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Introduction: Planted forests are of great significance in reducing wind erosion

and controlling degraded land, and are the main measure to improve the

ecological environment in arid and semi-arid areas. Afforestation is mainly

based on tall trees, but forest belts consume a large amount of water, bringing

significant pressure to the environmental carrying capacity. While shrubs

generally consume less water than do trees, it remains understudied what role

shrubs play in configuration of shelterbelts in arid areas.

Methods: In this study, we conducted wind tunnel simulation experiments with

the common used afforestation tree species Populus popularis and shrub species

Salix psammophila. We set up single- or double-belt pure forest and mixed tree/

shrub configurations, to analyze their effects on the wind speed, flow field, and

wind prevention efficiency of different forest belt types.

Results: The results showed that: 1) the wind erosion resistance of the double-

belt shelter forest was stronger than that of a single-belt forest. 2) Shelterbelts

consisting of trees had a strong resistance to airflow disturbances, but their

protective effect was reflectedmainly in the canopy layer, with poor near-surface

protection. 3) Shelterbelts consisting of shrubs had a good protective effect

within effective height, and the wind speed in the double-shrub forest belt was

77% of that in the single-tree forest belt. 4) The wind prevention efficiency within

the shrub forest belt was better than that of the tree forest belt, with wind

prevention efficiency exceeding 40% in most double-shrub forests. Shrubs as a

supplement to trees could increase the minimum wind prevention efficiency by

up to 30%.

Discussion: Therefore, the role of shrubs should be emphasized in afforestation

in arid areas, especially in areas that need near-surface protection.
KEYWORDS

arid and semi-arid areas, selection strategy, wind speed flow field, wind tunnel

simulation, windproof efficiency
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1 Introduction

Arid regions account for 41% of the global land area and support

approximately 40% of the global population (United Nations

Convention to Combat Desertification, 2008; Wang et al., 2015).

The ecosystems in arid and semi-arid areas are fragile and highly

sensitive to climate change and human activities (Tomasella et al.,

2018; Oktay et al., 2021; Zhou et al., 2023). Wind erosion is a common

form of soil erosion that occurs in arid and semi-arid regions (Bruno

et al., 2018; Zhang et al., 2019). It causes serious natural disasters and

environmental problems, leading to extensive desertification and land

degradation that severely constrain the sustainable development of the

local society, economy, and ecology (Mganga et al., 2018;.

Lüttschwager and Jochheim, 2020; Travis et al., 2023).

In arid and semi-arid areas, large-scale afforestation activities

are considered as the main measure to improve the ecological

environment (Deng et al., 2013; Zhu and Song, 2021). Planted

forests can alleviate wind and sand disasters, change the physical

properties of underlying surfaces, affect the water cycle of

microclimates and the redistribution of water resources, and

effectively improve land productivity in farmland, grasslands,

oases, and other areas (Atangana et al., 2014; Jaskulska and

Jaskulska, 2017; Zara et al., 2022; Howlader, 2023). However, the

roots of planted forests can absorb soil moisture at different depths

(Jia and Shao, 2014; Wafa et al., 2019), and seriously affect soil

moisture conditions through transpiration, infiltration, and

interception, leading to a decrease of the entire soil profile and

even totally dry soil layers (Wang et al., 2011; Su and Shangguan,

2019). Meanwhile, soil moisture content in turn can affect the

growth and development of vegetation, leading to the formation of

“little-old-man tree” in arid areas, and making it more difficult for

herbaceous plants and other species in afforestation areas to survive

(Cao et al., 2011; Butz et al., 2018). This has brought significant

pressure to the environmental carrying capacity of arid and semi-

arid areas (Maximiliane et al., 2023; Qiu et al., 2023), and also leads

to controversy over afforestation measures (Ma et al., 2020; Teng

et al., 2022).

Water condition is an important factor restricting the

sustainable development of the ecological environment in arid
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and semi-arid areas (McVicar et al., 2010; Wang et al., 2013;

Thivakaran et al., 2020; Yi et al., 2023). Therefore, it is necessary

to balance the ecological compensation benefits of forest belts and

the ecological pressure on water resource consumption in arid

areas. One widely suggested management approach is to thin the

existing planted forests to conserve water resources and to maintain

plantation forestland sustainability (Meng et al., 2022). However, it

is difficult to reverse the current situation of water deficit and poor

forest growth conditions just by thinning. Instead, the water

consumption should be considered before afforestation in arid

and semi-arid areas. At present, the selection of plant species for

planted forests is mainly based on tall trees, while shrubs are an

important component of native vegetation in arid and semi-arid

areas. Compared to trees, shrubs have weaker transpiration and

consume less water than do trees, and should thus play an

important role in configuration of shelterbelt in arid areas.

However, it remains understudied how shrubs affect the wind

erosion protection of shelterbelt in arid areas. In this study, we

carried out wind tunnel simulation experiments with shelterbelts

consisting of trees and shrubs under various wind conditions to

address two research questions: 1) What are the wind erosion

protection characteristics of trees and shrubs? 2) What role do

shrubs play in planted forests?
2 Materials and methods

2.1 Wind tunnel experiments

Wind tunnel experiments were conducted in Jiufeng Sandstorm

Physics Laboratory of Beijing Forestry University. The experimental

system is composed of three parts: the wind tunnel body, a three-

dimensional measurement system, and wind speed measurement

equipment. The wind tunnel is a standard, direct-current wind

tunnel, with a total length of 24 m and seven sections (Figure 1). An

electric motor provides power to the fan blades, allowing airflow to

enter the transition section. The stabilization section uses a

honeycomb-shaped wire mesh to disperse large masses of air,

making the airflow more uniform. When the airflow passes
B

C

A

FIGURE 1

The wind tunnel experimental system used in this study.
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through the contracted section, it accelerates due to a reduction in

the cross-section as it enters the experimental section. The length of

the experimental section is 12 m, with sharp wedges (having a right-

angled triangular pyramid shape, with a height of 20 cm and a

length of 5 cm on the bottom inclined side) and rough elements

(4 cm height × 5 cm width × 6 cm length) arranged at the front end

to adjust the wind speed profile. The cross-sectional area is 0.6 m ×

0.6 m (Figure 1), and the boundary layer is 10 cm. After passing

through the experimental section, the airflow traverses the

diffusion section.

The wind speed in the wind tunnel is adjustable over the range

of 3–42 m·s-1, and the effective experimental cross-sectional wind

speed fluctuation is less than 1.5%. The three-dimensional

measurement system can move freely throughout the

experimental section to obtain wind speed measurements at

different positions and heights within the experimental section,

effectively creating a three-dimensional measurement grid. The

measurement system has a movement accuracy of 1 mm. The

wind speed measurement equipment includes a hot film

anemometer (IFA300, TSI, Shoreview, MN, USA) and a hot wire

anemometer (KIMO, Montpon-Ménestérol France).
2.2 Model preparation

Populus popularis is a commonly used afforestation tree species in

northern China, which has the characteristics of rapid growth and

strong drought resistance. Salix psammophila is a common shrub

species distributed in arid and semi-arid areas in China, and has the

characteristics of drought resistance, barren resistance and saline-

alkali resistance. This study takes P. popularis and S. psammophila as

the research species and adopted a simulation tree model with a

scaling ratio of 1:100. The model parameters are set according to the

commonly used configuration models for planted forests (Table 1).

The tree height was set at 10 cm, the height-to-crown base was 3 cm,

and the crown diameter was 3 cm. The shrub height was 2.5 cm and

its crown diameter was 2 cm. The thickness of the boundary layer at

the bottom of the experimental section was 25 cm, which exceeded

the height of the model. The constrictivity of the forest belt model was

less than 5%, which met the requirements of similar conditions for

wind tunnel simulations. The configurations of the forest belts

included single- and double-belt forests (Figure 2). In the double-

belt configuration, the two rows were arranged in a triangular pattern

and numbered separately.
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2.3 Wind speed measurements

Wind speed measurements were conducted along the

longitudinal sections and horizontall plane of the experimental

section. The distribution of the measurement points is shown in

Figure 3. The layout range of longitudinal measurement points

spanned from 30 cm in front of the tree line to 100 cm behind the

tree line, with a spacing interval of 2 cm. The lowest measurement

point was 1 cm, and the highest measurement point was 21 cm. The

layout range of horizontal measurement points started from 50 cm

behind the forest belt, with a spacing of 2 cm and a height of 2 cm.

In combination with meteorological data in arid areas, we set the

experimental wind speed as 8 m/s (The measured height is 2m). The

minimum Reynolds number under the experimental conditions was

4.8 × 105. At each measurement point, wind speed was measured

with a KIMO hot wire anemometer for 10 s, and the average value

was calculated as the wind speed at that measurement point.
3 Results

3.1 Wind speed profile characteristics

The leeward wind profile of different forest belts is shown in

Figure 4. The presence of the forest belts significantly changed the

structural characteristics of the wind speed profile. The

configuration mode of mixed trees and shrubs in front of the

forest belt provided the best wind prevention effect, followed by

the double-belt trees, both of which were significantly better than

the other configurations. Three times the height of the tree in front

of the forest belt and the configuration modes of a single-belt tree

forest and double-belt shrub forest had a reducing effect on wind

speed within the height range of 5–10 cm. The wind speed

difference between the other ranges and the control was small,

while the single-belt shrub forest was consistent with the control

wind speed at different height ranges, indicating that the shrub

forest had no effect on wind speed here. Corresponding to the

height of the tree in front of the forest belt, the wind speed of

different configuration modes of the forest belt was lower than that

at three times the tree height in the same forest belt, and the wind

speed was lower than the control wind speed within the range of 0–

10 cm. Except for the mixed forest of tree and shrub and the double-

belt tree forest, the wind speed of the other configurations increased

gradually above the control wind speed after exceeding a height of
TABLE 1 Basic parameters of shelterbelt models of different structures.

Shelterbelt No. type Plant space/cm Row space/cm Porosity/% height-to-crown base

1 tree 3 – 56.7 3

2 shrub 2 – 41.2 –

3 tree+ tree 3 3 47.3 3

4 tree+ shrub 3 + 2 2 37.4 –

5 Shrub+ shrub 2 2 31.6 –
“–”, no relevant data.
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15 cm. The wind speed profile at different positions behind the

forest belt was similar. The wind speed of the forest belt with shrubs

increased with the height; the wind speed decreased significantly

within the range of shrub height. However, the tree forest belt

showed a pattern in which the wind speed decreased at first and

then increased due to the height-to-crown base. The protective

effect of the double-belt tree forest was better than that of the single-

belt forest. The windbreak effect of the mixed forest belt with tree

and shrub was not as good as that of the two-row tree forest;

however, this was compensated for by the protection of areas below

the height of the branches. The wind speed of forest belts with

different configurations exceeded the control wind speed within the

tree height range.
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3.2 Wind speed flow field along the
longitudinal section of the wind direction

The wind speed statistics along the longitudinal direction

after flowing through different forest belts are shown in Table 2.

The effective protection height of the double-belt tree forest was

the highest, exceeding the height of the tree itself, followed by that

of the single-belt tree forest and the mixed tree and shrub forest

belt. The effective protective height of the shrub belt was lower

than that of the tree forest, but exceeded the height of the shrubs

themselves. Within the effective protective height, the average

wind speed behind the forest belt showed a pattern of two rows of

forest belts being lower than that of the single forest belt, and the
B

A

FIGURE 3

Layout of wind speed observation points in the wind tunnel. (A) Schematic diagram of longitudinal section measurement points. (B) Schematic
diagram of horizontal measurement points.
B CA

FIGURE 2

Schematic diagram of forest belt setting (A) Single-belt forest. (B) Double-belt forest. (C) Mixed tree and shrub forest.
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shrub forest being lower than that of the tree forest. The single-

belt tree forest had the highest average wind speed, which was

1.29 times the lowest average wind speed of the double-belt shrub

forest. Compared with the double-belt pure forest, the mixed
Frontiers in Ecology and Evolution 05
forest of tree and shrub had a larger protective area than the

shrub forest, and better protection capabilities than the tree

forest, with the lowest average wind speed in the area behind

the forest belt.
FIGURE 4

Wind speed profiles at different locations (H represents the height of the tree, negative values represent the distance in front of the forest belt, CK
means no forest belt).
TABLE 2 Statistical parameters of wind speed in different forest belts.

Forest
belt type

Effective protective
height (cm)

Mean within 10 cm
(m·s-1)

Standard
Deviation

Mean within effective
protective height

(m·s-1)

Standard
Deviation

Tree 10 7.54a 1.12 7.08a 0.90

Shrub 7 7.64a 2.04 6.16b 1.98

Tree+ Tree 12 5.88b 1.57 5.88c 1.57

Tree+ Shrub 10 5.59b 2.08 5.59d 2.08

Shrub+ Shrub 8 6.71c 2.87 5.48d 2.86
p<0.05.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1347714
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Zhang et al. 10.3389/fevo.2024.1347714
The interpolation simulation of the longitudinal wind speed flow

field in different configuration modes is shown in Figure 5. The airflow

formed a distinct low wind-speed zone after passing through the forest

belt, and the wind speed decreased significantly within the height range

of the forest belt. The airflow above the forest belt experienced an

acceleration effect, in which the wind speed exceeded that in front of

the forest belt. There were multiple eddies in the wind-speed flow field

of the pure tree forest belt, and the air disturbance was strong. Due to

the presence of height-to-crown base, the near-surface wind speed was

higher, and the protective effect at the height of the canopy layer was

better. Within the effective protective height, the wind speed behind the

single-belt tree forest was mainly within the range of 6.5–8.0 m/s,

whereas the wind speed behind the double-belt tree forest ranged from

4.0 to 7.0 m/s. The air disturbance in forest belts with shrubs was not as

severe as in tree forests, and the airflow was more stable after passing

through the forest belts. The wind speed after traversing the single-belt

shrub forest ranged from 4.5 to 7.0 m/s, whereas the wind speed after

the double-belt shrub forest was 1.0 to 6.0 m/s. The mixed forest of tree

and shrub had a high protective height; the wind speed near the surface

was reduced significantly, thus combining the advantages of tree and

shrub forest belts in which the wind speed behind the forest belt ranged

from 2.5 to 7.0 m/s.
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3.3 Horizontal wind speed flow field
behind the different forest belts

The horizontal wind speed flow field after interpolation

simulation of different forest belts is shown in Figure 6. The

wind flow field of single-belt shrub and double-belt shrub forest

had similar structural characteristics, both formed a clear low

wind-speed zone and then the wind speed increased gradually, but

the effect of wind speed reduction in double-belt shrub was more

obvious. In addition, compared with the wind flow field at the

higher position, the wind speed reduction effect near the surface

was better, and the low wind speed area was dominated by the blue

area. The structural characteristics of the wind flow field were

similar at different heights when air flow passed through pure

trees. After passing through the single-belt tree forest, the airflow

formed a high wind speed zone due to the “narrow tube effect”.

The contour line in the downwind zone was parallel to the wind

direction, indicating that the airflow was relatively stable and the

wind speed had not changed. The airflow that passed through the

double-belt tree forest formed a high wind-speed zone within the

range of the tree height. However, unlike the single-belt tree forest,

the wind speed decreased gradually in the wind direction. Unlike
FIGURE 5

Wind speed flow field at longitudinal sections of different forest belts (the horizontal coordinate 0 represents the position of the forest belt, and a
negative value represents the front of the forest belt).
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shrub forests, the wind speed near the surface of trees was higher

than that at high places due to the acceleration of “narrow tube

effect” between trunks. After the airflow passed through the mixed

forest of tree and shrub, a large area of low wind speed was formed

behind the forest belt, and the near surface wind speed was

significantly lower than the higher position. The reduction

degree of wind speed and the area of low wind speed in the

mixed forest of tree and shrub at different heights were better than

those of other forest belts.
Frontiers in Ecology and Evolution 07
3.4 Wind prevention efficiency of the
different forest belts

The wind protection efficiency of different forest belts was

calculated, and the results are shown in Figure 7. The double-belt

shrub forest and the mixed tree and shrub forest had wind

protection efficiency exceeding 30%, and the efficiency

distribution was relatively uniform. The wind prevention

efficiency of double-belt shrub ranged from 40% to 80%, while
FIGURE 6

Horizontal wind speed flow field behind different forest belts configurations: In each panel, the measurement height of the upper and lower figures
was 3 cm and 1 cm, respectively. The meaning of arrows is “wind direction”, which has been indicated in the figure 6.
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that of mixed forests of tree and shrub was mainly within the range

of 30% and 70%. The wind prevention efficiencies of single-belt and

double-belt forest were poor, with a minimum wind prevention

efficiency of only 10%. Among them, the wind prevention efficiency

of single-belt shrub ranged from 20% to 50%, single-belt tree forest

from 10% to 50%. The wind prevention efficiency of double-belt

tree forest from 20% to 40%, and the range of 30–40% accounted for

66% of the distribution.
4 Discussion

4.1 Protective effects of different
forest belts

The windbreak effect of a shelterbelt depends on the wind

energy consumption of the forest canopy, and the effect is affected

by tree height, crown width, and other factors (Zastrow, 2019;

Cheng et al., 2020; Torita and Masaka, 2020). This study shows that

the tree forest has played a good role in wind protection, and has a

high protection height and strong airflow disturbance ability

(Figure 5). The wind speed after the tree forest belt gradually

decreases within the experimental range and there is no trend of

recovery (Figure 6), indicating that the tree forest has a longer

effective protection distance. Sai (Sai et al., 2021) reached the same

conclusion that trees and shrubs have different effects on airflow,

tree belts have a stratification effect on airflow, while shrub belts

have a lifting effect on airflow. The shrub forest belts have better

protective effects within effective protective heights (Figures 5, 6).

The taller the vegetation, the longer the protection distance of the

forest belt will be, consistent with Wu (Wu et al., 2013). High

porosity reduces the protection effect, and low porosity can form

strong eddy currents in the leeward side of the forest belt,

shortening the protection distance (Dong et al., 2007), and we

came to a similar conclusion. The presence of under-branch height

in a tree forest leads to higher forest belt sparsity (Table 1), while the

short-fat” nature of shrubs leads to lower forest belt sparsity, which

is also the main reason for the difference in wind protection effects

between the two types of forest belts. It should be noted that in our

study the model was made based on the characteristics of trees with

leaves. In arid and semi-arid regions, the defoliation period of forest

belts is usually a period of strong winds. A further increase in the
Frontiers in Ecology and Evolution 08
sparsity of broad-leaved trees after defoliation leads to a continuous

decrease in their protective effect. Therefore, attention should be

paid to the supplement of shrub species in afforestation.
4.2 Protective effects near the surface

China has a large population, and the relationship between

people and land is tense. Therefore, a large number of farmlands,

grassland and other production land are distributed in arid and

semi-arid areas. For these scenes, near-surface wind erosion

protection is critical, such as preventing soil particles from being

eroded by wind in degraded grassland, reducing wind speed near

the surface in farmland to avoid lodging of crops. Shrub belts can

not only reduce the wind speed near the surface, but also cover the

ground with branches to form a protective layer, making themmore

suitable in arid areas. Shrubs can effectively increase the organic

matter content of soil. Soil C content and C stocks were on average

148% and 117% greater in shrub-encroached grassland soil

(Phesheya et al., 2019). In addition, shrubs can also intercept soil

particles, form nebkhas, produce fertilizer island effect, and

contribute to the improvement of soil physical and chemical

properties and the change of microbial community structure

(Wang et al., 2010; Cao et al., 2016). In summary, shrub belts

should play an important role in afforestation of arid areas.
5 Conclusions

After passing through the forest belt, the structural

characteristics of the airflow change significantly. The tree forest

belt has a large protective area and strong airflow disturbance

ability, and the protective effect of canopy is stronger than that of

height-to-crown base. Although the protection area of shrub forest

is smaller than that of tree forest, its protection effect is better within

the effective protection height, and its protection effect on the near-

surface is more obvious than that of trees. Further, when mixed with

tree forest, shrubs can make up for the shortcomings of poor

protection effect in the height-to-crown base of tree forest. In

conclusion, the role of shrub forest should be emphasized in

afforestation in arid areas, especially in areas that need near-

surface protection.
FIGURE 7

Wind prevention efficiency after different forest belts.
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