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Accessory gland size increases
with sperm competition intensity
in Cataglyphis desert ants
Félicien Degueldre* and Serge Aron

Laboratory Evolutionary Biology and Ecology, Université Libre de Bruxelles, Bruxelles, Belgium
In many species, females have multiple mates, whose sperm compete for

paternity. Males may subsequently invest in the increased production of sperm

and/or seminal fluid. The latter is a complex mixture of proteins, peptides, and

other compounds generated by the accessory glands (AGs) and is transferred to

females along with a male’s sperm. Seminal fluid is known to be a key

determinant of competitive outcomes among sperm, and its production may

trade off with that of sperm. We show that AG size—a proxy for seminal fluid

production—has a positive and phylogenetically robust correlation with both

sperm competition intensity and sperm production in nine species ofCataglyphis

desert ants. These results indicate a lack of trade-off between sperm production

and seminal fluid production. They underscore that sperm competition may

strongly shape sperm traits and could drive reproductive performance in

eusocial hymenopterans.
KEYWORDS
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Introduction

Within species, female promiscuity often fosters competition among males, whose

spermatozoa vie for fertilisation opportunities (Parker, 1970). This competition extends

sexual selection beyond mating and can significantly affect male fitness. Extensive

theoretical and empirical research has shown the evolutionary impacts of sperm

competition on sperm traits, particularly (i) number (e.g., Gomendio et al., 1998; Gage

and Morrow, 2003), (ii) size (e.g., Gomendio and Roldan, 1991; Immler et al., 2011;

Tourmente et al., 2011), and (iii) velocity (e.g., Anderson et al., 2007; Firman et al., 2013;

Nakanishi and Takegaki, 2018).

Investment in the seminal fluid is another powerful mean through which males can

enhance their reproductive success (Ramm, 2020). Typically transferred to females at the

same time as sperm, seminal fluid is a complex combination of secretions produced by the

sex accessory glands (AGs) (Chapman, 2001; Manaskova et al., 2002; King et al., 2011; den

Boer et al., 2015; Santiago-Moreno and Blesbois, 2020), and it contains diverse organic

compounds, including proteins, lipids, and sugars (Owen and Katz, 2005; Avila et al., 2011;
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Gorshkov et al., 2015; Lu et al., 2016). Post ejaculation, seminal fluid

can influence sperm performance (den Boer et al., 2009; Smith and

Stanfield, 2012), competitive outcomes among rival sperm in the

female reproductive tract (den Boer et al., 2010), and female

reproductive behaviour and physiology (Simmons and Gwynne,

1991; Wolfner, 2002).

There thus exist two potential, mutually exclusive relationships

between sperm production and seminal fluid production (Ramm,

2020). First, there may be a positive correlation if seminal fluid

boosts male reproductive success by enhancing sperm function.

Second, there may be a negative correlation if a trade-off exists

between sperm production and seminal fluid production. For

instance, if seminal fluid has effects that are independent of

sperm (e.g., the fluid generates a plug that prevents or interferes

with further female mating), then a greater investment in seminal

fluid production may relax selection pressure on sperm production.

To date, findings are mixed: the production of sperm and seminal

fluid appears to be positively correlated in mammals (Dixson, 1998;

Ramm et al., 2005), fishes (Mazzoldi et al., 2005), and some insects

(Morrow and Gage, 2000) but negatively correlated in fungus-

growing ants (Baer and Boomsma, 2004).

The mating system of eusocial hymenopterans (ants, social bees,

and wasps) imposes unique selective pressures on male ejaculates

that are rarely, if ever, found in other animals (Boomsma et al.,

2009; Boomsma, 2013). First, males produce sperm only once in

their lives. Spermatogenesis mainly occurs during the pupal stage

and is usually completed shortly after males emerge. Their testes

then deteriorate, and sperm are stored in the accessory testes until

mating. At ejaculation, the semen and seminal fluid are combined.

Males die shortly after copulation, by exhaustion or predation.

Second, mating occurs during a single nuptial flight at the beginning

of adult life for both sexes. During this short window of time, female

reproductives copulate with one or several males, amassing a

lifetime supply of sperm in their spermatheca. In some species,

females live for decades, generating offspring from stored sperm.

Third, polyandry has evolved repeatedly in ants, bees, and wasps

(Hughes et al., 2008), creating conditions conducive to sperm

competition in multiple species. In the few studies looking at how

sperm competition influences sperm traits, it has been observed that

sperm competition may select for (i) enhanced sperm production

(ants: Baer and Boomsma, 2004; Aron et al., 2016; Degueldre and

Aron, 2023), (ii) increased sperm size (bumble bees: Baer et al.,

2003). Furthermore, seminal fluid can promote male fitness by (i)

enhancing sperm viability (honey bees: den Boer et al., 2009); (ii)

incapacitating rival sperm when females have multiple mates (ants

and honey bees: den Boer et al., 2010); and (iii) reducing female

promiscuity by either generating a mating plug (ants: Baer, 2011;

bumble bees: Duvoisin et al., 1999; Brown et al., 2002) or by

negatively affecting the eyesight of females during the mating

flight (honey bees: Liberti et al., 2019).

However, it remains largely unknown whether there is a

correlation between the production of sperm and seminal fluid in

eusocial hymenopterans. To date, a single study on fungus-growing

ants has revealed that, in species with singly mated females, males

have small accessory testes and large AGs, while the opposite is true
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in species with multiply mated females (Baer and Boomsma, 2004).

It has been suggested that males exploit AG compounds to produce

mating plugs and prevent further mating by females (Baer and

Boomsma, 2004; Baer, 2011; den Boer et al., 2015). Consequently, if

mating plugs became incapable of serving this function, males

might redirect their investment from seminal fluid (i.e., large

AGs) to sperm production (Baer and Boomsma, 2004).

Desert ants of the genus Cataglyphis are well suited to explore

the association between seminal fluid production and sperm

production. Indeed, (i) the degree of polyandry varies almost 10-

fold across species (range of the mean number of male mates: 1.07 –

8.5; Aron et al., 2016) and (ii) sperm production increases with

sperm competition intensity (Aron et al., 2016; Degueldre and

Aron, 2023). Using phylogenetically controlled analyses, we

explored the relationship, and potential trade-off, between

accessory gland size—a proxy for seminal fluid production— and

sperm production in nine species of Cataglyphis ants experiencing

various degrees of sperm competition.
Methods

Sampling

During regional periods of sexual reproduction, we sampled

colonies of nine Cataglyphis species across several countries: C.

cursor in France; C. hispanica and C. velox in Spain; C. bombycina,

C. emmae, and C. viatica in Morocco, and C. livida, C. niger, and C.

savignyi in Israel (Table S1). Specifically, we collected male pupae

and returned them to the laboratory, where they emerged as adults.

Estimates of seminal fluid production and sperm production were

obtained from the same males.
Accessory gland size

Because gland volume usually correlates with production

(Widdicombe and Wine, 2015), we used AG size as a proxy for

seminal fluid production (see also Baer and Boomsma, 2004).

Between 8- and 10- days post emergence (i.e., depending on

species maturation times), males were decapitated and dissected

under a Leica MZ6 stereomicroscope (Leica Microsystems, Wetzlar,

Germany) in semen diluent (188.3 mM sodium chloride, 5.6 mM

glucose, 574.1 nM arginine, 684.0 nM lysine, and 50 mM tris

[hydroxymethyl]aminomethane, pH 8.7; Paynter et al., 2014). All

the males had degenerated testes; sperm were found in the accessory

testes, indicating their complete maturation.

Each male’s AGs were properly isolated, and carefully placed on

a grid in the dissection plate with a drop of semen diluent. They

were positioned to measure their greatest length. AGs were

photographed using light microscopy (50x magnification) and

then measured with a precision of 0.01 mm using IMAGEJ

(version 1.8). In all our analyses, absolute AG size was controlled

by male body size using analyses of covariance with maximum head

width (including eyes) as a covariate (Garcıá-Berthou, 2001).
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Maximum head width is a reliable proxy of body size in Cataglyphis

ants (Aron et al., 2016; Lecocq de Pletincx et al., 2021). Males were

decapitated and their head measured using the same method

as AGs.
Sperm production

Sperm production data for the nine study species were obtained

from Degueldre and Aron (2023). Briefly, both accessory testes

from each male were dissected in semen diluent. They were placed

in 1 ml semen diluent, their membrane was removed and the

resulting sperm stream carefully mixed with the diluent. 150 µl of

this sperm solution was transferred to an empty 1.5 ml vial; 850 µl

of sperm diluent was added to obtain a final volume of 1 ml. This

step was repeated to obtain two technical replicates per male. For

each sample, cells were quantified by flow cytometry. Sperm

populations were identified based on characteristic forward and

sideward scatter, enabling total sperm production to be quantified.

We used the average of the two technical replicates to estimate

sperm production for each male. A square root transformation was

used to ensure normality and homoscedasticity of the data.
Paternity frequency

For each species, sperm competition intensity was inferred from

paternity frequency (i.e., the number of males that father the

offspring of a queen; Aron et al., 2016; Degueldre and Aron,

2023). Data on paternity frequency were obtained from previous

studies in which microsatellite loci were used to determine patriline

number. For each species, AG size and sperm production were
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measured frommales collected in the same location as that in which

paternity frequency was estimated (Table S1).
Phylogenetic analyses

Using species-level data, we evaluated whether paternity

frequency was correlated with AG size. To account for potential

trait similarities resulting from shared ancestry among species, we

utilised phylogenetic generalised least squares (PGLS) regression

(Pagel, 1999). In this approach, maximum likelihood ratio tests are

used to estimate the degree of phylogenetic association (l) within
the data. When l values are closer to 0, it is more likely that traits

evolved independently. We performed these analyses using the pgls

function in the caper package (Freckleton et al., 2002) and

employed the Cataglyphis phylogeny (Figure S1; from Lecocq de

Pletincx et al., 2021), which was handled using the ape package

(Paradis et al., 2004). All analyses were performed in R (v. 4.2.1; R

Core Team, 2020).
Results and discussion

We measured AG size for 117 males across the 9 study species

(mean number of males per species ± SD = 13 ± 5.79, range: 8–23;

mean number of colonies per species ± SD = 2.56 ± 1.01, range: 1–4;

mean number of males per colony ± SD = 5.17 ± 2.87, range: 2–16;

Table S1). Absolute AG size ranged from 1.17 to 2.23 mm.

Across species, AG size was positively associated with paternity

frequency (covariance PGLS: model coefficient = 0.07; R2 = 0.7, p <

0.01; Figure 1). Similarly, AG size was positively correlated with

sperm production (partial correlation: r = 0.64, p < 0.001; Figure 2).
FIGURE 1

Relationship between paternity frequency and mean AG size (± SD) in nine species of Cataglyphis ants. The linear regression line is shown for AG size. (a)
C. hispanica (paternity frequency [Mp] = 1.07; Leniaud et al., 2012); (b) C. velox (Mp = 2.37; Eyer et al., 2013); (c) C. emmae (Mp = 3.05; Jowers et al.,
2013); (d) C. livida (Mp = 4.41; Timmermans et al., 2010); (e) C. niger (Mp = 5.17; Leniaud et al., 2011); (f) C. cursor (Mp = 5.3; Pearcy et al., 2009); (g) C.
viatica (Mp = 5.56; Aron et al., 2013); (h) C. bombycina (Mp = 5.7; Leniaud et al., 2013); and (i) C. savignyi (Mp = 8.5; Leniaud et al., 2011).
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There was a negligible phylogenetic signal for AG size (l < 0.001, p

(Ho: l=0) = 1; Figure S2). These results strongly suggest a lack of trade-

off between sperm production and seminal fluid production. They are

consistent with other studies in rodents (Ramm et al., 2005), fishes

(Mazzoldi et al., 2005) and moths (Morrow and Gage, 2000) showing

a positive association between sperm competition level and the

relative size of accessory reproductive glands. Such a lack of trade-

off was also reported in Drosophila where testis length is not

correlated with accessory gland length (Kraaijeveld et al., 2008).

Although our results are clearly significant, they must be

interpreted with caution because our estimates of paternity

frequency are based on data from a single population and year for

each study species. Past research has documented the existence of

biogeographical variation in population-specific paternity frequencies

in various ant species (e.g., Sundström, 1994; Boomsma and van der

Have, 1998; Suni and Eldakar, 2011), including in the silver ant,

Cataglyphis bombycina (Leniaud et al., 2015). Here, we measured AG

size and sperm production for males that came from the population

for which paternity frequency had been estimated. To date, there has

been no dedicated work exploring interannual variation in paternity

frequencies within populations of desert ants, although preliminary

findings suggest that such variation is minimal in C. viatica and C.

cursor (unpublished data). Beyond these results, it remains unknown

how variation in paternity frequency interacts with AG size and

sperm production.

In Cataglyphis desert ants, multiple mating by females could

drive males to evolutionarily invest in both functional traits. Our

findings contrast with those of previous research on fungus-

growing ants (Baer and Boomsma, 2004). This work found that,

in species where females have multiple mates, males have small AGs

and large accessory testes, suggesting they face intense sperm

competition and preferentially invest in sperm production.

However, it also noted that, in species where females have a
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single mate, males could employ seminal fluid to form mating

plugs, suggesting they may experience lower levels of sperm

competition and thus decreased selection pressure on sperm

production. Despite the strong association between AGs size,

sperm production and paternity frequency in Cataglyphis, other

factors than sperm competition may also influence these

reproductive traits, such as the efficiency of spermatogenesis

(Johnson et al., 2000) and the queen’s sperm storage capacity

(Boomsma et al., 2005).

In Cataglyphis, AG size and sperm production are positively

associated with sperm competition intensity which suggests that

seminal fluid boosts sperm function (Ramm, 2020). In the same

vein, it has been shown that sperm competition selects for increased

sperm quality in Cataglyphis: in species with highly polyandrous

females, males produce more viable sperm with lower levels of DNA

fragmentation (Degueldre and Aron, 2023). Seminal fluid could

help maintain high levels of sperm quantity and quality by

furnishing (i) antioxidant enzymes that limit oxidative stress

(Weirich et al., 2002; Collins et al., 2006; Baer et al., 2009); (ii)

substances that sustain sperm metabolism (Blum et al., 1962;

Alumot et al., 1969); and (iii) antimicrobial and antifungal

enzymes (Baer et al., 2009; Peng et al., 2015; Chérasse et al., 2018;

Dávila et al., 2018). Seminal fluid could also improve sperm motility

after ejaculation, a trait that is essential for successfully reaching the

spermatheca (Pearcy et al., 2014; Liberti et al., 2018; Yániz et al.,

2020). In the honeybee (Apis mellifera) and leafcutter ants

(Acromyrmex echinatior and Atta colombica), females have

multiple mates, and a given male’s seminal fluid reduces the

survival of sperm from rival males (den Boer et al., 2010), via the

action of AG-generated serine proteases (Dosselli et al., 2019).

Further research should explore quantitative and/or qualitative

differences in the seminal fluid of Cataglyphis species facing

differing levels of sperm competition.
FIGURE 2

Relationship between sperm production and AG size across all nine Cataglyphis study species. The linear regression line is shown.
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