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Neonicotinoid contamination in
conservation areas affects bees
more sharply than beetles
Jonathan Tetlie and Alexandra Harmon-Threatt*

Harmon-Threatt Lab, Department of Entomology, University of Illinois at Urbana-Champaign, Urbana,
IL, United States
The neurotoxic insecticide class of neonicotinoids has become one of the most

widely used groups of pesticides globally. Their long half-lives and high water

solubility increase their potential to linger and affect numerous organisms long

after application. A prominent concern associated with residual contamination is

the negative impact that neonicotinoids can have on beneficial arthropods such

as bees and certain groups of beetles. Many studies have looked at the effects

neonicotinoids have on arthropod communities in lab settings; however,

comparatively few studies have looked at these groups in neonicotinoid-

contaminated restored prairie habitats. These habitats are often restored from

or located near agriculture and are almost ubiquitously contaminated with

neonicotinoids. Our one-year manipulated field study compared native bee

nesting rates and beetle community assemblages between paired clothianidin-

contaminated and non-contaminated restored prairie plots. Native bee nesting

probability and nesting abundance increased by 46% and 172%, respectively, in

sites contaminated with clothianidin. Conversely, we observed no significant

differences in beetle family assemblages, abundance, or richness between

clothianidin-contaminated and control sites. These results suggest that

neonicotinoid contamination of natural habitats can have numerous

environmental consequences for arthropods and that these effects are not

always consistent between taxa. Understanding how neonicotinoid

contamination affects beneficial groups such as bees and arthropod

community assemblages is crucial for characterizing the risks these chemicals

pose to ecologically imperative taxa.
KEYWORDS

ground-nesting bees, beetle feeding guilds, clothianidin, restored prairie,
agricultural contamination
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1 Introduction

Insects account for three-quarters of global animal and plant

species, occupy a vast array of ecological niches (Chapman, 2009),

and support countless ecosystem functions, such as nutrient

cycling, soil formation, decomposition, water purification, and

pollination, which have an outsized impact on the global

economy. As insects decline, ecosystem structure and overall

human well-being are expected to be adversely affected (Ameixa

et al., 2018). The pervasive use of pesticides, specifically

neonicotinoids, which is the most commonly used class of

pesticide, is considered a major contributor to the decline of

insects due to the impact that they have on non-target organisms

(Godfray et al., 2014; Pisa et al., 2014; Hladik et al., 2018; Wagner

et al., 2021). Yet, we still lack a fundamental understanding of how

neonicotinoid contamination broadly affects non-target arthropods,

as most neonicotinoid studies have focused on managed insect

species that are not representative of the larger insect community.

Neonicotinoids have become ubiquitous in agricultural,

industrial, and urban landscapes because of their low mammalian

toxicity, application versatility, and tendency to contaminate

adjacent habitats (Jeschke et al., 2011). The most prominent

application method for neonicotinoids are seed coatings on

agricultural commodities such as cereal grains and oilseeds

(Jeschke et al., 2011). This method was developed to provide

more targeted pest control, as neonicotinoids can be systemically

incorporated into growing plants (Bonmatin et al., 2015). The

incorporation of neonicotinoids into plant tissues has led to

concerns about non-target exposure to pollinators in pollen and

nectar (Rundlöf et al., 2015), but the proportion of the pesticide

absorbed by target plants is small, ranging from 0.7-20% in several

crop species (Sur and Stork, 2003). The remainder of the pesticide

usually ends up in the soil, where it can persist for long periods of

time. Clothianidin, the neonicotinoid with the longest

environmental persistence, exhibits a half-life between 148-6931

days (Rexrode et al., 2003). This contamination can negatively

impact the beneficial arthropods that natural habitats foster

(Main et al., 2020; Kuechle et al., 2022). As neonicotinoids move

into natural areas embedded in agroecosystems, these habitats could

unintentionally attract beneficial insects to locations contaminated

with harmful neonicotinoid insecticides.

Two beneficial insect groups that are often targeted in

restoration efforts for their role in providing arthropod-mediated

ecosystem services (AMES) (Isaacs et al., 2009) are bees and beetles.

Both bees and beetles generally exhibit increases in richness and

abundance in these restoration settings compared to agricultural

fields (Purvis et al., 2020); however, due to differences in life history

traits, bees and beetles are likely differentially affected by

neonicotinoid contamination in these habitats. While numerous

groups of beetles (Pfiffner and Luka, 2000) and the vast majority of

bee species are ground-dwelling (Harmon-Threatt, 2020), the

feeding guilds that they occupy vary (Losey and Vaughan, 2006).

A majority of bee species are considered pollinators, while beetles

occupy comparatively more feeding guilds including predators

(Labrie et al., 2003; Menalled et al., 2004), pollinators (Young,

1986; Maia et al., 2013), detritivores (Wicklow et al., 1988; Topp
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et al., 2008), omnivores (Wäckers et al., 2005; Blubaugh et al., 2016),

and herbivores (Alyokhin et al., 2008; Gray et al., 2009). The

abundance and composition of these feeding guilds can have

drastic impacts on ecosystem structure and function (Whiles and

Charlton, 2006), including plant composition and biomass (Mulder

et al., 1999), nutrient cycling and soil health (Stanton, 1988), and

pest suppression (Moran and Hurd, 1997). Because these functional

groups have evolved due to different evolutionary pressures in their

ecological niche and have different routes of exposure to

contamination, they are likely to respond differently to

neonicotinoid exposure, therefore potentially shifting ecosystem

structure and services.

Numerous studies have shown that neonicotinoid exposure can

have negative consequences on cognitive and motor function

(Alkassab and Kirchner, 2017; Tooming et al. , 2017),

reproduction and development (Alkassab and Kirchner, 2017;

Wu-Smart and Spivak, 2018; Feng et al., 2019; Fortuin et al.,

2021), and longevity (Alkassab and Kirchner, 2017; Feng et al.,

2019). However, most neonicotinoid bee and beetle studies have

been conducted in a lab setting with managed species. Because these

managed species have either different social organization or nesting

habits than most native ground-nesting species, potential effects

and routes of exposure should not be broadly applied to all bees

(Mayack and Boff, 2019). Furthermore, neonicotinoid studies rarely

compare responses to insects in other orders, which would provide

a more thorough community-level response. By looking at ground

bee nesting and beetle functional group abundances in response to

neonicotinoid contamination, this study will provide a more

comprehensive picture of how beneficial insects are utilizing

restorations from agriculture and the potential exposure risks for

each group. Findings from this study could also be used to provide a

more realistic account of the proposed benefits to beneficial insect

communities associated with habitat restoration initiatives. The

objectives of this study are to (i) evaluate differential ground bee

nesting rates and (ii) beetle feeding guild assemblages between

clothianidin-contaminated and non-contaminated soils of natural

areas intended to augment conservation biological control systems.
2 Materials and methods

2.1 Study sites

Five fields located in Champaign and Vermilion Counties, IL,

were utilized in the study. Each field site was separated by at least

500 m to ensure site independence. All field sites were previously in

row crop agriculture but were removed from production for at least

17 years (Supplementary Table S1). Within each field site, a pair of

100m2 plots separated by 50m were established and assigned as

either control or neonicotinoid treatment.

In May of 2018, one of the paired plots at each site was treated

with the granular, clothianidin-based insecticide Arena 0.25G

(Valent U.S.A. Corporation, Walnut Creek, CA) at a rate of 80g

of active ingredient per acre. This application rate was chosen based

on manufacturer recommendations for row crops. Because

neonicotinoid levels in restoration habitats are notoriously
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heterogeneous and rates of persistence are dependent on other

environmental variables (Felsot et al., 1998; Donnarumma et al.,

2011; Sharma et al., 2014; Fletcher et al., 2018), we selected an

application rate to reflect a worst-case scenario of clothianidin soil

contamination in field margins or prairies recently restored from

conventional agriculture; areas that are designed to attract and be a

refuge for beneficial insect communities (Lagerlöf et al., 1992;

Winfree, 2010). This application rate yielded soil contamination

rates higher (Supplementary Table S4) than some studies in the

neonicotinoid soil contamination literature (Hladik et al., 2017;

Main et al., 2020). These higher rates were chosen to prevent

treatment effects from being masked by higher variance typical of

field-based studies, ultimately providing more confidence in the

directionality and intensity of the treatment effect. While not

traditionally used in row crop agriculture, Arena 0.25G was

chosen as a delivery method to mimic pesticide soil deposition

associated with seed coatings. It was selected over alternatives such

as killed, treated seeds due to the ease of application and control of

confounding variables. As most coated seeds contain other

pesticides and the physical seed represents a carbon addition,

Arena 0.25G was an appropriate application technique to control

for clothianidin accurately.

All sites were sampled for arthropods, bare ground, floral

abundance, and floral richness during June, July, and August

2018 as detailed below.
2.2 Bee and beetle sampling

During each sampling event, nine emergence tents (BugDorm,

Taichung, Taiwan; model BT2006) were deployed in each plot (18

per site, 9 in control and 9 in treated plots) in a three-by-three grid

with adjacent tents separated by 2m. Tent corners were staked

down, and soil was packed on the edges of tent flaps to prevent

insect movement in or out of the tent. A collection jar, located at the

top of the tent at the end of a mesh funnel, was filled with soapy

water to collect any insects emerging from the soil and vegetation

beneath the tent. Tents were installed between 1800 and 2000 when

diurnal insect movement decreases and retrieved after 72 hours,

which was previously found to be sufficient to maximize captures of

actively nesting female bees (Pane and Harmon-Threatt, 2017).

Captured specimens were removed and placed into 70% ethanol.

Bees were identified to species using keys created by Michael

Arduser (unpublished, 2015) and Discover Life (Orr et al., 2021).

These data were used to generate two separate response variables -

bee abundance and bee nesting probability - in the models

described below. Beetles captured were identified to at least family

using American Beetles Volume II (Thomas et al., 2002), Beetles of

Eastern North America (Evans, 2014), and A Field Guide to the

Beetles of North America (White and Peterson, 1998). Feeding

guilds (predator, herbivore, omnivore, and detritivore) for each

beetle were assigned using the same resources. From these data,

beetle richness, beetle abundance and abundance of each feeding

guild were determined and used as responses in models

described below.
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2.3 Environmental covariate quantification

Environmental characteristics that influence ground bee nesting

(O’Toole and Raw, 1991; Potts et al., 2005) and beetle abundance

(Woodcock et al., 2008b; Diehl et al., 2012; Egerer et al., 2017) were

quantified during each sampling session. Quantification was

conducted using 16 independent 0.25 m2 quadrats, evenly spaced

within each plot in a four-by-four grid and separated by 2m. Bare

ground cover (exposed soil), floral abundance, and floral richness

were recorded for all quadrats. For each sampling period, all 16

quadrat observations made within the same plot were averaged to

provide more representative plot-scale metrics as model covariates.
2.4 Statistical analysis

All statistical modeling was conducted in R v4.3.1 (R Core Team,

2023). Generalized linear mixed effects models (GLMMs) were fitted

using the glmer function in lme4 (v1.1-2 Bates et al., 2015) to establish

global models for model selection. Average bare ground cover,

average floral abundance, and average floral richness were

considered as covariates in the model selection process. Site was

included as a random effect in all models to account for the paired

nature of the experimental design. Beetle abundance and richness

data were pooled across months to deal with issues associated with

low abundance for certain feeding guilds, heteroskedasticity, and

model overfitting. Bee abundance and nesting probability did not

have these issues and therefore were not pooled.

A model selection process utilizing AICc (Akaike information

criterion with correction for small sample sizes) comparisons was

used to identify the most predictive model(s) for bees and beetles.

Models that had a delta AICc less than two were included as potential

candidate models. Candidate models for bee nesting probability, bee

abundance, beetle omnivore abundance and beetle detritivore

abundance were used to create model averages using the model.avg

function in the MuMIn package (v1.47.5 Bartoń, 2023) in order to

account for numerous candidate models falling within our delta AICc

cutoff of two (Johnson and Omland, 2004). Multicollinearity among

independent variables was assessed by calculating variance inflation

factors (VIF). VIF scores from all models showed low correlation

between predictor variables, indicating that our covariates were

sufficiently independent. Residuals from all models were assessed

visually and via Shapiro-Wilk tests of normality. Heteroskedasticity

was assessed visually and via Breusch-Pagan tests for all models.

GLMMs with binomial distributions were used to assess bee

nesting probability. The probability of bee nesting was designated as

the number of tents that captured one or more bees divided by the

total number of tents. Because many ground-nesting species exhibit

varying degrees of sociality and have been found to gregariously nest

(Eickwort, 1975; Wcislo, 1992; Wuellner, 1999; Smith et al., 2003),

analyzing bee nesting as tent success accounts for conspecifics that

may otherwise be double counted. GLMMs with Poisson distributions

were used to assess nesting bee abundance. Unlike the previous model,

bee abundance is comprised of all captured females, therefore

accounting for potential size variations in nest aggregations. In both
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bee nesting probability and bee abundance models, male and above-

ground nesting bees (Harmon-Threatt, 2020) were omitted from

analyses as they do not participate in nest construction (Antoine

and Forrest, 2021). Due to low capture rates common with this

sampling method, bee richness measures were not evaluated.

Generalized linear mixed effects models (GLMMs) with Poisson

distributions were used to assess total beetle richness and abundance,

as well as abundances for predator, herbivore, omnivore, and

detritivore feeding guilds. In addition to environmental variables,

models looking at individual feeding guilds included all other

feeding guilds as possible covariates. These parameters were

included in order to account for interspecific interactions. All model

covariates were scaled in order to account for large eigenvalues

observed during the model selection process. Residuals for the

omnivore abundance models were not normally distributed and the

issue could not be resolved using other model family residual methods.

Furthermore, numerous beetle models exhibited symptoms of model

overfitting. As a result, model predictions were tested using predicted

residual error sum of squares (PRESS) and predictive R2 cross

validation (Mediavilla et al., 2008). These methods showed that

beetle herbivore and omnivore abundance models were drastically

overfitting the data and therefore were not very predictive (Table 1).

These models were therefore not used for further data interpretation.
3 Results

3.1 Bee response to clothianidin

We caught 50 ground-nesting bee females from 11 species

across the five sites and three sampling periods. A greater number

of bees were seen in clothianidin-treated plots (8.6 ± 2.874)
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compared to control plots (1.4 ± 0.510), as seen in Figure 1B.

Similarly, the average tent capture success was greater in

clothianidin-treated plots (1.33 ± 0.187) than in control plots

(0.47 ± 0.192) (Figure 1A).

Four candidate models were similarly predictive for estimating

the probability of bee nesting at the tent level. The averaged model

included the independent variables clothianidin (Z = 2.326,

P = 0.020), floral abundance (Z = 1.216, P = 0.224), floral

richness (Z = 1.061, P = 0.289), and average bare ground

(Z = 1.049, P = 0.294). (Table 2). Full model selection and

estimates can be found in Table 2 and Supplementary Table

S2, respectively.

Likewise, four candidate models were similarly predictive of bee

abundance and were averaged. The averaged model included the

independent variables clothianidin (Z = 3.912, P < 0.001), floral

abundance (Z = 2.099, P = 0.036), floral richness (Z = 1.799,

P = 0.072), and average bare ground (Z = 2.011, P = 0.044)

(Figures 1B–D). Full model selection and estimates for bees can

be found in Table 2 and Supplementary Table S2, respectively.
3.2 Beetle response to clothianidin

We captured 2,613 beetles from 34 families across the sites and

samples. Beetle abundance by family was dominated by

Staphylinidae (792) and Chrysomelidae (652). Other prevalent

families included Latridiidae (139), Carabidae (130), Mordellidae

(118), and Phalacridae (111). Average ( ± SE) beetle abundance per

site was similar between control plots (268.8 ± 71.639) and

clothianidin plots (313.4 ± 82.622). Despite clothianidin not being

a significant predictor of pooled beetle abundance, it was frequently

present as a covariate in our top candidate models based on AICc
TABLE 1 Summary of model selection parameters and goodness of fit for evaluating overall beetle abundance, richness, and feeding guild models.

Model
Dependent
Variable

Model
Ranking

Independent
Variables

AICc DAICc df Wi
Condi-
tional R2 Adjusted R2 Predicted

R2

Beetle
Abundance

1
average bare ground +
floral abundance +
floral richness

129.1 0.00 5 0.739 0.985 0.642 0.602

Beetle
Family Richness

1 no model covariates 67.1 0.00 2 0.639 0.555 0.000 0.000

Beetle
Predator

Abundance
1

floral abundance +
floral richness

104.4 0.00 4 0.933 0.985 0.614 0.891

Beetle
Herbivore
Abundance

1
detritivore abundance
+ omnivore abundance

110.8 0.00 4 0.583 0.989 0.645 0.000

Beetle
Detritivore
Abundance

1
average bare ground +
omnivore abundance

92.1 0.00 4 0.391 0.944 0.851 0.973

2 average bare ground 92.8 0.70 3 0.276 0.941 0.888 0.998

Beetle
Omnivore
Abundance

1 herbivore abundance 70.6 0.00 3 0.275 0.731 0.317 0.000

2 no model covariates 71.7 1.11 2 0.158 0.583 0.000 0.000

3 clothianidin 72.5 1.93 3 0.105 0.640 0.138 0.000
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comparisons. Full model selections and estimates for beetles can be

found in Table 1 and Supplementary Table S3, respectively. Top

model dependent variables and regression coefficients are

compared visually using incident rate ratios and confidence

intervals in Figure 2.

Our most predictive model for beetle abundance included the

scaled explanatory variables: floral abundance (Z = 5.876,

P = <0.001), floral richness (Z = -4.678, P = <0.001), and average

bare ground (Z = 3.491, P = <0.001). Our most predictive model for

estimating beetle family richness did not include any model

covariates. Significant predictors from top models are depicted

in Figure 3.

Predacious beetles were highly abundant across sites and

treatments with a total of 963 individuals across six families

captured. A single predictive model of the abundance of

predacious beetles included floral abundance (Z = 10.685,

P = <0.001) and floral richness (Z = -5.657, P = <0.001) as

explanatory variables. Significant predictors from any of the top

models are depicted in Figure 3.
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Beetle detritivores had a total of 554 individuals from 17

families. Two candidate models were averaged and include the

explanatory variables: average bare ground (Z = 5.747, P = <0.001)

and omnivore abundance (Z = 1.962, P = 0.050)Herbaceous beetles

were also very common across sites and treatments with a total of

919 individuals from twelve families and omnivorous beetles had a

total of 116 individuals. Both models showed symptoms of

overfitting and were therefore not used for further interpretation.
4 Discussion

The results from our study indicate that high levels

(Supplementary Table S4) of clothianidin in the soil of natural

areas can have a profound yet inconsistent effect on the insect taxa

found in those habitats. Ground bee abundance and nesting

probability models showed a strong positive correlation with

clothianidin contamination, while clothianidin contamination

did not have an effect on beetle abundance, richness, or feeding
TABLE 2 Summary of model selection parameters for evaluating bee nesting percentage and bee abundance.

Model Dependent Variable Model Independent Variables AICc DAICc df Wi

Bee Nesting Probability

1 clothianidin 71.2 0.0 3 0.269

2 clothianidin + floral richness 72.3 1.15 4 0.152

3 clothianidin + floral abundance 72.3 1.16 4 0.151

4 clothianidin + average bare ground 72.7 1.49 4 0.128

Bee Abundance
1 clothianidin + floral abundance 95.0 0.0 4 0.420

2 clothianidin + floral abundance + floral richness 96.6 0.85 5 0.192
fr
A B C

D

FIGURE 1

Significant predictors of the averaged top models for bee nesting probability (A) and bee abundance (B–D) in prairie restorations. Non-significant
predictors that were present in our top models can be found in Table 2 and Supplementary Table S2. Asterisks indicate significance levels with two
asterisks highlight p-values <0.01 and three asterisks highlighting p-values <0.001.
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FIGURE 2

Top model dependent variables and regression coefficients are compared visually using incident rate ratios and confidence intervals (95%). Incident
rate ratios provide a multiplying coefficient to describe direction and intensity of the effect that regression coefficients have on model dependent
variables. Values in between zero and one indicate a negative relationship and numbers more than one indicate a positive relationship. Only models
that are not overfit are shown.
A B C

E F G

D

FIGURE 3

Significant regression coefficient predictors of overall beetle abundance (C, D, G), beetle predator abundance (A, E), and beetle detritivore
abundance (B, F) in prairie restorations. Significant predictors were taken from all candidate models and not just model averages, which are often
more conservative. Non-significant predictors that were present in our top models can be found in Table 1 and Supplementary Table S3.
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guild abundances. Instead, beetle metrics were far more

influenced by environmental factors. These differences outline the

disproportionate effect that clothianidin contamination can have on

insect communities in restoration ecosystems.

To our knowledge, this is the first study looking at ground bee

nesting rates relative to clothianidin soil contamination in a

restoration field experiment. These results contradict the findings

of Willis Chan and Raine (2021), which showed a significant

decrease in the nesting rates of the hoary squash bee (Eucera

pruinosa) when exposed to different systematic insecticides in a

manipulated agricultural setting. It is of note that herein we applied

a single high dose of insecticides to restored prairies and examined

immediate responses in active nest initiation and excavation,

whereas in the Willis Chan and Raine (2021) study, different

neonicotinoids were applied in a variety of application methods,

and at different time points throughout the growing season. These

differences in experimental design may influence the disparity in

ground bee nesting rates in response to neonicotinoid

contamination. Regardless, it suggests that many factors can

contribute to differences in bee responses to contamination,

including differences in insecticide type and application rate,

experimental setting (agricultural vs. prairie restoration), or taxa

(no bees from the genus Eucera were collected in our field

experiment). In a follow-up study looking at bee emergence the

year after application, so few bees were caught that data analysis

could not be conducted (Tetlie and Harmon-Threatt unpublished

work). This indicates that there could be high variability year to year

and highlights the need for longitudinal work looking at bee

communities over time in relation to neonicotinoid contamination.

While our results did not align with the only other nesting study

on bees, they did have similarities with studies on oral exposure to

neonicotinoids, which found that managed or semi-managed

species do not avoid food sources containing neonicotinoid

insecticides (Kessler et al., 2015; Arce et al., 2018). Furthermore,

Kessler et al. (2015) found that honey and bumble bees consumed

greater amounts of sucrose solutions that had been laced with

neonicotinoids than sucrose alone. Similar results were seen by

Singaravelan et al. (2005), who found that free-flying honey bees

prefer to collect sucrose solutions containing low nicotine

concentrations, the plant phytochemical from which the

neonicotinoid class of insecticides is derived. The increases in

feeding behavior from previous studies and the increase in

nesting behavior seen in our data can likely be attributed to the

mode of action of neonicotinoids themselves. Neonicotinoids target

nicotinic acetylcholine receptors (nAChRs) throughout the brain,

including the mushroom bodies required for learning and memory

(Dupuis et al., 2011; Palmer et al., 2013). Sublethal doses of these

neonicotinoids may provide an associated positive stimulus,

therefore incentivizing congruent behaviors. It is however

important to note that bee attraction to neonicotinoids is not

ubiquitous (Kang and Jung, 2017; Fortuin and Gandhi, 2021);

further highlighting the importance of additional variables which

could augment bee behavior.

The increase in ground bee nesting behavior in contaminated

soils that we have seen in our study and the affinity of various bee

species to feed on neonicotinoid-laced foods could have significant
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negative consequences on bee communities. Previous work has

shown that chronic exposure to neonicotinoids can affect larval

mass, development speed, sex ratios, fecundity, and adult longevity

in a variety of bee species (Laycock et al., 2012; Anderson and

Harmon-Threatt, 2019; Strobl et al., 2019; Willis Chan and Raine,

2021). This is particularly concerning as many conservation efforts

have focused on converting conventional agricultural fields and

adjacent margins into pollinator habitats (M’Gonigle et al., 2015;

Williams et al., 2015; Harmon-Threatt and Chin, 2016). Therefore,

pollinator restorations can become ecological traps (Robertson and

Hutto, 2006). Furthermore, sublethal doses of neonicotinoids have

been shown to negatively interact with other factors connected to

bee declines, such as pathogens and viruses (Alaux et al., 2010;

Doublet et al., 2015), meaning that there could be compounding

adverse effects associated with neonicotinoid exposure.

In contrast to bees, beetle abundance, richness, and feeding

guild abundances were driven by environmental factors and not

clothianidin contamination. These findings are contradictory to

previous work indicating a negative impact of clothianidin on

arthropod abundance (Main et al., 2018), beetle herbivores

(Dembilio et al., 2015; Harmon et al., 2023) and predators (Pisa

et al., 2017; Harmon et al., 2023). It is important to note that very

few studies examine the effects of neonicotinoids on feeding guilds

in restoration habitats – many being conducted in laboratory

settings – and most studies focus on a specific family or species

and not the broader community. That being said, numerous studies

have shown that neonicotinoids can have negative effects on

behavior (Kunkel et al., 2001; Moser and Obrycki, 2009; Tooming

et al., 2017) and reproduction (Smith and Krischik, 1999;

Papachristos and Milonas, 2008; Khani et al., 2012). While

declines resulting from neonicotinoid contamination in overall

beetle and feeding guild abundances were not observed in this

study, sublethal exposure could lead to declines in subsequent years.

Interestingly, the absence of an effect of clothianidin seen on

detritivores in this study, is consistent with previous work (Main

et al., 2018). While it is possible that sublethal effects could be seen

in future years, some work indicates that detritivores are far more

influenced by fungicides (Sánchez-Bayo et al., 2016), highlighting

the importance of looking at multiple factors and the broader insect

community when assessing the environmental impacts of

agricultural inputs.

In their 2023 arthropod community-level study, Harmon et al.

(2023)saw a reduction in arthropod herbivore and predator biomass in

response to clothianidin contamination in a prairie restoration. These

reductions in herbivore and predator biomass were inconsistent with

our findings, but they could be indicative of trends that were not

captured in our study. In the Harmon et al., 2023 study, insect

sampling was done two years after the sites were restored to prairie

from row crop agriculture and in both years prior to sampling, the

sites were treated with clothianidin. This repeated exposure, could be

causing negative generational effects on the arthropod community.

Furthermore, the reduction in biomass could be a result of decreased

body mass rather than reduced abundance; an observed phenomenon

in numerous insect-neonicotinoid studies (Shi et al., 2017; Wu et al.,

2021). Additional factors that could explain this discrepancy in

findings include differences in the scope of taxa being analyzed
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(beetles vs. Arthropods) and differences in sampling technique

(sweep netting vs. emergence tent sampling). Regardless, these

differing results highlight the complexity of these study systems and

the need for further community-level analysis in the neonicotinoid-

arthropod literature.

Overall beetle abundance and detritivore abundance were

significantly positively influenced by bare ground cover. These

positive effects could be a symptom of the sampling method (i.e.

the more bare ground present under a sampling tent, the less

obscured the collection jar), however numerous studies indicate

that beetle abundance and richness are positively influenced by

habitat management practices such as periodical burns and grazing

(Reed, 1997; Woodcock et al., 2008a). While not equivalent, these

management practices create disturbance and temporarily increase

the amount of bare ground. It is possible that a similar phenomenon

is being observed in our study.

Overall beetle abundance and predator abundance were

influenced by both floral abundance and richness. In both cases,

floral abundance had a significantly positive effect on beetle and

predator abundance, and floral richness had a significant negative

effect. While positive associations between beetle and floral

abundance are well represented in the literature (Miller, 2021;

Killewald et al., 2023), the observed reductions in overall beetle

and predator abundance in relation to increased floral richness is

contradictory to much of the existing literature (Varchola and

Dunn, 1999; Jonsson et al., 2009; Cook-Patton et al., 2011),

however these findings are not unprecedented (Koricheva et al.,

2000; Zou et al., 2013). It is also important to note that we measured

flowering plant richness and not total plant richness. Not all beetle

species have floral associations so this metric may not have been

representative of the plant community diversity as a whole.

Despite their prophylactic application and ubiquity of use, the

efficacy of neonicotinoid seed coatings on common pests of cereal

crops, such as the western corn rootworm (Diabrotica virgifera) on

corn (Zea mays), is limited. Studies by Boetel et al. (2003); Witmer

et al. (2003), and Furlan et al. (2006), have shown that prophylactic

neonicotinoid seed coatings do not manage or reduce corn

rootworm population levels. While seed coatings have been

effective in controlling other pest species on various crops

(Krupke et al., 2017), the discrepancy in effectiveness against pests

and the potential negative consequences to beneficial arthropod

groups, brings the ubiquitous use of neonicotinoids as seed coatings

into question. The findings from this study along with an

abundance of neonicotinoid research, indicate that non-target

organisms are differentially affected by neonicotinoids. Yet, very

few studies examine these trends in field realistic settings and even

fewer compare findings across taxa. The lack of consensus in the

literature examining the negative effects of neonicotinoid

contamination on beneficial arthropods, highlights the

importance of field-based research, community level analysis, and

longitudinal studies; which provide important environmental and

long-term context. We believe that further examination of these

factors is imperative to comprehensively assess the risks associated

with neonicotinoid contamination of natural habitats and will allow

for more informed management and policy decisions.
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