitted

values, residuals versus row id, and a histogram of residuals. To

better understand associations between occurrence and predictor

variables, we calculated accumulated local effects of occurrence

(Apley and Zhu, 2020) for each variable using the DALEX

package in R and plotted the response (Biecek, 2018; Biecek and

Burzykowski, 2021; Biecek and Baniecki, 2023). We assessed

variable importance using model generated estimates of node

purity (Gini index; Breiman, 2001; Liaw and Wiener, 2002), and

two model-agnostic metrics of variable importance including the

standard deviation of accumulated local effects of occurrence and

the change in overall model accuracy (AUC) when the values of a

variable of interest are permuted (Biecek, 2018; Biecek and

Burzykowski, 2021; Biecek and Baniecki, 2023).
Climate analysis

We evaluated the impact of climate variables and climate

change on predicted habitat suitability for the Dakota skipper

from the geography we sampled by spatially applying the model

to future predictions of bioclimatic variables. We spatially applied

the model using current non-climatic related covariate rasters and

future bioclimatic covariate raster predictions. We used mean

bioclimatic predictions from an ensemble of eight global climate

models for the shared socioeconomic pathway SSP2-4.5 and the

time periods 2011-2040 and 2041-2070. These are near-future
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predictions based on a middle-of-the-road pathway where

emissions remain at current levels and start to fall mid-century

but do not reach net zero by 2100. We evaluated changes more

broadly and generally by creating spatial marginal effects of

bioclimatic variables, which we will henceforth refer to as climate

envelopes. The current climate envelope was generated by spatially

applying the classification model to bioclimatic covariate rasters

(i.e., 1991-2020 climate normals) while holding all other covariates

at their median values (i.e., rasters with constant median values).

We generated future climate envelopes using future bioclimatic

predictions from eight individual global climate models, for the

shared socioeconomic pathways SSP2-4.5 and three time periods

(2011-2040, 2041-2070, and 2071-2100). We again derived these

climate envelopes by applying the model to future bioclimate

covariate rasters while holding all other covariates at their median

values. All models were spatially applied at a coarse scale (1000 m)

that matched the resolution of bioclimatic variables and were

extrapolated to a bounding box extending beyond the study area.

The bounding box was determined by applying the model to North

America in Google Earth Engine at a coarse scale, and delineating

an area that captured the shifting envelope but not extending too far

north into forested regions. This bounding box was then used to

constrain the output when downloading the results.
Results

The model subset that had the highest AUC had 25 predictor

variables, however all model subsets were competitive

(Supplementary Table 2). The model contained 18 land cover

variables across multiple scales (30-m, 180-m, 1610-m window),

six bioclimatic variables, and one soil variable (Table 2). An analysis

of performance based on 20% validation data that were withheld

from training the model indicated good overall model performance

(accuracy: 0.96; AUC: 0.99; kappa: 0.92; average F1: 0.96) and class

performance (class 1: precision= 0.94, recall=: 0.99, F1 = 0.96; class

0: precision= 0.99, recall= 0.94, F1 = 0.96). Model diagnostics

indicated low spatial autocorrelation of residuals, low deviance

from a random distribution of residuals around zero, and

moderately higher residuals at predicted mid-point values

(Supplementary Figure 1). Across all variable importance metrics,

perennial forbs and grass (% & NPP) and crop (%) ranked high

(Figure 2). Most bioclimatic variables ranked moderate to high,

with degree days less than 18°C generally ranking high across all

variable importance metrics (Figure 2). There was a positive

association with undisturbed grass and shrub (%) and perennial

forbs and grass (% & NPP) across local and large landscape scales

(30-m, 180-m, 1620-m; Figure 3). There was a positive association

with shrub (%) and tree cover (NPP) at a large landscape scale

(1620-m), where there was a weak effect above low values (Figure 3).

There was a negative association with disturbed land and cropland

(%) at local to large landscape scales (180-m and 1620-m), and a

negative association with previously disturbed grassland (e.g.,

restored grass %) and annual forbs and grass (% & NPP) at local

scales (30-m and 180-m; Figure 3). There were quadratic
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TABLE 2 Covariates used in a distribution model that predicts suitable
habitat for the Dakota Skipper.

Dataset Covariate

Native-,
Local-, or
Landscape-
Scale (m)

Processing
description

Rangeland
Analysis
Platform
Layers

Perennial forb and
grass (%) 30

We used annual
estimates of

percent perennial
forb and grass

cover from 2010-
2021 to calculate

median
percent cover

Rangeland
Analysis
Platform
Layers

Perennial forb and
grass (%) 180

We used annual
estimates of

percent perennial
forb and grass

cover from 2010-
2021 to obtain
median percent
cover and then
calculated a

landscape scale
mean using a 90-m

radius circular
moving

window analysis.

Rangeland
Analysis
Platform
Layers

Perennial forb and
grass (%) 1620

We used annual
estimates of

percent perennial
forb and grass

cover from 2010-
2021 to obtain
median percent
cover and then
calculated a

landscape scale
mean using a 810-
m radius circular

moving
window analysis.

Rangeland
Analysis
Platform
Layers

Perennial forb and
grass NPP (kg/ha) 30

We used annual
estimates of

perennial forb and
grass net primary
productivity (NPP)
from 2010-2021 to

calculate
median NPP

Rangeland
Analysis
Platform
Layers

Perennial forb and
grass NPP (kg/ha) 180

We used annual
estimates of

perennial forb and
grass NPP from
2010-2021 to

calculate median
NPP and then
calculated a

landscape scale
mean using a 90-m

radius circular
moving

window analysis.

Rangeland
Analysis

Perennial forb and
grass NPP (kg/ha) 1620

We used annual
estimates of

(Continued)
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TABLE 2 Continued

Dataset Covariate

Native-,
Local-, or
Landscape-
Scale (m)

Processing
description

Platform
Layers

perennial forb and
grass NPP from
2010-2021 to

calculate median
NPP and then
calculated a

landscape scale
mean using a 810-
m radius circular

moving
window analysis.

Rangeland
Analysis
Platform
Layers

Annual forb and
grass (%) 30

We used annual
estimates of annual
perennial forb and
grass cover from
2010-2021 to

calculate median
percent cover

Rangeland
Analysis
Platform
Layers

Annual forb and
grass NPP (kg/ha) 30

We used annual
estimates of annual
forb and grass NPP
from 2010-2021 to

calculate
median NPP

Rangeland
Analysis
Platform
Layers Shrub (%) 1620

We used annual
estimates of shrub
cover from 2010-
2021 to calculate
median percent
cover and then
calculated a

landscape scale
mean using a 810-
m radius circular

moving
window analysis

Rangeland
Analysis
Platform
Layers Tree NPP (kg/ha) 1620

We used annual
estimates of tree
NPP from 2010-
2021 to calculate
median NPP and
then calculated a
landscape scale

mean using a 810-
m radius circular

moving
window analysis.

Potentially
Undisturbed
Lands Layer Crop (%) 180

All crop pixels
were converted to a
binary raster and
percent crop cover
was calculated at a
landscape scale
using a 90-m
radius circular

moving
window analysis

Potentially
Undisturbed
Lands Layer Crop (%) 1620

All crop pixels
were converted to a
binary raster and

(Continued)
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TABLE 2 Continued

Dataset Covariate

Native-,
Local-, or
Landscape-
Scale (m)

Processing
description

percent crop cover
was calculated at a
landscape scale
using a 810-m
radius circular

moving
window analysis

Potentially
Undisturbed
Lands Layer Disturbed (%) 180

All previously or
currently disturbed
land pixels were
converted to a

binary raster and
percent disturbed
land was calculated

using a 90-m
radius circular

moving
window analysis

Potentially
Undisturbed
Lands Layer

Disturbed
grass (%) 30

All pixels that had
a spectral signature
similar to restored
grass that were also

outside of a
potentially
undisturbed

boundary were
converted to a

binary raster and
percent disturbed
grass cover was
calculated using a

15-m radius
circular moving
window analysis

Potentially
Undisturbed
Lands Layer

Disturbed
grass (%) 180

All pixels that had
a spectral signature
similar to restored
grass that were also

outside of a
potentially
undisturbed

boundary were
converted to a

binary raster and
percent disturbed
grass cover was
calculated using a

90-m radius
circular moving
window analysis

Potentially
Undisturbed
Lands Layer PUDL grass (%) 180

All grass pixels
within a potentially
undisturbed lands
boundary were
converted to a

binary raster and
percent potentially
undisturbed grass
was calculated
using a 90-m
radius circular

(Continued)
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associations with bioclimatic and soil variables where occurrence

was generally highest at mid-point values (Figure 3).

When the model was spatially applied using mean bioclimatic

predictions from an ensemble of eight global climate models under

the shared socioeconomic pathway SSP2-4.5 and 2011-2040 time

period, habitat suitability index values decreased extensively in the

south and classifications were restricted to northern North Dakota

and Minnesota (Figure 4). When the model was applied under the

shared socioeconomic pathway SSP2-4.5 and 2041-2070 time

period, habitat suitability index values were further reduced and

classifications were restricted to the foothill grasslands of the north

central North Dakota and northeastern Minnesota (Figure 4).

The current climate envelope for Dakota skippers included in

our analysis extended from northwestern to southeastern North

Dakota and then east across Minnesota and Wisconsin (Figure 5).

All future climate envelopes across eight global climate models

shifted to the north into northern Minnesota, North Dakota,

Ontario, Manitoba, and Saskatchewan (Figure 5). There was

moderate overlap between current and future climate models in

2011-2041 but little overlap for current and future climate

envelopes by 2071-2100 (Figure 5).
Discussion

Our results provide a useful framework for guiding Dakota

skipper conservation in the study extent. This includes conservation

planning and delivery, design of future research and surveys, and

understanding potential effects of climate change on the Dakota

skipper. Model results generally agree with known Dakota skipper

ecology and previous Dakota skipper habitat models. The model

shows strong positive associations with potentially undisturbed

grass with high percent cover and NPP of perennial grasses and

forbs at multiple spatial scales; it also shows a negative response to

cultivated lands and substantial influences of temperature and

precipitation (Figures 2, 3). The positive association with shrub

and tree cover at large scales was unexpected but might reflect lower

amounts of trees and shrubs in agriculture-dominated landscapes

typical of pseudo-absence points as well as succession of woody

vegetation due to limited disturbance, particularly fire, on most land

parcels in the region (Figure 3; Grant et al., 2009). Our model did

not find a strong influence of soil properties or topography, unlike
TABLE 2 Continued

Dataset Covariate

Native-,
Local-, or
Landscape-
Scale (m)

Processing
description

moving
window analysis

Potentially
Undisturbed
Lands Layer

PUDL grass and
shrub (%) 180

All grass and shrub
pixels within a
potentially

undisturbed lands
boundary were
converted to a

binary raster and
percent potentially
undisturbed grass
and shrub was

calculated using a
90-m radius

circular moving
window analysis

Potentially
Undisturbed
Lands Layer

PUDL grass and
shrub (%) 1620

All grass and shrub
pixels within a
potentially

undisturbed lands
boundary were
converted to a

binary raster and
percent potentially
undisturbed grass
and shrub was

calculated using a
810-m radius
circular moving
window analysis

AdaptWest
Downscaled
Current and
Projected
Climate Data

1991-2020 normal
degree days < 18°C 1000

AdaptWest
Downscaled
Current and
Projected
Climate Data

1991-2020 normal
degree days < 0°C 1000

AdaptWest
Downscaled
Current and
Projected
Climate Data

1991-2020 normal
mean annual

temperature (°C) 1000

AdaptWest
Downscaled
Current and
Projected
Climate Data

1991-2020 normal
Evapotranspiration

(mm) 1000

AdaptWest
Downscaled
Current and
Projected
Climate Data

1991-2020 normal
mean temperature
of coldest month

(°C) 1000

AdaptWest
Downscaled
Current and

1991-2020 normal
mean temperature 1000

(Continued)
TABLE 2 Continued

Dataset Covariate

Native-,
Local-, or
Landscape-
Scale (m)

Processing
description

Projected
Climate Data

of warmest month
(°C)

SoilGrids250
v2.0

Organic carbon
density (hg/dm3) 250

Mean organic
carbon density was
calculated using
estimates from six
soil depths (0-

200 cm)
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previously published work (Post van der Burg et al., 2020; Seidle

et al., 2020; Dearborn et al., 2022). However, that is likely due to

differences in the suite of predictor variables we considered relative

to those considered in previous efforts, which emphasized soil

properties and topography as a relatively invariant proxy for

vegetation types. Strong influences of vegetation in our model

may reflect proximate or ultimate selection by Dakota skipper,

whereas strong influences of soil type and topography in previous

models likely reflect conditions that have allowed native prairie—

and therefore Dakota skipper—to persist.

We made several decisions during model development that

could affect model prediction and interpretation. One decision was

to develop a “range-wide” model instead of several local models for
Frontiers in Ecology and Evolution 10
geographic clusters of occurrences. This allowed us to assess the

range of conditions under which Dakota skippers are known to exist

in the US and characterize habitat suitable across conservation

planning units, providing a common framework for conservation

planning. In addition, it enabled the estimation of a more complete

climate envelope and enhanced our understanding of how future

climate conditions could impact habitat suitability. Developing

several local models would likely have provided more insight into

fine-scale regional habitat associations, given that occurrence and

training data would have been confined to smaller groups from

similar environments (Chefaoui and Lobo, 2008; VanDerWal et al.,

2009; Hanberry et al., 2012). However, these models tend to have

constrained predictions and can under-predict suitable habitat,
A

B

C

FIGURE 2

Variable importance plots according to three different metrics that characterize the relative contributions of predictor variables (in descending order
of contribution) from a distribution model that predicts suitable habitat for the Dakota skipper. Metrics include decrease node purity (i.e., Gini index;
A), decrease accuracy (i.e., area under the curve [AUC]; B), and standard deviation of accumulated local effects of occurrence (C).
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especially when predicting across large regions or extrapolating

outside of predictor space (Chefaoui and Lobo, 2008; VanDerWal

et al., 2009; Hanberry et al., 2012). For example, the model could

under-predict suitable habitat that exists farther from a perceived

climate envelope and would be less useful for potentially identifying

new populations between known populations. A range-wide model,

where pseudo-absence points were randomly distributed across a
Frontiers in Ecology and Evolution 11
large space, can have inflated performance because occurrences and

pseudo-absences are from less similar environments (Chefaoui and

Lobo, 2008; VanDerWal et al., 2009; Hanberry et al., 2012). These

models can better capture coarse-scale general associations across a

few predictors and will tend to over-predict suitable habitat,

especially closer to occurrences (Chefaoui and Lobo, 2008;

VanDerWal et al., 2009; Hanberry et al., 2012). To balance these
FIGURE 3

Accumulated local effects plots, characterizing the average influence that each predictor variable has in a distribution model that predicts suitable
habitat for the Dakota skipper, arranged in descending order of magnitude (i.e., standard deviation of accumulated local effects of Dakota skipper
occurrence). Vertical lines within plots along the x-axes indicate data points (short lines) and deciles (long lines).
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competing considerations, we geographically and environmentally

stratified pseudo-absences to capture more fine-scale regional

associations and improve predictions across the entire extent; this

is important from a conservation standpoint, as identifying “new”

populations would better guide conservation actions. However,

model results indicated that these implications were not fully

overcome, as evidenced by the high AUC achieved with a small

model subset (Supplementary Table 2).

Another decision was constraining the number of predictor

variables in a model to a maximum of 25. Model selection generally

has the goal of finding parsimonious models that best approximate
Frontiers in Ecology and Evolution 12
“truth” by balancing bias and variance (Burnham and Anderson,

2002). While the increase in performance for the model with 25

variables was minimal relative to the model containing only five

variables, the AUC did increase with larger subsets, and we decided

(Supplementary Table 2) to proceed with the more complex model

or a few reasons. First, given our pseudo-absence sampling

methods, we expected the majority of variance would be

explained by a few more general predictors, such as those that

characterize cropland versus grassland systems. By including a

larger suite of predictors, we could capture more fine-scale

associations characterizing suitable habitat within grassland
A B

D

E F

C

FIGURE 4

Maps showing predicted suitable habitat for Dakota skipper under current and future climate conditions. Current predictions were derived by
spatially applying a Random Forest classification model across the study area to the full suite of current biotic and abiotic predictor variables used in
model development (A, B). Future predictions were derived by applying the model (ceteris paribus) to bioclimatic indices from future climate
predictions for the shared socioeconomic pathway and radiative forcing scenario SSP2-4.5 and time periods 2041-2070 (C, D) and 2071-2100 (E, F).
Figure panels on the left are habitat suitability index estimates based on the percentage of suitable habitat classifications across the ensemble of
decision trees, and figures on the right represent model classifications of suitable or unsuitable habitat based on majority vote across the ensemble
of decision trees.
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systems. Second, by including a larger suite of variables we were

better able to characterize a climate envelope and its subsequent

shift, as well as provide impetus for further investigation of the suite

of model associations. For example, investigating and defining

climate thresholds that are limiting to Dakota skipper life

functions, or investigating why restored grasslands have a

negative association (e.g. inadequate seed mixes, deleterious

management, etc.). Third, including a lager suite of covariates

helped evaluate which groups of covariates proved most useful for

predicting suitable habitat (i.e., landcover, spectral, climate,
Frontiers in Ecology and Evolution 13
topography, or soils data), which can help guide future

modeling efforts.

Spatial output from our model (Figure 4) has current and future

applications for conservation of Dakota skipper across their entire

US range. Working in conjunction with the North Dakota Natural

Resources Trust, the model has already informed parcel selection

for survey efforts and helped identify a previously unknown Dakota

skipper population during surveys in 2023 (North Dakota Natural

Resources Trust, in production). The model has also been used to

identify potentially suitable habitat that should be avoided by
A

B

C

FIGURE 5

Maps depicting the current predicted Dakota skipper climate envelope in relation to future predicted climate envelopes. Climate envelopes were
estimated by spatially applying a Random Forest classification model that predicts suitable or unsuitable habitat for the Dakota skipper. The current
climate envelope (i.e., green area) was determined by applying the model to current bioclimatic predictor variables while holding all other non-
climatic predictor variables at their median values (A–C). Future climate envelopes were determined by applying the model (ceteris paribus) to
bioclimatic predictor variables from future climate predictions for eight global climate models under the shared socioeconomic pathway and
radiative forcing scenario SSP2-4.5 and the time periods 2011-2040 (A), 2041-2070 (B), and 2071-2100 (C). The amount of agreement or overlap
across future climate envelope predictions (i.e. gradient from green to yellow, or low to high agreement) could indicate locations with greater
potential for the climate to be suitable for Dakota skipper in the future.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1304748
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Barnes et al. 10.3389/fevo.2024.1304748
development. Because of its designation as a federally listed species,

the spatial model for Dakota skipper can be included in parcel

assessment for acquisition of perpetual grassland easements in the

US Prairie Pothole Region (USFWS (U.S. Fish andWildlife Service),

2016). Importantly, the model can be combined with other data

layers showing risk of conversion (e.g., Niemuth et al., 2022) or

biological value for other species to increase the value of

conservation acquisitions. Management can also be optimized by

considering factors that influence presence and persistence of

pollinator populations such as patch size, inter-patch distances,

and site-level management (Britten and Glasford, 2002; McIntire

et al., 2007; Dover and Settele, 2009; Niemuth et al., 2021); these

considerations are integral to recovery planning efforts, which

emphasize habitat size and connectivity when determining

population health and the overall status of the species (USFWS

(U.S. Fish and Wildlife Service), 2021).

The climate envelope analysis developed from our model

suggests that climatic conditions associated with Dakota skipper

populations that we analyzed may shift north even under a

conservative climate scenario; however, there are several

considerations that could affect model predictions (Figures 4, 5).

First, as mentioned previously, inferences from our modeling effort

may be biased because of the limited and non-probabilistic sample

of data; such biases would be reduced with additional data from

consistent, designed surveys. Second, some of the positive

observations used in our model fell outside of the current climate

envelope. This might indicate model misspecification and poor

characterization of the climate envelope (Araújo and Peterson,

2012), but also could indicate that local vegetation and microsites

can temper species’ response to climate, allowing them to persist

outside the envelope (Denney et al., 2020; Vasiliev and Greenwood,

2021). Third, incorporating observations from a broader geography

would likely change current and future predictions. This again

points towards the need for consistent, designed surveys that would

allow better estimation of Dakota skipper climate envelope and

response to landscape composition. Equally important, though, is

that conservation planners begin to strategize conservation actions

relative to climate change, possibly within the resist, accept, or

redirect framework (Thompson et al., 2021). Given projected

changes in the Dakota skipper climate envelope, conservation

efforts in core areas in northern latitudes may be necessary to

account for climate change effects on Dakota skipper populations.

Dakota skipper response to a shifting climate envelope will be

influenced by the limited dispersal ability of skippers, realized

changes in temperature and precipitation, and resultant changes

in vegetation, land use, and management. Previous research shows

that isolation by distance was common to Dakota skipper

populations, although reduced genetic diversity might be caused

in part by the short flight window and sampling period (Britten and

Glasford, 2002). However, isolation is an important predictor of

occurrence and population persistence for many pollinator species

(Dover and Settele, 2009), suggesting that enhancing connectivity

through land protection and management may be an important

strategy for conservation, especially as climate change moves the

geographic climate envelope. Increased habitat connectivity has

been shown to increase densities of other habitat restricted butterfly
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species (Haddad and Baum, 1999). Given the extent of cultivated

agricultural land in the study region, it is important to understand

Dakota skipper response to prairie restoration. This is reinforced by

the need for connectivity, whether continuous or in the form of

habitat “stepping stones”.

The influences of temperature and precipitation on Dakota

skipper occurrence demonstrated by our model have substantial

implications for climate change, as climate influences multiple

aspects of Dakota skipper life history. For example, emergence

and flight period have been correlated with temperature and degree

days (Bink and Bik, 2009; Rigney, 2013; Selby, 2006) and increased

temperatures or humidity might affect larvae development and

survival (Royer et al., 2008). Temperature and precipitation also

influence land use, as lands previously unsuitable for tillage

agriculture due to inadequate climate may become more suitable

with warming temperatures and higher precipitation (Stephens

et al., 2008). This could result in native prairie suitable for Dakota

skipper being converted to tillage agriculture. In addition,

vegetation species composition, vegetation structure, and grazing

intensity– which influences vegetation structure and species

composition—also are influenced by temperature and

precipitation (Olson et al., 1985; Guretzky et al., 2016; Grant

et al., 2020). The spatial data we used to characterize future

climate came from multi-model ensembles, which generally have

higher accuracy, reliability, and consistency than single-model

projections (Tebaldi and Knutti, 2007; Slingo and Palmer, 2011).

However, future temperature and precipitation will almost certainly

vary in magnitude and location relative to predictions, so

monitoring and conservation planning for Dakota skipper will

need to be adaptive to accommodate climate-related changes. For

example, occurrence of invasive cool-season grasses, smooth brome

(Bromus inermis) and Kentucky bluegrass (Poa pratensis), are

expected to increase in portions of the Dakota skipper’s range

due to climate change and related land management changes

(Dekeyser et al., 2015; Grant et al., 2020). Dakota skipper larvae

will feed on these invasive grass species, but this can negatively

impact their survival, time to adulthood, and mass relative to

feeding on native grass species (Nordmeyer et al., 2021). Climate

change also might influence other aspects of Dakota skipper biology

that can be addressed through management. For example, increased

cattle numbers, which are influenced by climate variability (Klemm

and Brisket, 2021), might result in high grazing intensity that alters

site suitability for Dakota skipper (Selby, 2006; Royer et al., 2008).

This can include the reduction of quality larval food plants (e.g.,

little bluestem [Schizachyrium scoparium)]) or nectar sources (e.g.,

purple coneflower [Echinacea angustifolia]) and increase lower

quality vegetation (e.g., Kentucky bluegrass; Dekeyser et al.,

2015), as well as impact larvae and pupae through trampling or

the alteration microhabitats, although information about grazing

effects is limited (Selby, 2006; Royer et al., 2008). For all these

reasons, adaptive conservation planning and management may be

necessary to provide suitable vegetation, microclimates, and refugia

(Denney et al., 2020; Seidle et al., 2020; Vasiliev and Greenwood,

2021) to help Dakota skipper populations persist.

Our model also highlights needs for future research. The

negative association with restored grassland (i.e, previously
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cultivated lands planted to grassland) suggests that structure,

management, or species composition of restored grasslands might

not be suitable for Dakota skipper; it may also be due to a lack of

survey effort in restored grassland areas. Given interest in

restoration of grasslands and Dakota skipper, evaluation of

Dakota skipper response to different seed mixes and management

practices will be important to future restoration efforts. In the past,

most surveys for Dakota skipper were conducted by a limited group

of surveyors focusing on areas already known to harbor Dakota

skippers (Royer et al., 2008; USFWS (U.S. Fish and Wildlife

Service), 2014); consequently, our model may have biases that

reflect the limited and inconsistently collected data available to

develop the model. Inconsistent data and small sample sizes are

common in Dakota skipper models with Seidle et al. (2020) using 26

positive observations over 15 years; Post van der Burg et al. (2020)

using 366 positive observations over 113 years; and Dearborn et al.

(2022) using 90 presence observations over 19 years. Increased

effort using designed surveys over an expanded geography would

provide a larger sample size and broader range of variation in

predictor variables, which would increase power of the analysis to

accurately characterize effects of environmental predictors on

occurrence of Dakota skipper. Expanded, designed surveys would

provide additional benefits, as identification of sites with and

without populations of Dakota skipper would enable analysis of

effects of proximity to known populations on Dakota skipper

occurrence. Landscape composition and habitat connectivity are

important to maintaining genetic diversity of Dakota skipper

(Britten and Glasford, 2002); our model could provide a

foundation for identifying potential sample sites for surveys and

directed research efforts. The number of new survey points or

additional occurrence data necessary to answer these questions is

unknown and will depend on the goals of the new model, as well as

Dakota skipper prevalence and the location of observations relative

to environmental predictors and other populations. In addition, the

realized number of survey points will be influenced by funding and

availability of qualified surveyors. Better understanding effects of

habitat amount and isolation on Dakota skipper populations would

strengthen our ability to deliver conservation more effectively for

maintaining grass, restoring grass, and increasing connectivity, all

of which are important factors in Dakota skipper conservation.

Many factors influencing Dakota skipper populations relative to

vegetation structure and composition occur at finer-resolution

scales than our model and spatial data depict, so targeted research

may be necessary to understand effects of host-plant presence,

grazing, interseeding, and invasion by cool-season mat-forming

grassland species. Resulting findings can be combined with our

model to plan and manage in a hierarchical manner, where the

model is used to assess landscape characteristics and fine-grained

information guides site-level management.

As with any model, results of our analysis are influenced by data

characteristics and are dependent on a variety of assumptions. Our

call for collection of additional data collected in designed surveys

using consistent protocols echoes similar calls resulting from earlier

analysis (i.e., Post van der Burg et al., 2020; Seidle et al., 2020;

Dearborn et al., 2022), which reinforces the importance of

improved future data collection. Future survey efforts should also
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focus on a range of variation in geographic location, vegetation

composition, patch size, and distance from occupied patches, which

would strengthen the inferential capability of future analyses. A

broader geographic range, even outside of the current climate

envelope, would also help refine estimates of the effects of

precipitation, temperature, and geographic location on Dakota

skipper distribution and density. Survey protocols that would

allow the inference of absences would also be beneficial. Use of

pseudo-absences has long been successfully used to develop species

distribution models but known/assumed absences would be helpful

because criteria used to select pseudo-absences can influence model

results (Manly et al., 2007; Phillips et al., 2009).

As our work and the results of others shows, understanding of

Dakota skipper biology and population status is limited. Many

grassland conservation programs are active within the range of the

Dakota skipper; we suggest that our understanding of Dakota

skipper biology and population status can best be enhanced

through a program of iterative, active adaptive management

(NEAT (National Ecological Assessment Team), 2006; McCarthy

and Possingham, 2007). Under this framework, strategic

implementation of conservation actions is coupled with designed

research and monitoring with the goals of addressing uncertainty,

accelerating information gain, and optimizing conservation

decisions. Priority status of Dakota skipper and ongoing

conservation actions provide both impetus and resources for

improving our understanding and the conservation of Dakota

skipper populations. Our spatial model can guide landscape-level

assessment and conservation delivery for Dakota skipper, which,

when combined with site-level evaluation and management, can

advance understanding and conservation of this rare and

declining species.
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