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Detecting and monitoring
rodents using camera traps
and machine learning versus
live trapping for
occupancy modeling
Jaran Hopkins ‡, Gabriel Marcelo Santos-Elizondo †‡

and Francis Villablanca*‡

Department of Biological Sciences, California Polytechnic State University, San Luis Obispo,
CA, United States
Determining best methods to detect individuals and monitor populations that

balance effort and efficiency can assist conservation and land management. This

may be especially true for small, non-charismatic species, such as rodents

(Rodentia), which comprise 39% of all mammal species. Given the importance of

rodents to ecosystems, and the number of listed species, we tested two commonly

used detection andmonitoringmethods, live traps and camera traps, to determine

their efficiency in rodents. An artificial-intelligence machine-learning model was

developed to process the camera trap images and identify the species within them

which reduced camera trapping effort. We used occupancy models to compare

probability of detection and occupancy estimates for six rodent species across the

two methods. Camera traps yielded greater detection probability and occupancy

estimates for all six species. Live trapping yielded biasedly low estimates of

occupancy, required greater effort, and had a lower probability of detection.

Camera traps, aimed at the ground to capture the dorsal view of an individual,

combined with machine learning provided a practical, noninvasive, and low effort

solution to detecting andmonitoring rodents. Thus, camera trappingwithmachine

learning is a more sustainable and practical solution for the conservation and land

management of rodents.
KEYWORDS

detection, occupancy, machine learning, effort, camera trapping, live trapping
1 Introduction

Loss of biodiversity is a global problem occurring across wildlife communities (Worm

et al., 2006; Barnosky et al., 2011; Cardinale et al., 2012; McCallum, 2015), with growing

evidence indicating a sixth mass extinction is underway (Dirzo et al., 2014; Ceballos et al.,

2015). The current rate of extinctions, and loss of biodiversity, is arguably one of the biggest
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environmental issues today, both for the health of ecosystems, and

the health of humans (Ceballos et al., 2015). In the United States of

America, over 1500 species are listed as threatened or endangered

under the Endangered Species Act (ESA) (U.S. FishWildlife Service,

2022), requiring recovery plans for each listing. These recovery

plans identify threats to species and management priorities, among

other things (Schwartz, 2008). Therefore, detailed knowledge of the

species’ ecology and interactions with its habitat is required. Yet by

the time species are listed as endangered and the need for

conservation attention is recognized, population sizes and limited

remaining habitat make inference and recovery problematic

(Schwartz, 2008). This makes monitoring both necessary, and

simultaneously more difficult, for rare species.

Efficient and effective methods to detect (determine or confirm

presence) and monitor populations would be one way to support

conservation and wildlife management during this time of extreme

species loss and anthropogenic disturbance. The best methods to

detect and monitor populations balance effort and efficiency

without sacrificing the quality data required for successful

management and conservation. Monitoring changes in detection

and in species occurrence (which areas are occupied) while

exploring habitat associations is an effective way to gather

information for successful management (Diggins et al., 2016) and

can be done through occupancy models (MacKenzie et al., 2002).

Presence/absence data collected through various techniques can

be used to estimate a detection probability and an occupancy

estimate for species (MacKenzie et al., 2002). Detection

probability is how likely the species is actually detected should it

be present. Occupancy is the proportion of sample units occupied

by a species, and subsequently occupancy estimate, or occupancy

probability, is the probability that sampling units are occupied by a

species when detection probability is considered (MacKenzie et al.,

2017). The detectability of a species can be influenced by numerous

factors (abundance, behavior, survey effort, etc.) (Welsh et al., 2013;

Guillera-Arroita, 2017) and different techniques used to collect the

data may vary in detection probability (Bailey et al., 2004;

O’Connell et al., 2006; Guillera-Arroita, 2017). When trying to

detect rare or cryptic species, techniques that provide the highest

probabilities of detection need to be used to ensure the best chance

of detecting the species should it be present.

Different species can have different detection probabilities, but

different detection techniques may exacerbate heterogeneity in

detection. Heterogeneity is when different individuals or

categories of individuals within a species have different

(heterogeneous) detection probabilities. If the cause of

heterogeneity in detection cannot be modeled or is unknown,

occupancy estimates will be biased (MacKenzie et al., 2017).

Therefore, using detection methods with fewer suspected possible

sources of heterogeneity in detection should lead to more accurate

occupancy estimates. Likewise, using the detection method with the

greatest mean detection probability may make detection

heterogeneity insignificant (MacKenzie et al., 2017). Importantly,

occupancy models can be used not only to evaluate habitat

attributes and management actions, but also to compare the

probability of detection across monitoring methods themselves.
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Therefore, we wanted to explore the outcome of different

monitoring methods on detection and occupancy estimates to

determine which is best at detecting species and best at providing

accurate estimates of occupancy probabilities.

We focus on small mammal monitoring methods, specifically

for rodents (order Rodentia). Rodents are an abundant and highly

diverse taxonomic group, making up 39% of all mammal species

(Burgin et al., 2018). There are currently 332 rodent species listed as

threatened on the IUCN red list (IUCN, 2022). Given the vital

importance of rodents for ecosystem health (Avenant, 2011) and

the vast number of threatened species, determining the most

effective monitoring techniques might allow for practical and

reasonable solutions to monitoring and detection that could assist

conservation efforts and land managers. Additionally, effective

detection could inform invasive rodent management where

detection and monitoring are critical to assessing management

success, maintaining biosecurity, or providing safeguards to

sensitive species or ecosystems.

Live trapping is commonly used for monitoring small mammals

(Tasker and Dickman, 2001; Baker et al., 2003; Flowerdew et al.,

2004). Live trapping allows the collection of data on individuals:

species, sex, reproductive condition, and age. It allows individuals to

be uniquely marked for mark-recapture analyses that can answer

demographic questions about abundance, survival, and movement

(Patterson et al., 1989; Lettink and Armstrong, 2003). Live trapping

can also provide presence/absence data for use in occupancy models

to understand how occurrence varies with site attributes (Walpole

and Bowman, 2011; Santulli et al., 2014; Tobin et al., 2014).

However, rodent detection through live traps could be influenced

by trap saturation (i.e., traps not available for capture of an

individual due to it already being occupied), odors (Boonstra and

Krebs, 1976; Mazdzer et al., 1976; Daly et al., 1978; Daly et al., 1980),

individual behavior (Tanaka, 1963; Gurnell, 1972; Gurnell, 1982),

and species behavior (Gurnell, 1982; Stokes, 2012). Therefore, live

traps could confer low detection probability and/or possible sources

of detection heterogeneity that may influence occupancy estimates.

Live trapping requires rodent entrapment (for 8+ hours depending

on season) and direct handling of wildlife, possibly inducing stress

responses or mortality in captured individuals (Fletcher and

Boonstra, 2006; Delehanty and Boonstra, 2009), and injury or

disease transmission to handlers. Additionally, live trapping can

require substantial field effort and training. Traps must be set and

checked each day (or more often for listed species), requiring

multiple visits per day to the study site and time for processing

animals prior to release. Increasing effort by trapping for more

nights or by using more traps per trap station would increase

detection (Hice and Velazco, 2013), but the need to entrap would

maintain sources of heterogeneity. While effort itself may be

constrained by resources available to a monitoring program.

Therefore, live traps may be an inefficient method of small

mammal monitoring, compared to other methods, due to

detection, analysis, welfare, and effort.

Camera trapping is another method commonly used for

monitoring mammals (Yasuda, 2004; Tobler et al., 2008; Pettorelli

et al., 2010). Cameras can be used to collect presence/absence data,
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and data for demographic analyses if individuals are uniquely

identifiable through images (Carbone et al., 2001), though rodents

do not typically display obvious physical differences across

individuals. Instead, presence/absence data sets of rodents for

occupancy modeling can be produced with relatively small field

effort since cameras do not need to be checked daily. Cameras

provide a noninvasive way to monitor without direct handling and

entrapment stress, greater detection for cryptic or trap-shy species

(Claridge et al., 2004; Gray et al., 2017), and unlimited detections

(i.e., no trap saturation). These characteristics may confer greater

mean detection probability compared to live traps, possibly

increasing the detection of rare species and reducing sources of

detection heterogeneity, providing more accurate estimates of

occupancy probability.

Multiple rodent species with similar physical characteristics are

often found in a single community. Therefore, researchers must be

able to correctly identify different species within the camera images

for camera trapping to be a valid monitoring technique. Meek et al.

(2013) argued that cameras make the correct identification of small

mammal species with similar physical characteristics problematic.

However, De Bondi et al. (2010) and Gray et al. (2017) have shown

that mounting cameras horizontally with the lens facing the ground

allows a view of the dorsum, and facilitates correct identification of

small mammals, thus providing reliable (Gray et al., 2017; Thomas

et al., 2019) presence/absence data.

A remaining drawback to cameras is the huge number of images

that are produced. One camera in the field for one night could

capture as many as 5,000 images, or over 1.8 million in a single year,

depending on the setting used and activity detected. While live

trapping requires greater field effort compared to camera traps, the

lab effort required to process camera images can make total effort

across the two methods comparable (Diggins et al., 2016).

We examined the effectiveness of the two common monitoring

methods, live traps and camera traps, for both detecting and

analyzing occupancy probabilities specifically in six species of

rodents. We explored an artificial intelligence (AI) model to

reduce effort and provide an efficient and manageable way to

process rodent camera trap images, by developing and assessing a

machine learning (ML) model to process our images. ML models

have shown success in processing camera images for various taxa

(Tabak et al., 2019; Tabak et al., 2020; Whytock et al., 2021). It is

possible that with the use of new technology to improve camera

image processing, camera trapping might require lower monitoring

effort compared to live trapping while resulting in higher detection

probability for rodent species.

Recent advances in machine learning (ML), specifically

convolutional neural networks (CNNs), offer promising,

potentially cost-effective, solutions to camera trap image

processing (Norouzzadeh et al., 2017; Tabak et al., 2019; Willi

et al., 2019). Within vertebrates, CNNs have been tested for

identification of medium to large mammal and fish species

(Norouzzadeh et al., 2017; Villa et al., 2017; Villon et al., 2018;

Schneider et al., 2019), and it has been shown that CNNs correctly

identify these species and greatly reduce the image processing effort
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(Norouzzadeh et al., 2017; Villa et al., 2017; Villon et al., 2018;

Schneider et al., 2019). A recent study used a CNN model to

successfully identify four rodent species, with images collected in

the traditional vertical camera placement (Seijas et al., 2019).

However, to our knowledge ML with CNNs has not been tested

on species-level identification in a community of six rodents and

with a dorsal view.

For this comparison of live traps versus camera traps at both

detecting and analyzing occupancy, we formed three predictions.

We hypothesized that detection probability would significantly vary

across baited live traps and baited camera traps. We predicted

camera traps would yield greater detection probabilities for all

species. We hypothesized that occupancy estimates would also

vary across the two detection methods since we hypothesized

different detection probabilities from each method. We predicted

that baited camera traps would yield higher occupancy estimates

due to greater detection. We also predicted that, while occupancy

estimates would vary across the two methods, qualitatively, the

influence of habitat attributes on occupancy estimates would be the

same regardless of method. Additionally, we hypothesized that

using ML via CNNs would change the effort associated with

camera trapping, and predicted camera trapping effort could be

reduced making monitoring more practical and accessible for

land managers.
2 Materials and methods

2.1 Study site

To compare the two monitoring methods, six rodent species

were trapped at Oceano Dunes State Vehicle Recreation Area

(ODSVRA) in San Luis Obispo County, California, U.S.A. The

ODSVRA encompasses 3,600 acres, totaling approximately 25% of

the Guadalupe-Nipomo Dune Complex (GNDC), and is managed

by the California Department of Parks and Recreation (CDPR,

2015). The CDPR actively manages vegetation and wildlife

populations across the area.

The area consists of sand dunes with vegetative islands

dispersed throughout. The vegetation islands support two

dominant (i.e., highest cover) plant alliances: the silver beach

lupine-mock heather alliance and willow-wax myrtle alliance,

which are both native (CDPR, 2015). The silver beach lupine-

mock heather alliance (hereafter ‘scrub’) is characterized by sparse,

low-growing vegetation. It includes abundant open space between

shrubs, which is filled seasonally with annuals. The second most

dominant alliance is the native willow-wax myrtle alliance

(hereafter ‘willow ’). These are thickets (CDPR, 2015),

characterized by dense, tall, overhanging vegetation.

We trapped for six rodent species that occur throughout

ODSVRA: California spiny pocket mouse (Chaetodipus

californicus), Heermann’s kangaroo rat (Dipodomys heermanni),

California vole (Microtus californicus), Monterey big-eared

woodrats (Neotoma macrotis), California mouse (Peromyscus
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californicus), and deer mouse (Peromyscus maniculatus). We

monitored these species throughout 2021 across five plots:

Cottonwood, Heather, Acacia, Sand sheet East, and Sand sheet

West (Figure 1). The first three plots are representative of the island

vegetation seen at ODSVRA, containing approximately a 50%

mixture of each of the two dominant plant alliances. The two

Sand sheet plots represent recently revegetated areas that were

planted Winter of 2018 with approximately 15 species of plants that

represent the native coastal scrub alliance, with silver dune lupine

(Lupinus chamissonis) being the most abundant.

Each plot was sampled using a standardized grid with 8 stations

at 40-meter intervals. There was always at least 10 meters of habitat

between the plot and the vegetation edge. To control for the two

dominant plant alliances, half of the stations were placed in the

willow alliance and half were placed in the scrub alliance at

Cottonwood, Heather, and Acacia. The Sand sheet vegetation is

scrub throughout, no willow vegetation was planted or has become

established, so no vegetation standardization was needed for

grid placement.
2.2 Data collection

To determine which monitoring method yields greater

detection probability of the six species two different survey

techniques were used: baited live traps and baited camera traps.

2.2.1 Live trapping
Live trapping was conducted at the five plots across quarters

(spring, summer, fall, winter). Due to constraints of equipment and
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personnel, all five plots could not be trapped on the same dates.

Instead, three islands were trapped first, followed by the two sand

sheet plots. Spring live trapping occurred between March 17 and

May 1, summer trapping between June 7 and 25, fall trapping

between September 14 and 22, and winter trapping occurred

between December 6 and 19. Two baited Sherman XL live traps

were placed at each station (within 2 meters) for a total of 16 traps

across 8 stations per plot. Traps were dedicated to this study. The

same traps were used each trapping session and were not cleaned

since they were only used in a single location/habitat. Traps were

baited each night with either autoclaved rolled oats (recleaned horse

oats) or rolled oats for human consumption. Traps were set as close

to sunset as possible and checked as close to sunrise as possible.

Traps were set in the same manner the following night, for a total of

three nights per station per trapping session. Upon checking traps,

the species captured were recorded. For each species, detection

histories were created for each station for each night where a ‘1’ was

given if an individual of the species was trapped and a ‘0’ if an

individual of the species was not trapped. The detection history was

subsequently the length of the trapping session, three nights, for

each of the four seasons.

2.2.2 Camera trapping
Following live trapping, baited camera traps were deployed at

the five plots. We employed a four-night lag between live trapping

and camera trapping, to allow a ‘rest’ period. It has been shown that

some species, such as kangaroo rats, systematically forage and

return to areas of high reward on subsequent nights (Price and

Correll, 2001), and that some species, or individual California voles,

may become “trap happy” or “trap shy” (Hopkins 2022,

unpublished thesis). If it occurred, either behavior could impact

detection after the first live capture, so the rest period was intended

to mitigate the effects of such behavior being transferred from one

detection method to the other. Spring camera trapping occurred

between March 23 and May 8, summer trapping between June 12

and July 2, fall trapping between September 20 and 29, and winter

trapping between December 10 and 29. The same grids were used as

for the live trapping protocol. One camera was placed at every

station (within 2 meters) of the 8-station live trapping grid, for a

total of 8 cameras per plot. Cameras were set for a total of three

nights per station per trapping, making it possible to compare

camera and live trap detections and occupancy across eight stations

and three nights for each plot each season.

Bushnell Trophy Cam HD Essential E3 cameras were set to

capture three images per event (i.e., three images per instance of

motion detection). There was a one-minute delay between events

to avoid excessive images of the same individual. Camera traps

were mounted, camera lens facing down, to a metal 0.9 meter U

post so that the view was of the animal’s dorsal surface (Figure 2).

Each U post had a PVC pipe (3.8 centimeter diameter) attached to

it, a few inches below the camera, into which the bait was inserted.

The U post was set so that the PVC pipe was ~2.5 centimeters

from the ground, allowing the bait to flow down via gravity to

replace the bait that was consumed. Traps were baited with either

autoclaved rolled oats (recleaned horse oats) or rolled oats for

human consumption.
FIGURE 1

Map of five small mammal survey plots at Oceano Dunes State
Vehicular Recreation Area in Oceano, CA.
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Unlike live trapping where bait was set every night, the bait was

only set when the cameras were deployed (night one). This meant

the bait ran out during the camera trap session. This was

intentionally done to account for varying behavior across rodent

species, suspecting some may be less likely to approach high activity

stations. This methodology is also low effort, as no additional trips

to the station are required until camera collection. Most of the

station’s bait lasted one night or two at the most, although

this varied.

Once the camera images were collected, we used the R package

“camtrapR” to organize the raw images (Neidballa et al., 2016).

Folder directories were created for each plot and station using

the ‘createStationFolders’ function. Images were renamed using the

‘imageRename’ function so that each image name included the plot,

station, date, and time of the image. Once the photos were

organized, they were processed through the ML model.
2.3 Machine learning model development

To process the camera trap images and obtain each station’s

nightly detection history, a machine learning (ML) model was

trained and used. Gabriel Marcelo Santos-Elizondo (G.M.S.E.)

utilized YoloV5x, an object detection model, which is part of the

YOLO (You Only Look Once) family of models. These are 1-stage

detectors that section a picture frame into a grid and then perform
Frontiers in Ecology and Evolution 05
object classification on each square in the grid simultaneously

(Redmon et al., 2016). YoloV5x was selected for its ease of

implementation (a full API is available from Ultralytics, see

Supplementary Material), detection speed (runs in real time), and

accuracy (outperforming other 1-stage and 2-stage detectors)

(Jocher et al., 2020). The model makes use of a convolutional

neural network (CNN) as one of its steps. The CNN acts as a feature

extractor, pulling information important for object detection from

images and storing it for prediction.

The YoloV5x model was pre-trained on the MS COCO 2017

dataset (Lin et al., 2014) consisting of 123k images with an

additional 41k images for testing. Pre-training images comprise

everyday objects, animals, and plants, and allow the model to learn

shapes, colors, and edges, making it easier for the model to identify

new target objects, such as our six target species. Pre-training is the

first step in developing a robust model for species identification

when the available dataset is not large or diverse.
2.3.1 Transfer learning
For our application of species identification, transfer learning

was also necessary. Transfer learning follows four steps: labeling,

training, validation, and testing. Transfer learning allowed us to

train the model specifically on our images of each species, and when

combined with hyperparameter tuning, allowed us to create an

accurate model specific to our species. Our hyperparameters would

not necessarily be the same for other data sets and other species

identification objectives. Therefore, we provide a summary of the

transfer learning process here but see Supplementary Material

for details.

Labeling includes placing a bounding box around a rodent

within an image and assigning it to a class where class equals one of

the species names. Passing images into the model with class labels,

the model’s nodes gather what information is useful for the

detection of those classes (in this case species). As the model

learns to detect rodents, it learns to ignore non-rodent objects

such as other taxa and the background.

Training involves the model learning to detect rodents and

ignore non-rodent objects by sending the labeled images through

the model. For the initial training, photos of each species were

sorted by J.H. and F.V. for labeling and subsequent training. In

addition, since we were working with a relatively small dataset

compared to that used for pretraining, we implemented image

augmentations: flip, noise, and blur, to triplicate our training set

for a total of over 3k training images for our final training set.

Validation is accomplished by evaluating various metrics.

Training loss, validation loss, and mean average precision (mAP)

were checked to confirm that the model had been exposed to a

sufficient number of target images and had been trained well (not

exhibiting high bias or high variance).

The initial iteration of testing followed labeling, training, and

validation, whereby the model was run on an initial set of 400

random images collected across all stations of the spring and

summer (2021) camera deployment. Each test run identified the

species (class) in the 400 test images. The identifications were
FIGURE 2

Set up of baited camera station used for surveys at Oceano Dunes
State Vehicular Recreation Area in Oceano, CA.
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reviewed and corrected (if necessary) by J.H. The correct and

corrected images were then used for the next iteration of training,

which was then followed by iterations of validation and testing.

2.3.1.1 Iterations

This process (training, validation, testing) uses the results of the

previous iterations (correct and corrected test images) for training

and validation. Following the training and validation, a new

random sample of 400 images was used for testing. Thus,

completing an entire iteration. The model was re-trained for 150

epochs on the new training set (previous testing set), wherein each

epoch the entire set of training data was passed through the model.

Iteration continued until the model had a high probability of true

positives and a low probability of false positives for each species (see

results), which took four iterations. The final test images (fourth

run) were fed through the model to complete measurable

construction. As a last measure, the whole set, training-

validation-testing was passed to the model for training. This

allows the model to use all the information available. After this

process to optimize the model was iterated four times, the model

could identify the six species accurately and consistently

(see results).

2.3.2 Model employment
Once model performance metrics demonstrated the model

could identify the six species accurately and consistently (see

results), a threshold value (0–1) had to be selected for when the

model should accept the species identification (i.e.: report a result

for an image). For the model to accept and report the species

identification, the prediction confidence (a number between 0–1 for

each object detected by the model) must be greater than or equal to

a threshold. Confidence values are produced for all objects detected

by the model. So, even if there is a small chance the object within the

bounding box is not species A but species B, the model will produce

a confidence value for both. Effectively the model produces low

confidence values for unlikely species and high confidence values

for likely species within a detection location. The confidence

threshold makes the model ignore the unlikely species and only

accept and report the likely one. Setting a high threshold (> 0.9)

means the model only accepts species identification if the prediction

confidence is over 90%. This could lead to individuals being

‘missed’. A low threshold (< 0.5) could lead to incorrect

identifications (false positives). We empirically estimated the

threshold by running the model on test images under different

thresholds (0.5, 0.7, 0.9) and reviewing the model results.

Empirically, at 0.5 some individuals were incorrectly identified, or

the model accepted two identifications since the model only had to

be 50% certain. With the threshold at 0.9, some images with lower

quality, for example where the tail was not as visible or the

individual was moving, had individuals that were missed. Figure 3

shows the model result for one image that had low confidence

(0.83). Setting the threshold at 0.9 would have led to the species

being missed. Therefore, through this and other examples, we

determined that at 0.7 at least one of the three images (per event)
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should be accepted as identifiable while minimizing the chance of

false identifications. Rather than assuming identifications were

always accurate, the species’ presence per station per night were

manually confirmed by J.H.

The model was then employed on the entire set of camera trap

images (> 200,000). A python (Van Rossum and Drake, 1995) script

written by G.M.S.E. was utilized to append each image’s filename

with the species identification. If an image contained multiple

individuals or multiple species, the model could identify all

individuals in the image and the script could append all the

relevant names to the image name. Using the appended

filenames, detection histories (using 0 and 1) for each species

were created (using python script) for each station per night for

the length of the camera deployment, three nights.
2.4 Data analysis

To test whether cameras vs live traps yield greater detection for

the six species, the detection histories for both methods were

combined with the method (live or camera) included as a

detection covariate. The “unmarked” package (Fiske and

Chandler, 2011) in R (R Core Team, 2018) was used to determine

detection probabilities for all six species. The function “occu” was

used to fit the single season occupancy model of MacKenzie et al.

(2002). The MacKenzie et al. (2002) model assumes positive

identifications are accurate. To ensure this assumption was not
FIGURE 3

Model result for one image of Dipodomys heermanni with model
threshold at 0.7. Accepted identification in this image is shown as a
salmon-colored bounding box around the target with a species
prediction and a confidence value (0.83). Given the lower
confidence in the species prediction for this image (0.83), setting
the model threshold at 0.9 would have led to the individual
being missed.
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violated, for each species, each station, and each night, one image

identified by the YoloV5x model was manually confirmed by J.H.,

meaning we satisfied the assumptions of the model. Probability of

detection was modeled as a function of two additional observer

covariates: season (fall, winter, spring, summer), and dominant

vegetation (willow or scrub). Previous work (Hopkins 2022,

unpublished thesis) has demonstrated an effect of dominant

vegetation type on detection probabilities for these species and

therefore needed to be included. We also compared the naïve trap

success from cameras and live traps to each other via a Wilcoxon

Sign-Rank test.

To compare occupancy rates across the two detection methods,

the detection histories were analyzed separately, but using the same

global model for both data sets. As above, the “unmarked” package

and “occu” function were fit to single season occupancy models.

Probability of detection was modeled as a function of two observer

covariates: season (fall, winter, spring, summer), and dominant

vegetation (willow or scrub). Probability of occupancy was modeled

as a function of two site covariates: season (fall, winter, spring,

summer), and dominant vegetation (willow or scrub).

For all analyses, we built global models to test all possible

combinations of model covariates. Package “AICcmodavg” was

used to compute the MacKenzie and Bailey (2004) goodness-of-fit

test for single season occupancy models based on Pearson’s chi-

square through 1000 simulations (Mazerolle, 2020). Models were

ranked with c-hat scores from the goodness-of-fit test to ensure best

models were also a good fit to the data. Model ranking was done

using the “MuMln” package, using AIC for over dispersed data

adjusted for small sample size (QAICc) and considering c-hat

(Barton, 2022). Models with a DQAICc ≤ 2.0 of the top model

were considered competitive. We used model-averaging from the

“AICcmodavg” package to calculate detection and occupancy

probabilities using the best fit models (Mazerolle, 2020).

To provide further insight into the difference in occupancy

estimates from the camera data versus live data, we calculated the

minimum (naïve) occupancy separately for both data sets. The

minimum occupancy is determined by calculating the proportion of

sites that had at least one visit across the three-night deployment

out of the total number of sites.
3 Results

3.1 ML model for camera image processing

The ML model performed well at identifying the six species

based on model metrics. Model health was determined by the

training loss and validation loss curves (Figure 4) which should

follow similar trends, decreasing to a point where the model has

learned all it can from the available data. The model had healthy

training and validation loss curves, not displaying signs of

low bias high variance (overfit) or high bias low variance

(underfit) (Figure 4).

Model performance was also evaluated by reviewing the

precision, recall, and mAP curves, where mAP combines the
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precision and recall of the model (Figure 5). The individual mAP

curves for each class (species), and the mAP curve combining all

classes, show that precision and recall are both high (Figure 5).

The confusion matrix shows the YoloV5x model did well at

predicting each species (Figure 6). The matrix shows the percent of

true predictions (known positives) based on testing 10% of the

photos available for each species, where these photos had not been

supplied for training. Tests were on 15–38 photos per species,

except Microtus californicus where only 7 testing photos were

available. Reithrodontomys megalotis is included even though it

was only detected in Spring 2021 and only by cameras (< 10

images). Therefore, the model was only trained on a small set of

images and only had one image to test (which it got right). This

species was not included in any analyses or inferences. Figure 6

shows that the largest possible source of confusion was false

positives from the background. This, and the limited cross-species

confusion, was mitigated by manual human confirmation of at least

one positive image per species, per station, and per date when

building the detection histories (see methods).
3.2 Detection comparison

Only two species were detected enough on the Sand sheet plots

to support an occupancy analysis across all five plots: D. heermanni

and P. maniculatus. For the other four species, the analysis was

done using only data from Cottonwood, Heather, and Acacia plots.

As expected, for all species, naïve trap success (i.e.: detection) was

higher when detected through camera traps compared to live traps

(Table 1). For an N=6 (species in Table 1) comparison of the trap

success across two detection methods, theWilcoxon Sign-RankW=

0 with p <0.05 (cannot calculate the exact p-value for N<10).

3.2.1 Model selection for detection comparison
For all species, detection method (camera or live) was included

in the top-ranked model (DQAICc ≤ 2.0). Dominant vegetation was

included in the top-ranking models for four species C. californicus,

D. heermanni, N. macrotis, and P. maniculatus. Season was

included in the top-ranking models for three species: C.

californicus, N. macrotis, and P. maniculatus. These results test a

prediction and are summarized in Table 2.

3.2.2 Detection probability
As predicted, camera traps yielded greater detection probability

for all species compared to live traps. This was true for both naïve

trap success (Table 1) and corrected detection probability

(MacKenzie et al., 2002). These results test a prediction and are

summarized in Figure 7. Details for each species are

presented below.

C. californicus, D. heermanni, P. californicus, and P.

maniculatus had significantly higher detection probability

through camera traps versus live traps across both willow and

scrub dominated stations (Figure 7A).

Considering dominant vegetation as a covariate, detection

probability for D. heermanni through cameras was 0.88 in scrub
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(CI = [0.83, 0.91]) and 0.67 in willow (CI = [0.52, 0.79]), while

through live traps it was 0.28 in scrub (CI = [0.22, 0.35]) and 0.10 in

willow (CI = [0.05, 0.17]). P. californicus detection probability did

not include dominant vegetation as a covariate and through
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cameras was 0.71 (CI = [0.64, 0.77]) while through live traps it

was 0.35 (CI = [0.23 0.49]).

C. californicus and P. maniculatus both showed some influence

of dominant vegetation and season on detection probability, with

season being weak except for C. californicus in winter. C.

californicus had significantly lower detection probability for both

methods in winter compared to the other three seasons. Across the

other three seasons and both dominant vegetations, C. californicus

detection through cameras ranged from 0.59 to 0.67 (CI = [0.46,

0.76]) while through live traps ranged from 0.17 to 0.22 (CI = [0.10,

0.33]). Across all seasons and both dominant vegetations, P.

maniculatus detection through cameras ranged from 0.93 to 0.99

(CI = [0.87, 0.99]) while through live traps ranged from 0.22 to 0.70

(CI = [0.14, 0.80]).

Within each dominant vegetation category, N. macrotis had

significantly higher detection probability through camera traps versus

live traps (Figure 7B). Across all seasons, detection probability in willow

stations ranged from 0.79 to 0.93 (CI = [0.67, 0.96]) for cameras and

0.26 to 0.56 (CI = [0.15, 0.70]) for live traps, which was higher than

scrub stations which ranged from 0.40 to 0.71 (CI = [0.24, 0.82]) for

cameras and 0.06 to 0.18 (CI = [0.03, 0.30]) for live traps.

M. californicus had zero captures across all live trapping

surveys, subsequently detection probability is zero and the

confidence interval is incalculable. While there were zero

detections through live traps, there were multiple camera

detections. The detection probability through camera traps was

0.44 (CI = [0.24, 0.66]). Qualitatively it is clear there was greater

detection through camera traps.
FIGURE 4

Training loss and validation loss curves for the YoloV5x model. Y-
axis is loss calculated from predicted bounding boxes in images
(box_loss), probability an object exists within the predicted box
(obj_loss), and class versus ground truth (cls_loss) for both training
(train) and validation (val). The X-axis is the number of times labeled
data was passed through the model for training (0–150). Graphs
from Ultralytics (Jocher et al., 2020).
FIGURE 5

Precision, recall, and mAP metrics for the YoloV5x model on the test
set from the last training. The number beside each class (inset box)
represents class-specific mean Average Precision (mAP) and the
blue line for mAP @ 0.5 represents mAP over all classes with an IoU
threshold of 0.5. Graph from Ultralytics (Jocher et al., 2020).
FIGURE 6

Confusion matrix showing the percent of true predictions for 10% of
images per species which were held back for testing. Darkest color
represents the lowest confusion. Results are for the empirically
determined confidence threshold of 0.7 which was used by the
model in AI identification of species from camera images. See text
for information regarding Reithrodontomys megalotus. Background
FP represents the amount of ‘False Positive’ detections on images
without the target species (see text for false positive mitigation
measure). Image from Ultralytics (Jocher et al., 2020).
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3.3 Occupancy comparison

3.3.1 Model selection for occupancy comparison
Top ranking models (DQAICc ≤ 2.0) for each species analyzed

using camera data versus live capture data are shown and

summarized in Table 3. M. californicus had zero live captures and

C. californicus had insufficient live captures and therefore both were

excluded from this analysis. Dominant vegetation was shown to

have an influence on occupancy probability for D. heermanni and

N. macrotis in both analyses of camera data and live capture data.

Analysis of camera data showed an influence of dominant

vegetation on P. californicus occupancy probability, but the live

capture data analysis did not, while the opposite was true for P.

maniculatus.Neither analysis of the camera nor live data showed an

influence of season on occupancy for these species.

3.3.2 Comparing occupancy probability between
camera and live trapping methods

Our prediction that occupancy probability would be greater

when analyzed using camera data versus live trapped data was
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supported. Specifically, within each dominant vegetation type,

all species had higher occupancy probabilities when analyzed

from camera traps, and since occupancy is estimated from

detection, all species also had higher detection probabilities

with camera traps. These results test a prediction and are

summarized in Figure 8.

Our prediction that patterns in occupancy probability would be

the same across the two monitoring methods was only partially

supported. An influence of season on occupancy was not found

through either analysis for any species included. The influence of

dominant vegetation on occupancy across the two analyses varied.

These results test a prediction and are summarized in Figure 8,

while individual species are discussed below.

Occupancy probability was higher within each dominant

vegetation type for D. heermanni when analyzed using camera

data versus live trap data (Camera: yScrub = 0.95, CI [0.89, 0.98],

yWillow = 0.46, CI [0.32, 0.61], Live: yScrub = 0.52, CI [0.38, 0.66],

yWillow = 0.11, CI [0.04, 0.24]) (Figure 8). Both analyses using live

and camera data, demonstrated a strong influence of dominant

vegetation on this species occurrence. Occupancy probability was
TABLE 1 Summary of naïve trap success (captures divided by trap nights) for all four seasons (spring, summer, fall, winter) for Chaetodipus
californicus, Dipodomys heermanni, Microtus californicus, Neotoma macrotis, Peromyscus californicus, and Peromyscus maniculatus.

Species
Trap Nights Number of Successful Traps Trap Success

Live Camera Live Camera Live Camera

C. californicus 288 270 37 119 12.8% 44.1%

D. heermanni 480 453 82 314 17.1% 69.3%

M. californicus 288 270 0 16 0.0% 5.9%

N. macrotis 288 270 64 168 22.2% 62.2%

P. californicus 288 270 52 134 18.1% 49.6%

P. maniculatus 480 453 213 441 44.4% 97.4%
Naïve trap success is calculated individually for the two monitoring methods: baited live traps versus baited camera traps. These values are a measure of the naïve detection probability
(uncorrected) (MacKenzie et al., 2002).
TABLE 2 Competing (DQAICc ≤ 2.0) single season landscape occupancy models with live and camera trap data pooled, for Chaetodipus californicus,
Dipodomys heermanni, Microtus californicus, Neotoma macrotis, Peromyscus californicus, and Peromyscus maniculatus.

Species Model QAICc DQAICc wi Df

C. californicus p(Method + Season), y(.) 140.8 0.00 0.73 6

p(Method + Season + DomVeg), y(.) 142.7 1.98 0.27 7

D. heermanni p(Method + DomVeg) y(.) 234.0 0.00 1.00 4

M. californicus p(Method), y(.) 57.2 0.00 1.00 3

N. macrotis p(Method + DomVeg), y(.) 179.3 0.00 0.70 4

p(Method + Season + DomVeg), y(.) 181.0 1.70 0.30 7

P. californicus p(Method), y(.) 124.7 0.00 0.68 3

p(.) y(.) 126.2 1.48 0.32 2

P. maniculatus p(Method + DomVeg), y(.) 167.8 0.00 0.66 4

p(Method + Season + DomVeg), y(.) 169.1 1.36 0.34 7
y is the probability a site is occupied, and p is the probability of detecting a species should it be present. Covariates included in models: Method = live trap or camera trap, DomVeg = dominate
vegetation alliance: willow or scrub, Season = spring, summer, fall, winter.
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higher for N. macrotis within each dominant vegetation type when

analyzed using camera data versus live trap data (Camera: yWillow =

0.96, CI [0.83, 0.99], yScrub = 0.57, CI [0.42, 0.71], Live: yWillow =

0.70, CI [0.51, 0.85], yScrub = 0.32, CI [0.06, 0.74]) (Figure 8).

However, given the large confidence intervals associated with the

live trapped estimates, N. macrotis was the only species where

occupancy probability was not significantly higher in cameras,

though occupancy probability was qualitatively higher. The

analysis using camera data demonstrated a strong influence of

dominant vegetation on this species occupancy probability while

the analysis using live data showed a weak influence of dominant

vegetation. Thus the prediction that the two detection methods

would ascribe the same importance to habitat attributes was not

supported for this species (Figure 8).

Across both dominant vegetation types, occupancy probability

for P. californicuswas higher when analyzed using camera data versus

live trap data (Camera: yWillow = 0.73, CI [0.58, 0.85], yScrub = 0.68,

CI [0.54, 0.80], Live: y = 0.35, CI [0.25, 0.47]) (Figure 8). Only the

analysis using camera data showed an influence of dominant

vegetation on this species occupancy, but the influence was weak

(CI overlap). Occupancy probability for P. maniculatus was higher
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when analyzed using camera data versus live trap data (Camera: y =

1.00, CI [0.00, 1.00], Live:yScrub = 0.78, CI [0.67, 0.86],yWillow = 0.51,

CI [0.36, 0.66]) (Figure 8). The analysis using camera trap data

yielded an occupancy of 1 (441 out of 453 camera trap nights (97%)

had a P. maniculatus detection) regardless of dominant vegetation

type. When an estimate approaches 1 (or 0), the SE on the logit-scale

becomes extremely large (Mackenzie et al., 2017). Once the CI are

back transformed, they span 0–1. Therefore, only the analysis using

live data showed an influence of dominant vegetation on this species

occupancy. Thus the prediction that the two detection methods

would ascribe the same importance to habitat attributes was not

entirely supported for these two species (Figure 8).

3.3.3 Minimum and corrected occupancy for
cameras and live

The minimum occupancy from cameras and live trap data, as well

as the corrected occupancy estimate (MacKenzie et al., 2002), are

shown in Table 4. In all cases, the minimum camera occupancy is

greater than the corrected live trapped occupancy estimate. The average

percent difference between the corrected for and minimum occupancy

from cameras was 1%, while the difference from live was 18%.
B

A

FIGURE 7

Detection probability for (A) Chaetodipus californicus, Dipodomys heermanni, Peromyscus californicus, Peromyscus maniculatus, and (B) Microtus
californicus and Neotoma macrotis across four seasons of deployment analyzed using single season occupancy models (MacKenzie et al., 2002).
Detection methods are through baited camera stations or baited live traps. Dominant vegetations are willow dominated or scrub dominated. Error bars
represent 95% confidence interval. Detection probability for all species was greater through baited camera stations than through baited live traps.
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TABLE 3 Competing (DQAICc ≤ 2.0) single season landscape occupancy models for Dipodomys heermanni, Neotoma macrotis, Peromyscus
californicus, and Peromyscus maniculatus.

Species Data Model QAICc DQAICc wi Df

D. heermanni Camera p(.) y(DomVeg) 99.5 0.00 0.63 3

p(DomVeg) y(DomVeg) 100.6 1.09 0.37 4

Live* p(DomVeg) y(DomVeg) 385.4 0.00 0.51 4

p(Season + DomVeg) y(DomVeg) 386.5 1.14 0.29 7

p(.) y(DomVeg) 387.2 1.82 0.20 3

N. macrotis Camera p(.), y(DomVeg) 68.0 0.00 0.70 3

p(DomVeg), y(DomVeg) 69.7 1.65 0.30 4

Live p(.), y(DomVeg) 179.3 0.00 0.43 3

p(DomVeg), y(DomVeg) 180.1 0.76 0.30 4

p(DomVeg), y(.) 180.1 0.81 0.28 3

P. californicus Camera p(.) y(.) 82.3 0.00 0.72 2

p(.) y(DomVeg) 84.1 1.84 0.29 3

Live p(.) y(.) 143.5 0.00 1.00 2

P. maniculatus Camera p(DomVeg), y(.) 60.1 0.00 0.51 3

p(.), y(.) 60.2 0.11 0.49 2

Live p(Season), y(DomVeg) 335.7 0.00 1.00 6
F
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For each species, detection histories were analyzed from camera data and live trapped data separately (‘camera’, ‘live’). Since the live and camera data was analyzed separately, DQAICc values
should not be compared across live and camera models. D. heermanni live* models were ranked using AICc instead of QAICc. N. macrotis and P. californicus did not occur on two early
successional plots and thus data were collected across three plots while for Dipodomys heermanni and Peromyscus maniculatus data were collected across five. y is the probability a site is
occupied, and p is the probability of detecting a species should it be present. Covariates included in models: DomVeg = dominate vegetation alliance: willow or scrub, Season = spring, summer,
fall, winter.
FIGURE 8

Model averaged (Table 3) occupancy probability for Dipodomys heermanni, Neotoma macrotis, Peromyscus californicus, and Peromyscus
maniculatus from camera trapped data versus live trapped data analyzed separately using single season occupancy models (MacKenzie et al., 2002).
Dominant vegetations are willow dominated or scrub dominated. Error bars represent 95% confidence intervals. Neotoma macrotias and
Peromyscus californicus did not occur on two early successional plots and thus data were collected across three plots while for Dipodomys
heermanni and Peromyscus maniculatus data were collected across five plots. There were not sufficient live captures of M. californicus or C.
californicus, so they were excluded from analysis.
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4 Discussion

Our prediction that detection probability would be greater from

camera traps versus live traps was supported. Subsequently, as

predicted, occupancy estimates were greater when analyzed

through camera data versus live data. The result of patterns in

occupancy analyzed across the two methods varied and depended

on the detection method. However, these variable results seem to be

influenced by the high amount of camera detections, and therefore

better resolution of patterns, relative to live traps.
4.1 Detection

M. californicus was the only species where we could not

quantitatively demonstrate the detection probability across the

two methods was significantly different. This was due to zero live

captures during the four seasons of study such that confidence

intervals spanned 0 to 1, and the comparison with camera traps was

incalculable. Though live traps might suggestM. californicus did not

occupy the study site, there were multiple detections through

cameras, qualitatively demonstrating that detection probability is

much greater for M. californicus through cameras versus live traps.

Indeed, M. californicus is regarded as having cyclic population

growth and decline (Lidicker, 2015). But these population cycles

likely do not lead to local extinction (absent some years) as

suggested by live trapping data. Instead, as suggested by the

camera trapping data, the local breeding deme likely persists,

though at very low abundance. Management might thus need to

focus on this growth and decline population dynamic rather than an

extinction-recolonization dynamic.

4.1.1 Cameras yield greater detection
Multiple factors could be influencing why cameras yield greater

detection. Trap saturation is a possible drawback of live trapping.

Once a live trap is occupied, individuals may approach the station

but would not be detected because generally only one individual is

captured per trap. Cameras allow for unlimited detections without

trap saturation. Cameras are noninvasive and allow detection of
Frontiers in Ecology and Evolution 12
rodents without entrapment whereas live traps require entering an

enclosure. Live traps can contain urine and feces of con and

heterospecifics previously trapped. Both types of odors have been

shown to influence rodent behavior (Boonstra and Krebs, 1976;

Mazdzer et al., 1976; Daly et al., 1978; Daly et al., 1980). Peromyscus,

Chaetodipus, and Dipodomys avoid traps containing these odors

during the non-breeding season (Daly et al., 1978; Daly et al., 1980),

deterring them from entering traps and being detected. This

deterrence could be mitigated by washing each trap after each

capture. But this only shows the increase in effort needed to

maximize the detection probability of live traps. Herein we

consider live trapping results over three-night sessions. More

nights are expected to increase detections of rarer species but

would come with more effort. One suggestion is to trap for 11

consecutive nights (Hice and Velazco, 2013). Imagine the

Herculean effort of trapping for 11 consecutive nights and

washing each trap after each capture. Despite the effort, species

vary in their likelihood of entering live traps (Gurnell, 1982; Stokes,

2012). Studies of other rodents show that approximately half the

individuals in a population are trap-able and that previous

experience with traps influences their behavior (Gurnell, 1982). In

these studies, marked animals have higher trap-ability than

unmarked animals, and probability of recapture can be greater

than probability of initial capture (Tanaka, 1963; Gurnell, 1972,

1982). Therefore, some individuals in a population may never be

captured due to their individual behavior. One final difference is the

induced stress response caused by entrapment (Kenagy and Place,

2000; Fletcher and Boonstra, 2006; Bosson et al., 2012). The

resulting psychological response to entrapment influences trap

mortality (Gurnell, 1982), and the stress could even affect

individuals following release. Trap mortality is also influenced by

moisture and temperature (Gurnell, 1982). Moisture could be from

weather or self-urination. Once rodents’ fur is damp, individuals are

unable to thermoregulate as effectively (Perrin, 1975), and increased

trap deaths have been reported following rain (Gurnell, 1982). For

all these reasons, if understanding occupancy provides sufficient

knowledge, cameras appear to be superior to live trapping for

detecting rodents and should be specifically considered when

studying rare, endangered, threatened, or cryptic species.
TABLE 4 Minimum (‘min’) occupancy and corrected (‘corr’) occupancy for Dipodomys heermanni, Neotoma macrotis, Peromyscus californicus, and
Peromyscus maniculatus through analysis of data collected by baited camera traps (‘Cam’) versus baited live traps (‘Live’).

Species DomVeg y(min)Cam y(corr)Cam y(min)Live Y(corr)Live

D. heermanni Willow 0.4545 0.4601 0.1042 0.1105

D. heermanni Scrub 0.9533 0.9554 0.4107 0.5214

N. macrotis Willow 0.9545 0.9587 0.6250 0.7032

N. macrotis Scrub 0.5652 0.5712 0.1667 0.3187

P. californicus Willow 0.7500 0.7343 0.2917 0.3543

P. californicus Scrub 0.6304 0.6824 0.3333 0.3543

P. maniculatus Willow 1.0000 1.0000 0.4792 0.5118

P. maniculatus Scrub 1.0000 1.0000 0.7143 0.7825
Minimum occupancy is the proportion of sites that had at least one visit across the three-night deployment out of the total number of sites. Corrected occupancy is the corrected for occupancy
estimate that accounts for imperfect detection (MacKenzie et al., 2002). ‘DomVeg’ is the dominant vegetation alliance: willow or scrub.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1359201
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Hopkins et al. 10.3389/fevo.2024.1359201
4.2 Occupancy

The minimum (uncorrected) camera occupancy (Table 4) was

greater for all species than the corrected live capture occupancy

estimate. For example, through cameras, P. maniculatus was

detected at every single station at least one night, and therefore

occupied every station. However, for live trapping, the corrected

occupancy probability was 51% at willow stations and 78% at scrub

stations. This demonstrates a potential issue when using live traps

to understand rodent species occurrence because occupancy is

predicted to be underestimated. In contrast, the minimum camera

occupancy is very similar to the estimated camera occupancy,

demonstrating that detection through cameras requires little

correction, if any, for imperfect detection. For the four species

included in the occupancy analysis, the per night detection

probability (Figure 7) is so high that the detection probability

(averaged across four seasons and both vegetation types) for a

three-night session is greater than 0.97. This indicates correcting for

detection is not necessary even over just three nights and without

rebaited camera stations. While we do not advocate for using

uncorrected estimates of occupancy, for budget limited efforts

where statistical analyses are not practical, land managers may

consider this as a reasonable approximation of occupancy.

The underestimation of occupancy from live traps could be

influenced by the interaction of live traps and detection, with live

traps possibly conferring increased heterogeneity in detection for

reasons discussed previously (strap saturation, odors, behavior,

etc.). If live traps confer heterogeneity in detection, and those

sources are not able to be modeled (i.e., trap shy individuals,

temporal partitioning among species approaching traps) the

occupancy estimates from live trap data will be downwardly

biased. Additionally, live traps can be saturated, allowing only

two individuals to be captured per station such that additional

species (>2) would be missed. Inferring cameras are more neutral to

rodents, sources of detection heterogeneity caused by live traps may

be removed. Likewise, cameras allow unlimited detection and

remove possible bias from trap saturation. Subsequently, there is

less possibility of bias in occupancy estimates from cameras.

Nevertheless, we acknowledge that both live and cameras could

still be influenced by unmodellable sources of detection

heterogeneity, such as abundance (MacKenzie et al., 2017).

However, the greater mean detection probability from cameras

could reduce this possible biased effect on occupancy estimates.

4.2.1 Patterns in occupancy
The result of patterns in occupancy estimates analyzed across

the two methods varied for some species and depended on the

detection method. This could lead to a larger type II error (a false

negative when a difference does actually exist) under live trapping.

For example, the camera data analysis found N. macrotis occupancy

to be strongly influenced by dominant vegetation, while the live data

analysis found this influence to be weak and may have led to a type

II error if only the live data was considered. This seems intuitive if

we accept that live trapping data have a reduced ability to detect,

and therefore resolve differences in, occupancy across site
Frontiers in Ecology and Evolution 13
covariates. Likewise, live traps could lead to a pattern being

demonstrated through analyses but one that is a result of live

trapping, not species occupancy (e.g., trap saturation is more likely

at willow stations). For more accurate estimates of occupancy

through live trapping, a longer survey method may be required. It

has been demonstrated that longer trapping sessions (survey nights)

are necessary when surveying small mammals through live traps to

detect all species (Hice and Velazco, 2013). Our analysis of

occurrence through live trapping may have yielded greater

inference power if the survey length was greater, given the low

per night detection probability achieved through live traps

(Figure 7). However, increasing the survey length would

substantially increase the effort and not support our development

of a practical and sustainable monitoring methodology. We also

acknowledge the possibility that cameras could have issues with

detecting small influences of site attributes on species occurrence,

which may have been true for P. maniculatus. The camera data

analysis found no influence of dominant vegetation, while the live

data analysis found a strong influence of dominant vegetation, with

occupancy probability being higher in scrub. It is possible that with

such good detection through cameras, and subsequent high

occupancy estimates (1.0 for P. maniculatus), small influences of

site covariates could be undetectable. These possibilities, and the

possible effects on occupancy analyses , might meri t

further investigation.
4.3 Live traps versus camera traps: effort
and prospects

4.3.1 Live traps versus camera traps: effort
While the specific community assemblage of rodents in

question may affect the ability to monitor rodents through

camera traps, rodents can be identified at the species level

through camera images (De Bondi et al., 2010; Gray et al., 2017;

Thomas et al., 2019). We found that, while cameras collect a huge

number of images, ML models can be used to drastically

reduce effort.

To better illustrate this finding, we estimated the effort

(hours) spent across live trapping, camera trapping, and camera

trapping with ML for this project (Figure 9). Since all the tasks

(live trapping, camera trapping, and ML model development)

were carried out for this study, the time to complete them was

known and used. Live trapping effort was calculated by estimating

the time spent: in the field setting and processing traps

(processing includes time for traditional mark-release-

recapture), travel to and from plots, and entering data into a

database. For cameras, the effort was calculated by estimating the

time spent: to deploy and collect cameras, travel to and from

plots, and upload and manually sort all images into species

folders. For cameras with ML, effort was calculated by

estimating the time to: deploy and collect cameras, travel to

and from plots, construct the ML model, identify images for

initial training, label the images for training, review/correct test

images, and upload camera images for model processing. The
frontiersin.org

https://doi.org/10.3389/fevo.2024.1359201
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Hopkins et al. 10.3389/fevo.2024.1359201
time for ML model construction entails choosing hyperparameter

values and establishing a workflow. The task that was not

performed entirely was the manual sorting of images into

species respective folders. To estimate that required time, a

subset of images was manually identified and sorted and the

time spent was extrapolated to the number of images collected in

total. The effort estimates presented include only ‘active’ time

(not CPU time) and assume experienced and knowledgeable

researchers conducting all the work (no personnel training).

The effort estimated across the methods demonstrates the

drastically reduced effort of cameras when paired with ML

models for image processing (Figure 9). Trapping with live traps

would take 267 estimated hours, trapping with cameras using

manual image processing would take 324 estimated hours, but

trapping with cameras utilizing a ML model would take only 95

estimated hours. In addition, once the model is fully trained, the lab

effort declines substantially, only requiring the time to upload the

images and begin model processing (runs in the background).

The effort applied to live trapping small mammals in

Mediterranean habitats is variable. For example, recent studies have

deployed live traps for between three and seven consecutive nights

(Diffendorfer et al., 2012; Borchert and Borchert, 2013; Moreno and

Rouco, 2013; Polyakov et al., 2021; Germano et al., 2023; Ghimirey

et al., 2023). Two of these studies have investigated rodent

communities with many of the same species as we considered

(Germano et al., 2023; Ghimirey et al., 2023). They have both used

three consecutive trap nights, as did we. We fully recognize that

additional live trapping effort (eg.: adding more consecutive nights)

likely adds species detections (Hice and Velazco, 2013). But we find

that would make our overall conclusion, that camera trapping

produces more detections with less effort than live trapping, even

stronger. For example, there was only one rodent species

(Reithrodontomys megalotus) expected to be detected which was

not detected over three consecutive nights of live trapping in any of

the four seasons. But even that species was detected, though only in

Spring 2021, by camera traps (< 10 images).

4.3.2 Live traps versus camera traps: prospects
Future improvement of the ML model through additional

training with more images could produce extreme accuracy.

Likewise, one could consider rebaiting the camera stations each

night for the first session, gathering more photos for initial model

training, and possibly making model construction easier. Yet we

found that baiting only the first night of deployment still led to very

high detection probabilities and kept the field effort low.

Due to YoloV5x’s accuracy and pre-training on the MS COCO

2017 dataset, the model was able to learn to ignore the background.

We explored the need to train the model on ‘blank’ images

(containing no rodents) with a variety of backgrounds (sand, leaf

litter, sticks) but this was unnecessary as the pretraining taught the

model to ignore the background.

Though conservation and management focused long-term

monitoring is an obvious application, ML could also be

implemented for invasive species monitoring. Invasive species are a

global problem to ecosystem health (Rinella et al., 2009) and a huge
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effort is given to the management of invasives (Lodge et al., 2006). If

an invasive species has the potential to invade or is potentially

present, detecting populations while they are small and localized,

focusing on early detection and rapid response (EDRR), is essential

(Lodge et al., 2006). However, detecting species while populations are

small is difficult, as detection is influenced by abundance (Royle and

Nichols, 2003; McCarthy et al., 2013). Invasive rodent species

biosecurity, like for Rattus rattus, could be done by deploying web

enabled cameras, with ML analytics, that could update managers

almost instantaneously of invasive species detection. Likewise, an

approach that combines live trapping and camera trapping for

invasive species management could make sense. Live traps (or kill

traps) could entrap invasives, while camera traps would inform the

degree of success of the entrapment/kill effort. This might be

particularly meaningful following an attempted eradication, or

while running surveillance, for an invasive rodent.
4.4 Conclusions

The current loss of biodiversity and rate of extinctions

highlights the need for conservation efforts across all taxa,

including small, non-charismatic ones. With 332 rodent species

listed on the IUCN red list, there is a need for efficient and effective

methods for monitoring their populations. Our study demonstrates

that cameras provide far greater detection of rodents compared to

live traps and should be considered for detecting rare, listed, or

cryptic small rodent species. The greater detection through cameras

allows more accurate estimates of occupancy, all of which differed

from live trapping estimates, and better insight into the influence of

habitat attributes on species occurrence. This noninvasive

technique is safer, not requiring entrapment or handling, and

could be a valuable contribution to the study of endangered or
FIGURE 9

Estimated effort (hours) spent for this project across the two
methods of data collection. Cameras were compared for manual
photo processing versus photo processing with the ML model.
‘Cameras with ML’ lab effort includes time estimate to: train model,
review/correct images in testing, choose hyperparameters, and
establish a workflow. All estimates are based on active time of
experienced and knowledgeable researchers conducting the work.
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vulnerable species. Additionally, cameras require low field effort

and can be used in conjunction with MLmodels to provide efficient,

accurate, and precise detection of monitored rodent species. For

wildlife management and conservation, camera data processed

through ML models can be used with occupancy modeling to

provide insight into the influence of habitat characteristics,

modifications, and changes to species occurrence.
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