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Genetic diversity of
Hapalogenys analis in the
northwest Pacific assessed using
dd-RAD sequencing
Qun Zhang1*†, Cheng-He Sun1,2†, Jin-Long Huang1†,
Ye-Ling Lao1, Xi-Yue Chang1 and Jia-Ning Cao1

1Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China,
2The Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences,
Nanjing Forestry University, Nanjing, China
The broad-banded velvetchin Hapalogenys analis is an economically and

scientifically important global temperate and tropical nearshore marine fish. To

understand the genetic evolution mechanism of H. analis, simplified genome

sequencing analysis was conducted on 82 samples of H. analis from three

populations (Akashi, Zhoushan, and Shantou) in the northwestern Pacific

Ocean using double-digest restriction site-associated DNA sequencing.

Genetic characteristics were identified using single-nucleotide polymorphism

loci, and a small fragment library (250–450 bp long) was constructed for double-

end sequencing. Single-nucleotide polymorphisms (SNPs) were detected using

Stacks software and analyzed. The phylogenetic tree was constructed to analyze

the population structure characteristics and the genetic evolutionary

relationships between individuals in different regions at the genetic level. The

sequencing library constructed for 82 samples of H. analis using double-digest

restriction site-associated DNA sequencing possessed an average of 7,931,195

sequencing sequences and an average of 1,141,560,806 bases in the 82 samples.

A total of 3,204,106 SNP loci were obtained from the three populations of H.

analis, indicating rich genetic diversity. The transition to transversion ratio of

SNPs was >1.5, indicating transformational reversal bias inH. analis. The observed

heterozygosity of the various populations was 0.186–0.199, with an expected

heterozygosity of 0.253–0.268. High diversity in all three populations was

detected using nucleotide diversity analysis. AS and ZS had the highest degree

of differentiation. The H. analis samples shared two gene libraries; some

populations were closely related, whereas others had a distant genetic

relationship. The results of genetic statistics, genetic differentiation, population

structure, principal component, phylogenetic, and genetic relationship analyses

supported independent clustering of the AS population, which can be used as a

new genetic resource for conserving H. analis. These results provide a reference

basis for comparative genomics studies of H. analis and rational utilization of

Hapalogenys resources.
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1 Introduction

The broad-banded velvetchin Hapalogenys analis Richardson

(1845) belongs to the order Perciformes and family Pomadasyidae

and is an economically important global temperate and tropical

nearshore marine fish (Zheng et al., 2020; Sun et al., 2023). Middle-

and lower-level fish, which prefer to inhabit rocky areas, are typical

island reef fishes that feed on small fish, crustaceans, and shellfish.

Hapalogenys analis is distributed along the northwest Pacific coast

and has a desirable meat flavor and bright body color, making it an

economically important edible and ornamental fish (Mohapatra

et al., 2013; Sun et al., 2023). The market supply is limited because of

the scarcity of wild resources of H. analis. Its unique characteristics,

such as having a wide salt content and resistance to low

temperatures, make this fish particularly suitable for artificial

breeding and ecological resource restoration. In addition, it is a

natural ideal animal model for studying the adaptation of fish to the

middle and lower layers of the nearshore. Studies have been

performed to evaluate the origin and evolution (Iwatsuki and

Russell, 2006), mitochondrial genome (Zheng et al., 2020), and

population structure (Sun et al., 2023) of H. analis. Research on

Hapalogenys is relatively mature.

With the rapid development of molecular biology

technologies, simplified genome sequencing based on second-

generation sequencing technology has been widely applied

(Henning et al., 2014; Alam et al., 2017; Raffini et al., 2017).

Among these methods, double-digest restriction-site-associated

DNA sequencing (dd-RAD) was developed based on traditional

second-generation sequencing RAD sequencing, which is

extensively used in population genetic structure, diversity

analyses (Nyinondi et al., 2020), and genetic evolution (Guo

et al., 2021) and can be used to rapidly identify high-density

single-nucleotide polymorphism (SNP) sites (Severn-Ellis et al.,

2020). The SNP locus, which is the most susceptible type of

variation in the genome, is an ideal tool for studying population
Frontiers in Ecology and Evolution 02
and quantitative genetics (Mondini et al., 2009). However, dd-

RAD sequencing technology has not been used in genetic diversity

research of striped sea bream. In this study, we used dd-RAD

sequencing for population genetic analysis of H. analis to identify

its genetic characteristics through SNP loci analysis, construct a

phylogenetic tree, analyze its population structure characteristics,

and investigate the genetic evolutionary relationships between

individuals in different regions. This study aimed to understand

the genetic potential of marine fish resources in the marginal seas

of the northwest Pacific Ocean and provide a reference for

comparative genomics analysis of H. analis and rational

utilization of genus Hapalogenys resources.
2 Materials and methods

2.1 Sample collection and DNA extraction

The 82 collected samples of H. analis were divided into three

geographical populations according to their collection location

(Figure 1). Twenty-eight samples were collected from Akashi, Japan

(AS, 34°38’30” N, 134°58’19” E), 27 samples were collected from

Shantou, China (ST, 23°18’09”N, 116°48’11” E), and 27 samples were

collected from Zhoushan, China (ZS, 29°59’08” N, 122°12’26” E). All

specimens in this study were collected in accordance with Chinese

laws. The collection and sampling of the specimens were reviewed

and approved by the Animal Ethics Committee of Jinan University.

All samples were wild and purchased from local fishermen with

marine fishing permits. After morphological identification of the

species (Figure 2), some of the muscle tissues were obtained and

frozen at −80 °C for DNA extraction, whereas the remaining tissues

were completely immersed in 95% ethanol and stored in the fish

bank of the Department of Ecology at Jinan University. Genomic

DNA was extracted using the traditional phenol-chloroform, and its

quality was evaluated using 1.5% agarose gel electrophoresis and a
FIGURE 1

Sampling sites of Hapalogenys analis.
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NanoDrop 2000 instrument with an ultraviolet spectrophotometer.

The A260/280 value of genomic DNA was 1.7–2.0, which met the

quality requirements. Genomic DNA was stored at −20 °C

until analysis.
2.2 Simplified genome sequencing

All genomic DNA samples were sent to Guangzhou Tianyi

Huiyuan Gene Technology Co., Ltd. (Guangzhou, China) for

simplified genome sequencing. The experimental process was as

follows: restriction endonucleases were selected to cleave genomic

DNA and add sequencing connectors with barcodes, after which a

small fragment library (250–450 bp long) was constructed using a

NovaSeq sequencer (Illumina, San Diego, CA, USA) for 2 × 150 bp

double-end sequencing.
2.3 Data analysis

Fastp (https://github.com/OpenGene/fastp) (Chen et al.,

2018) was used for quality control and filtering to obtain high-

quality data. The ustacks command in the Stacks v2.55 package

(Catchen et al., 2013) was used to cluster reads in a single sample

based on sequence similarity. Stacks software was used to

identify SNP sites and statistically analyze the detected SNPs.

Principal component analysis (PCA) was conducted using Plink

v1.9 (Purcell et al., 2007) software (www.cog-genomics.org)

with SNP data (excluding SNPs with multiple allele frequency

< 0.05). A phylogenetic tree was constructed using the

maximum likelihood algorithm in FastTree software (Price

et al., 2009). Admixture software (Alexander and Lange, 2011)

was used to analyze the population’s genetic structure with SNP

information, and the K = 2–10 model was selected as the mixed

model. Population genetic diversity (He, Ho, Pi, Fis and Fst) was

analyzed using the population command in the Stack package. The

G value between two individuals was calculated using Gmatrix v2

(Steppan et al., 2002). We used Plink v1.9 to calculate the IBS

similarity between two individuals, obtained the IBS similarity

matrix, and then generated a distance (= 1 – IBS) matrix.
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3 Results

3.1 Sequencing data statistics

Using dd-RAD sequencing technology, a sequencing library was

constructed for 82 samples of H. analis. A total of 650,358,010

original sequences were obtained, with an average of 7,931,195

sequencing sequences per sample. The total number of bases

obtained was 93,607,986,112, with an average of 1,141,560,806

bases. The GC ratio of the H. analis samples was 42.11–47.87%,

averaging 44.31%. The Q20 and Q30 of all samples were above 96%

and above 92%, respectively, indicating that the sequencing results

were reliable and that the base error rate was low. Therefore, the

data were suitable for further analysis (Supplementary Table S1).
3.2 SNP detection and site development

A total of 32,04,106 SNP loci were detected in the 82 H. analis

samples. The transition SNP ranged from 18,553–27,126, and the

transversion SNP ranged from 11,174–16,710. The ratio of

transition to transversion SNPs was 1.588–1.873. The value was

greater than 1.5, indicating that H. analis, like most vertebrates

(Foran et al., 1988), has a transformational reversal bias (Sloss et al.,

2004). The SNP genetic diversity analysis results showed that the

number of heterozygous mutations was 17,746–33,356, and the

number of homozygous mutat ions was 6198–14 ,237

(Supplementary Table S2).
3.3 Genetic statistics and genetic
differentiation analysis

Genetic statistics based on the SNP results showed that the

expected heterozygosity was greater for all three populations than

the observed heterozygosity. The inbreeding coefficient was 0.219–

0.246, with AS showing the lowest value and ZS showing the highest

value. Nucleotide diversity analysis showed that all three

populations had values greater than 0.25, indicating high diversity

(Brown et al., 2004) (Table 1). Calculation of all paired fixation

index (Fst) values among the three populations (Table 2) revealed

that AS and ZS had the highest degree of differentiation with a value

of 0.065. The differentiation coefficient between AS and ST was

0.052, and that between ZS and ST was 0.032.
3.4 Cluster analysis and PCA

Population structure analysis revealed that the 82 H. analis

individuals with consistent genetic backgrounds were clustered

together, indicating accurate clustering results. The cluster with

the smallest cross-validation error rate was considered optimal. As

shown in Figure 3, the curve of the cross-validation error rate

exhibited an upward trend. When the number of clusters (K) was

two, the cross-validation error rate value was smallest; K = 2 was the
FIGURE 2

Hapalogenys analis.
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optimal number of clusters, and H. analis was divided into two

groups, indicating that the samples shared two gene libraries. PCA

revealed that the selected H. analis samples formed three distinct

groups with H. analis from AS, ST, and ZS clustered together

(Figure 4). Some populations of H. analis were closely related,

whereas others had a distant genetic relationship.
3.5 Systematic evolution and
phylogenetic analysis

The phylogenetic tree showed that the 82 H. analis samples

converged into three larger genetic branches. The first, second, and

third categories contained H. analis from ST, from AS and ST, and

from ZS and ST, respectively (Figure 5). The analysis results of the

G and IBS matrices indicated (Figure 6) that all individuals were

divided into two subgroups, that is, a subgroup composed of 28 AS
Frontiers in Ecology and Evolution 04
H. analis and a subgroup composed of 27 ZS and 27 ST H. analis,

respectively. These subgrouping results are consistent with those

obtained using the admixtures.
4 Discussion

The northwest Pacific is an ideal sea area for studying how the

ice age affected marine organisms’ lineage structure and

geographical distribution (Liu et al., 2006; Han et al., 2012). The

effects of colonization events, population bottlenecks, isolation

differentiation, lineage structure mixing, and marine organisms’

geographical differentiation can be explored within this sea area.

Hapalogenys analis, an endemic species in the northwest Pacific, has

unique characteristics of wide salinity and low-temperature

tolerance, making it an ideal animal model for studying

adaptation to the middle and lower layers of the nearshore.

Genetic diversity occurs when species adapt to various complex

environments during long-term evolution and is the foundation on

which species rely for survival and development (Liu et al., 2020).

Studies of populations’ genetic structure and differentiation can

provide valuable information for protecting and utilizing

germplasm resources (Fu et al., 2019). Heterozygosity is a

measure of population genetic diversity. A higher heterozygosity

of a variety indicates more genetic information (Allendorf, 1986;

Barkley et al., 2006). Our results demonstrated that both the

observed and expected heterozygosity were lower in the AS
TABLE 1 Genetic statistics.

Population Ho He Pi Fis

AS 0.186 0.253 0.259 0.219

ZS 0.196 0.268 0.274 0.246

ST 0.199 0.267 0.273 0.234
Population (group name): Ho, the average observed heterozygosity of all loci in the population; He, the average expected heterozygosity of all loci in the population calculated based on Hardy-
Weinberg equilibrium; Pi, the average nucleotide diversity (p value) of all loci in the population; Fis, the average kinship coefficient of individuals within a group.
AS, Akashi; ZS, Zhoushan; ST, Shantou.
A B

FIGURE 3

Cross validation error rate corresponding to different K values (A) and group structure (B).
TABLE 2 Pairwise fixation index (Fst) among the three populations.

Population AS ZS ST

AS

ZS 0.065

ST 0.052 0.032
AS, Akashi; ZS, Zhoushan; ST, Shantou.
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population than in the other two populations, indicating lower

genetic diversity in the AS population. The nucleotide diversity

index of the three populations indicated that H. analis has high

genetic diversity.

We used sequencing data to evaluate the three populations’

genetic relationships and population structure. The population
Frontiers in Ecology and Evolution 05
differentiation coefficient, Fst, can reveal the degree of

differentiation between populations (Qin et al., 2019). In this

study, the degree of differentiation between AS and the other two

populations was relatively high, and the Fst values were all >0.05,

indicating a moderate degree of genetic differentiation between AS

and the other two populations (Weir and Cockerham, 1984). There
FIGURE 4

Principal component analysis of 82 Hapalogenys analis samples.
FIGURE 5

Phylogenetic tree of 82 Hapalogenys analis based on maximum likelihood method.
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were significant differences in the clustering patterns between

populations. According to PC1 (21.98%), the AS population could

be distinguished from the other two populations, which is

consistent with the genetic differentiation results.

The phylogenetic tree showed that individuals from the ZS and

AS populations clustered independently among the three

populations; however, there were individual interspersions

between ST and the other two populations. This phenomenon

may be attributed to the influence of coastal currents. Notably, a

China coastal current flows from ZS towards ST, a reverse Kuroshio

current moves from AS towards ST, with a vast East China Sea lying

between ZS and AS. Genetic structure analysis of the three

populations showed that when K = 2, the cross-validation error

rate was the lowest, indicating that the three populations originated

from two primitive ancestors. When K = 2, all AS individuals were

first isolated; when K = 3, all ST individuals were isolated. When

K = 4, there was a significant difference in the genetic structure of

ST; an increasing K value is associated with more complex genetic

information. The heat map of kinship showed that kinship between

individuals in each group was relatively low.

Our results support that clusters formed independently in the

AS population; this information can be used to conserve H. analis.

Our results are consistent with those of Sun et al. (2023), who used

mitochondrial control regions to study four populations of

H. analis.
5 Conclusions

We performed dd-RAD sequencing technology to analyze the

genetic diversity of three H. analis populations in the northwest

Pacific by calculating various genetic diversity indicators. The

results showed that the genetic diversity of all three H. analis

populations was relatively high, and the population genetic

differentiation coefficient and genetic structure indicated notable
Frontiers in Ecology and Evolution 06
differentiation between the AS population and the other two

populations. These results provide a theoretical basis for further

exploration of the characteristics of H. analis germplasm.
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