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A new method for identifying key
fossil species in the Miocene
Calcareous Nannofossil Zone:
insights from deep convolutional
neural networks
He Zhang, Chonghan Yu, Zhenglong Jiang* and Xuqian Zhao

School of Ocean Sciences, China University of Geosciences, Beijing, China
Background: Calcareous nannofossils are minute microfossils widely present in

marine strata. Their identification holds significant value in studies related to

stratigraphic dating, paleo-environmental evolution, and paleoclimate

reconstruction. However, the process of identifying these fossils is time

consuming, and the discrepancies between the results obtained from different

manual identification methods are substantial, hindering quantification efforts.

Therefore, it is necessary to explore automated assisted identification of fossil

species. This study mainly focused on 18 key fossil species from the Miocene era.

Five convolutional neural network (CNN) models and 10 data augmentation

techniques were compared. These models and techniques were employed to

analyze and collectively train two- and three-dimensional fossil morphologies

and structures obtained from three different fossils observed under single-

polarized light microscopy, orthogonal polarized light microscopy, and

scanning electron microscopy. Finally, the model performance was evaluated

based on the predictive outcomes on the test set, using metrics such as

confusion matrix and top-k accuracy.

Result: The results indicate that, for the calcareous nannofossil images, the most

effective data augmentation approach is a combination of four methods: random

rotation, random mirroring, random brightness, and gamma correction. Among

the CNN models, DenseNet121 exhibits the optimal performance, achieving an

identification accuracy of 94.56%. Moreover, this model can distinguish other

fossils beyond the 18 key fossil species and non-fossil debris. Based on the

confusion matrix, the evaluation results reveal that the model has strong

generalization capability and outputs highly credible identification results.

Conclusion: Drawing on the identification results from CNN, this study asserts a

robust correlation among extinction photographs, planar images, and

stereoscopic morphological images of fossil species. Collective training

facilitates the joint extraction and analysis of fossil features under different

imaging methods. CNN demonstrates many advantages in the identification of
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calcareous nannofossils, offering convenience to researchers in various fields,

such as stratigraphy, paleo-ecology, paleoclimate, and paleo-environments of

ancient oceans. It has great potential for advancing the development of marine

surveys and stratigraphic recognition processes in the future.
KEYWORDS

calcareous nannofossils, convolutional neural network, data augmentation, model
training, automated identification
1 Introduction

Calcareous nannofossils are microfossils composed primarily of

calcium carbonate that formed during geological history. They

originate from calcium-rich planktonic microorganisms and have

been widespread in marine strata since the Jurassic period. Owing to

their extensive distribution and rapid evolution, these nannofossils

serve as an important basis for establishing fossil age frameworks and

finely delineating stratigraphic sequences (Perch-Nielsen, 1985).

Specifically, the calcareous nannofossil zones are primarily marked

by the first and last appearance data of their key fossil species. In

1836, German microbiologist C. G. Ehrenberg made the pioneering

discovery of calcareous nannofossils (Ehrenberg, 1836). Since then,

vast collections of fossil samples have been accumulated, particularly

through advancements such as petroleum exploration and ocean

drilling. However, whether using optical or electron microscopy, the

identification process remains heavily reliant on the skills of

experienced paleontologists. Novices in paleontological

identification must invest significant time and effort to a rigorous

learning process, encompassing extensive memorization and

repetitive identification exercises, to thoroughly comprehend the

essentials of fossil identification. This directly impacts the pace and

depth of research progress (Hao et al., 1989). To overcome these

challenges, Dollfus and Beaufort (1999) developed a structured

system named SYRACO2 using artificial neural networks (ANN).

They conducted classification training on 13 types of calcareous

nannofossils, each type containing 100 images from a single source,

and achieved an 86% training accuracy. Subsequently, Beaufort and

Dollfus (2004) employed an ANN with three convolutional layers to

classify 11 types of calcareous nannofossils from the Pleistocene

epoch. This version, trained on more than 150 images per species

from a single image source, achieved a classification accuracy of 96%.

However, the traditional ANN described above contains only three

sequentially connected convolutional layers and one fully connected

layer, which has a limited generalization capability and is unable to

summarize and distinguish complex features. When the test image

contains multiple imaging modalities or the image source is complex,

that is, the color, sharpness, size, scale, and other parameters of the

images vary greatly, the identification accuracy of such models

decreases significantly. Meanwhile, challenges such as the
02
widespread inferior preservation of fossils predating the Pleistocene

epoch persist. Consequently, predecessors mostly utilized Pleistocene

fossils as the training set and rarely studied older fossil images.

Moreover, sediments sometimes contain redeposited fossil species

and non-fossil debris that morphologically resemble fossils, making it

difficult for existing identification systems to distinguish

these components.

Convolutional neural networks (CNNs) leverage multiple layers

of neural networks to automatically learn and synthesize complex

data features. As an important application of deep learning in the

visual domain, CNNs employ convolution and pooling operations

to progressively abstract image features, enabling the model to

comprehend visual information at various levels. This facilitates the

resolution of multiclassification tasks for intricate images

(Krizhevsky et al., 2012). Various network structures, training

strategies, and optimization methods have been extensively

validated in the fields of general object recognition and medical

imaging for lesion detection and organ tissue classification

(Prechelt, 1998; Kingma and Ba, 2014; Szegedy et al., 2015; He

et al., 2016; Huang et al., 2017; Shu et al., 2020; Su et al., 2021). It is

now possible to handle more challenging multiclassification tasks

across complex and imbalanced data sources. In the field of

machine vision, He et al. (2016) proposed the residual network

(ResNet) model, trained on datasets such as ImageNet and MS-

COCO, while Huang et al. (2017) introduced the DenseNet model,

trained on datasets such as CIFAR and ImageNet. Following the

principles of transfer learning, the model weights pretrained on

these large datasets can be used to enhance the model’s ability to

generalize common features and significantly accelerate training

speeds (Zhuang et al., 2020). Nevertheless, in the field of calcareous

nannofossils, no attempt has been made to employ these state-of-

the-art techniques to automatically learn biological features from

images captured under three different microscopes and then

uniformly identify them.

To assist researcher in making quick judgements about

calcareous nannofossil species and improve identification efficiency,

this study proposed a new method for image-based identification of

key fossil species within the Miocene Calcareous Nannofossil Zone.

Following the latest fossil zone division scheme of Backman et al.

(2012), we selected 18 key fossil species in the Miocene fossil zone.
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Comparative experiment was conducted with five models, data

cleaning was employed to address noisy and anomalous data, and

10 data augmentation techniques were combined to strengthen the

models for extracting fossil features from the images. The objectives

of this research are as follows: (1) to develop a new image

identification method (assisted identification of calcareous

nannofossils, abbreviated as AICN) and accomplish fossil species

identification of calcareous nannofossil images; (2) to select optimal

data augmentation techniques and determine the best model and

parameters for deep CNN; (3) to rapidly output identification

results, assisting researchers in improving identification efficiency;

and (4) to identify and remove other fossil species beyond the 18

key fossil species and non-fossil debris.
2 Materials and methods

2.1 Data collection

This study selected 18 species of key fossils from the Miocene

Calcareous Nannofossil Zone (Backman et al., 2012). The 18 species

correspond to the fo l lowing spec ies (Appendix A) :

(1) Amaurolithus primus, (2) Calcidiscus premacintyrei,

(3) Catinaster coalitus, (4) Ceratolithus acutus, (5) Discoaster

berggrenii, (6) Discoaster hamatus, (7) Discoaster kugleri,

(8) Discoas ter quinqueramus , (9) Discoas ter s ignus ,

(10) Helicosphaera carteri, (11) Helicosphaera euphratis,

(12) Nicklithus amplificus, (13) Reticulofenestra pseudoumbilicus,

(14) Sphenolithus belemnos , (15) Sphenolithus delphix ,

(16) Sphenolithus disbelemnos, (17) Sphenolithus heteromorphus,

and (18) Triquetrorhabdulus carinatus. These are the key fossil of

CNM1–20 during Aquitatanian to Messinian stages in Miocene

(23–5.36 Ma) (Backman et al., 2012), corresponding to fossil zones
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NN1-NN12 (Martini andWorsley, 1971) and CN1c-CN10a (Okada

and Bukry, 1980). These 18 fossil species have totally 1859 images,

in which 618 were captured under single-polarized light

microscopy, 1013 under orthogonal polarized light microscopy,

and 228 through scanning electron microscopy (Figure 1). The

images were obtained from the Nannotax3 database on the official

website of the International Nannoplankton Association (Young

et al., 2022); 143 online articles retrieved from Science Citation

Index and China National Knowledge Infrastructure (Appendix B);

and a collection of original images we captured during

previous experiments.

This study used the graphical features of calcareous nannofossils

under all three microscopes, which correspond to their fossil

morphology, and thus the logic of distinguishing fossil species

based on morphology, to perform collective training on the three

microscope images. The strong domain generalization capabilities of

CNNs combined with data augmentation facilitate the extraction and

analysis of common features of fossils using different imaging

modalities (Otalora et al., 2019; Zhou et al., 2023). For a

description of the morphology of each species, see the Farinacci

catalog pages (Young et al., 2022), and for image examples, see de

Kaenel and Villa (1996), Young (1998), Salomon (1999), Fernando

et al. (2007), Bergen et al. (2017), Blair et al. (2017), Boesiger et al.

(2017), de Kaenel et al. (2017), and Young et al. (2017).
2.2 Data preprocessing

2.2.1 Data cleaning
The original images underwent data cleaning (Ridzuan and

Zainon, 2019) to eliminate noise, anomalies, and incomplete data

arising from instrument deviation, human entry errors, and various

other factors. Incorrectly labeled and low-quality images difficult to
FIGURE 1

Bar diagram showing the number of PLM (parallel polars), PLM (crossed polars), and SEM images in each species.
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identify were excluded. For instance, in Figure 2, image (A) should

represent Helicosphaera euphratis but was erroneously labeled as

Sphenolithus disbelemnos (Figure 2B) in the article associated with

that image (Sant et al., 2019). Corrections were also made to the

species of image (A). Image (C)–(D) were of extremely poor quality,

hampering the identification of key features. In addition, image (E)

displayed blurry features, making it indistinguishable from

Sphenolithus disbelemnos, Sphenolithus delphix, Sphenolithus

heteromorphus, and Sphenolithus belemnos. Consequently, images

(C)–(E) were excluded from training to prevent model

result confusion.

2.2.2 Data augmentation
Before augmentation, approximately 15% of the images were

randomly extracted from each species as the validation set. Another

15% were designated as the test set, and the remaining 70% were

allocated as the training set (Figure 3). The training set was utilized

for model training. The validation set was employed for model fine-

tuning and selection, as well as screening of augmentation methods

and their combinations. The test set was reserved for evaluating the

performance and generalizability of the final model.

This study performed data augmentation on the training set,

resulting in a sample count of 12,351 images using the following
Frontiers in Ecology and Evolution 04
methodology. First, the original images were transformed into square

images by background filling. Second, 10 singular data augmentation

techniques were applied to the training set images, namely, random

translation, random rotation, random scaling, mirroring, random

brightness, random contrast (Yang et al., 2022), gamma correction

(Zhou et al., 2019), Gaussian blur (Rusak et al., 2020), randommasking

(Zhong et al., 2020), and salt-and-pepper noise (Veerakumar et al.,

2009). These processes generated 10 new training set. Each new set,

combined with the original training set, was trained, verified on the

validation set, and evaluated for accuracy. To ensure comparable

training results across different augmentation methods and mitigate

model performance fluctuations due to floating-point precision

variations and random optimization strategies during the training

process (Zhang et al., 2022), identical random seeds were employed

for training, leveraging the determinism mechanism of TensorFlow.

Third, the data augmentation methods that significantly improved the

model performance from the initial step were selected and combined to

augment the training set images. The augmented training set was

superimposed onto the original training set, followed by training,

verification, and accuracy comparison. The training process

employed the same CNN model and validation set. The results were

compared when the validation set loss converged to a near-

optimal value.
FIGURE 3

Workflow diagram of the proposed model for calcareous nannoplankton classification.
B C D EA

FIGURE 2

Mislabeled images and low-quality images that are difficult to recognize. (A) Helicosphaera euphratis Haq, 1966 (Sant et al., 2019); (B) Sphenolithus
disbelemnos Fornaciari and Rio, 1996 (Sant et al., 2019); (C, D) Low-quality images (Ola, 2018); (E) Illegible image (Ola, 2018).
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2.3 Model training

The data preprocessing was performed locally using the

OpenCV, while the TensorFlow-based CNN model was deployed

on the Google Colab platform. An NVIDIA T4 graphics processing

unit powered the entire training process.

Given the diverse morphological features, similarity among

fossils within the same genus and strong correlation among

extinction images, planar images, and stereoscopic morphological

images of fossil species, we need a strong model to distinguish

species differences and collective training for common features

under different imaging modalities. This study selected five CNN

models with strong feature induction capabilities, adept at capturing

multiscale morphological features: ResNet50 (He et al., 2016),

ResNeXt50 (Xie et al., 2017), DenseNet121, DenseNet169 (Huang

et al., 2017), and InceptionV3 (Szegedy et al., 2015). Specifically,

each model was trained using the following steps: First, to solve the

species imbalance, weighting coefficients were introduced into the

loss function based on the number of images for each species (Cui

et al., 2019), adjusting the model’s focus on different species.

Hyperparameters related to the model structure, such as the

convolutional kernel size, number of convolution kernels, pooling

kernel size, and pooling method, were set following the models’

default configurations (Szegedy et al., 2015; He et al., 2016; Huang

et al., 2017; Xie et al., 2017). Adjustable hyperparameters, such as

activation function type, optimizer type, learning rate, and batch

size, remained consistent, following the principle of the controlled

variables method (Bressem et al., 2020). Pre-training techniques

were used to initialize the parameters. By leveraging pre-training

with pretrained weights from the CIFAR and ImageNet datasets

(Huang et al., 2017), the model began with an optimized parameter

space, resulting in accelerated convergence and improved

identification accuracy. After comparative experiment, the model

with the highest validation accuracy was selected. Second, the best

model and data augmentation strategy determined in the previous

steps underwent repeated training. Various measures were adopted

to improve model accuracy while preventing overfitting (Ying,

2019), such as adjusting the hyperparameters (Yu and Zhu, 2020),

exploring different optimization algorithms (Ruder, 2016), and
Frontiers in Ecology and Evolution 05
applying various regularization techniques (Cortes et al., 2012).

Third, the trained model was executed on the test set to evaluate the

final model’s accuracy. Additionally, the optimal model and data

augmentation approach were utilized to train images captured

solely under orthogonally polarized light microscopy, enabling

comparison with models trained on images from multiple sources.
2.4 Model evaluation

Based on the model predictions on the test set, a confusion

matrix was constructed (Duntsch and Gediga, 2019) to display the

distribution of predicted results across different calcareous

nannofossil species and the correlation of correct and incorrect

predictions. In the matrix, the rows and columns indicate the actual

and predicted species of calcareous nannofossils, respectively. To

comprehensively evaluate the model performance with species

imbalance, precision and recall were calculated, along with their

harmonic mean F1-score (Sokolova et al., 2006), effectively

reflecting the model performance across different calcareous

nannofossil species. Furthermore, top-k accuracy was employed

to obtain the k species with the highest confidence in the model

prediction for a specific image. The multiple predictions and their

confidence levels were analyzed comprehensively (Petersen et al.,

2022). This approach objectively assessed the model’s genuine

generalizability while assisting researchers in judging inter-species

similarities based on similar confidence levels. In addition, to

further understand how the model extracted features and derived

inference results, five representative layers, including the first

convolutional layer and the last convolutional layer of the four

DenseBlocks, were visualized (Zeiler and Fergus, 2014) to

summarize the model’s reasoning process.
3 Results

3.1 Results of model comparison

This study conducted training and validation on fivemodels, that is,

ResNet50, ResNeXt50, DenseNet121, DenseNet169, and InceptionV3,
BA

FIGURE 4

Histogram showing the percentage of accuracy and F1-score for different models (A) and data augmentation methods (B).
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using the same training and validation sets. The top-1 accuracy and F1-

score of these models on the validation set are depicted in Figure 4A.

The results indicate that ResNet50 and InceptionV3 yielded

comparatively lower performance with accuracies of only 73.96% and

75.26%, respectively, and correspondingly lower F1-scores of 74.41%

and 75.93%. ResNeXt50 exhibited an accuracy of 76.56%, surpassing

ResNet50, and achieved an F1-score of 76.56%, even outperforming

InceptionV3. The DenseNet series showed the highest accuracy,

reaching 79.95% and 78.65%. Their F1-scores reached 81.02% and

79.56%. DenseNet169 demonstrated a lower accuracy than

DenseNet121 on the validation set. Overall, DenseNet121 attained the

optimal performance without encountering overfitting, exhibiting an

accuracy of 79.95%. Therefore, DenseNet121 was selected as the

foundational model for training in the subsequent experiments.
3.2 Results of data augmentation

Drawing upon the morphological, structural, and frequency

domain features of the Miocene calcareous nannofossil images, this

study evaluated 10 data augmentation methods. Comparative

experiments were conducted under the same network model and

training strategy, and the results are shown in Figure 4B. The

original training set achieved an accuracy of 79.95%. The training

sets augmented by random noise and Gaussian blur suffered a

decline in model performance, yielding accuracies of 77.86% and

75.78%, respectively. In contrast, the training sets augmented by

random translation, random masking, and random contrast
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attained model accuracies of 79.95%, 80.21%, and 80.21%,

respectively, nearly identical to the training results of the original

data. Thus, these data augmentation techniques did not improve or

degrade the model performance. Regarding the test set augmented

by random scaling, the model achieved an accuracy of 80.73%, a

marginal improvement of less than 1%. Models employing random

rotation, random mirroring, random brightness, and gamma

correction obtained accuracies of 81.77%, 82.29%, 82.81%, and

82.03%, respectively. The performance of these four models was

significantly improved compared to that of the original data.

Therefore, these four augmentation methods were chosen as the

primary strategies for preprocessing the training set images.

To expand the diversity of the training set images and enhance

the overall generalization ability of the model, this study employed

combined training approaches using the four data augmentation

techniques that substantially improved the model performance

(Cubuk et al., 2019). The combined training results are listed in

Table 1. The experimental results show that employing a

combination of two data augmentation techniques improved the

average model accuracy, increasing it from 82.23% (achieved with a

single data augmentation technique) to 84.03%. Furthermore, using

three data augmentation techniques led to a slight increase in the

average model accuracy, reaching 84.44%. It can be observed that,

by applying the combination of random rotation, random

mirroring, random brightness, and gamma correction, the model

accuracy reached the highest level of 85.68%. Consequently, the

combined application of multiple data augmentation techniques

effectively enhanced the performance of CNN models in identifying
TABLE 1 Training results of data augmentation methods and combinations.

Origin
Random
Rotation

Mirror
Random
Lightness

Gamma
Correction

Accuracy (%) Average (%)

✓ 79.95 79.95

✓ ✓ 81.77

82.23
✓ ✓ 82.29

✓ ✓ 82.81

✓ ✓ 82.03

✓ ✓ ✓ 83.07

84.03

✓ ✓ ✓ 83.33

✓ ✓ ✓ 85.16

✓ ✓ ✓ 84.90

✓ ✓ ✓ 84.64

✓ ✓ ✓ 83.07

✓ ✓ ✓ ✓ 84.90

84.44
✓ ✓ ✓ ✓ 84.11

✓ ✓ ✓ ✓ 84.38

✓ ✓ ✓ ✓ 84.38

✓ ✓ ✓ ✓ ✓ 85.68 85.68
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Miocene calcareous nannofossil images, leading to improved

accuracy. Based on these results, the training set underwent data

augmentation, achieving a species balanced sample count of 12,351

images (Figure 5).
3.3 Training results of the final model

The model trained solely on the original training set using the

basic DenseNet121 yielded an accuracy of only 79.95%. However,

after species balance was achieved using the various data

augmentation techniques, the model accuracy reached 85.68%.

Eventually, this study employed a solution that combines the four

data augmentation techniques on the original training set,

expanding the training sample count to 12,351, and trained the

DenseNet121 model on the augmented training set. During the

training process, the Adam optimization algorithm with adaptive

learning rates was adopted, along with L2 regularization, which

effectively suppressed overfitting. After multiple rounds of

parameter tuning and training, the model attained promising

results. The top-1 accuracy stood at 94.56% while the top-3

accuracy reached 98.71%. Simultaneously, the study conducted

training on sufficient Miocene calcareous nannofossil images

obtained exclusively through orthogonal polarized light

microscopy, resulting in a top-1 accuracy of 95.73%, an F1-score

of 95.73%, and a top-3 accuracy of 98.78%.

To better display the model performance across different species

of Miocene calcareous nannofossils, this study utilized a confusion

matrix (Figure 6) to assess the test results of the final model on the

test set. Figure 6 displays the true calcareous nannofossil species on

the vertical axis and the predicted species on the horizontal axis.

When the predicted species matches with the actual species, the

corresponding statistical results are distributed along the diagonal,

indicating correct classification. The values outside the diagonal

represent the quantity of misclassified samples. The final
Frontiers in Ecology and Evolution 07
experimental results indicated that the vast majority of the

predicted species matched closely with the true species. Only a

few species were predicted incorrectly. For instance, considering

Ceratolithus acutus, 33 samples were predicted and indeed belonged

to this species, resulting in a 100.00% precision. However, three

samples were mistakenly classified as Nicklithus amplificus and

Sphenolithus heteromorphus, leading to a recall of 91.67%.

Moreover, all 52 samples of Sphenolithus belemnos were

accurately categorized, achieving a 100.00% recall. Nevertheless,

five samples were incorrectly classified as Sphenolithus belemnos,

with the true species being Catinaster coalitus and Sphenolithus

delphix, resulting in a precision of 91.23%. Precision denotes the

accuracy of predictions, indicating the proportion of correctly

predicted samples among all samples predicted as positive. In

contrast, recall signifies the comprehensiveness of predictions,

representing the proportion of correctly predicted samples among

the actual positive samples. In this study, the desired model should

be both accurate and comprehensive in prediction, which means

that the two parameters are of equal importance. Therefore, their

harmonic mean, F1-score, is a concise and potent evaluation metric.

In the test set, calcareous nannofossil images of different species

differed significantly in sample count, yet possessed equal

importance. Thus, the macro F1-score was utilized to effectively

assess the comprehensive performance of each model across

different species. The final value of this metric reached 94.62%.
4 Discussion

4.1 Selection of optimal model based on
existing key fossil species of Miocene
calcareous nannofossils

This study employed five CNN models with strong

morphological feature abstraction capabilities to identify the
FIGURE 5

Histogram showing the number of each species of images before and after data augmentation.
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morphological features of calcareous nannofossils in images

obtained under orthogonal polarized light microscopy, single-

polarized light microscopy, and scanning electron microscopy.

Using the training set and default parameters, with enabled

determinism mechanism of TensorFlow, we obtained accuracies

ranging between 73.96% and 79.95%. All five models demonstrated

remarkable generalization abilities in identifying the images of

calcareous nannofossils.

Among them, DenseNet stood out as the top performer. Its dense

block structure facilitated feature reuse, enhancing the network’s ability

to extract features in tasks involving images rich in fine-grained details.

This is particularly advantageous in the classification of detailed

calcareous nannofossil images. DenseNet, initially proposed by

Huang et al. (2017), achieved an accuracy of 79.20% on the general

object dataset ImageNet (Deng et al., 2009). Subsequently, Zhang et al.

(2018) applied DenseNet to medical image analysis and proposed an

advanced sparse-view computed tomography reconstruction

algorithm, which improved structural reconstruction similarity by

18% and reduced root mean square error by 42%. Wang et al.

(2020) applied DenseNet in geographic remote sensing to identify

water bodies and their boundaries in remote sensing images. DenseNet

obviously outperformed models such as ResNet, VGG, and SegNet.

Their experiment revealed that DenseNet121 and DenseNet169,

having structurally similar architectures but differing in the number

of layers, achieved validation set accuracies of 79.95% and 78.65%,

respectively. These accuracies greatly surpassed those of ResNet50,

ResNeXt50, and InceptionV3. Notably, despite having more layers and

parameters, DenseNet169 did not perform better. It attained a test
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result of 78.65% on the validation set, which is much lower than the

model with fewer layers and parameters (DenseNet121). It can be

observed that, when dealing with relatively limited datasets, complex

models with numerous parameters cannot acquire sufficient

information and thus face difficulties in deriving effective features

from such datasets. This reduces the generalization capability and

accuracy of these models (Hu et al., 2021).

ResNet introduces residual blocks that significantly enhance

deep architecture by learning residual mapping. This model has

shown outstanding performance in various domains such as general

object recognition and medical image analysis (Shu et al., 2020; Su

et al., 2021). However, in comparative model experiments,

ResNet50 exhibited relatively poorer performance. Its accuracy

was only 73.96%, markedly inferior to DenseNet121. This could

be attributed to DenseNet’s dense connection structure, which

captures feature correlations more effectively in calcareous

nannofossil images compared to the residual connections in

ResNet. Inception operates with multiple filters of various sizes in

parallel, adept at capturing information at different scales. However,

in the task of classifying calcareous nannofossil images, this model

performed moderately with an accuracy of 75.26%. This could be

due to the insufficient size differences of fossils, as well as the

inherent scale invariance of convolution operations. ResNeXt

incorporates the concept of cardinality, which significantly

enhances the model’s ability for nonlinear transforms by setting

up multiple branches with similar topologies within each residual

block. In this study, this model obtained an accuracy of 76.56%,

slightly superior to Inception.
FIGURE 6

Confusion Matrix for the test images classified by DenseNet121 model. Diagonal values represent correct predictions, and off-diagonal values
represent incorrect predictions. Accuracy of the model is in the lower righthand corner.
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Despite the excellent design of these three models, their accuracy

was inferior to that of DenseNet121. This can be attributed to

differences in network structure and model complexity (Goodfellow

et al., 2016). First, from a network structure perspective, the unique

DenseBlock architecture in DenseNet enables each layer to receive

inputs from all preceding layers within DenseBlock. This dense

interconnectivity enhances feature propagation and facilitates cross-

layer feature reuse, thereby improving discrimination capability

(Huang et al., 2017). In contrast, alternative models lack these

structures. Second, the model complexity is typically characterized

by the size or number of trainable parameters. Five CNN models

from the TensorFlow library were employed: ResNet50, ResNeXt50,

DenseNet121, DenseNet169, and InceptionV3. Their respective

numbers of trainable parameters are 25.5 million, 24.9 million, 7.99

million, 14.1 million, and 23.8 million. DenseNet121 has the smallest

number of trainable parameters. In deep learning, under consistent

experimental conditions, models with larger parameter scales require

larger datasets, are more prone to overfitting, and demonstrate a

weaker generalization ability for unseen data (Srinivasan et al., 2021).

Given the limited sample size of the calcareous nannofossil used in

this study, DenseNet121, with relatively fewer parameters, provides a

better chance of achieving the desired performance than its

counterparts. Moreover, during the collection of calcareous

nannofossil image data, multiple factors, including significant

differences in magnification ratios, shooting parameters, and

varying image quantities among different species, contributed to

noise and anomalous data within the original data. All these factors

can affect the actual predictive results of neural network models.

To illustrate the reasoning process of the model more effectively,

this study provides a visualization (Figure 7). Figures 7A–E show five

distinct convolutional layers, each representing various stages of the
Frontiers in Ecology and Evolution 09
reasoning process. In these visualizations, the color gradient from

dark green to light yellow corresponds to neuron values ranging from

zero to one. UsingHelicosphaera euphratis as an example, the original

image was processed in the DenseNet121 model. Initially, a

convolutional layer with 64 filters generated 64 feature maps

(Goodfellow et al., 2016), as illustrated in Figure 7A. Subsequently,

the pooling layer reduces the feature map size by half for

compression. The output feature maps then undergo 12

consecutive convolutional operations, with the results added to the

initial inputs of the subsequent three groups of 12 convolutional

operations (Huang et al., 2017). This sequence of 48 convolutional

operations produced 128 feature maps, as shown in Figure 7B. This

network architecture, termed DenseBlock, is connected by transition

layers composed of convolutional and pooling layers, facilitating a

reduction in the feature map size and further compression of

information. This process was repeated three times, as shown in

Figures 7C–E, and 1024 feature maps were obtained, as shown in

Figure 7E. Subsequently, in the global average pooling operation, each

feature map is compressed to a single value, resulting in a 1024-

dimensional output vector for this layer. The next dense layer, that is,

the fully connected layer, further compressed these 1024 feature

values into the 18 categories expected from the model’s output.

Following normalization, each value ranged from zero to one, with

the sum of the 18 values totaling one. In Figure 7, the highest value

corresponds to the 11th category, indicating that the model predicted

the image as Helicosphaera euphratis. Moreover, a dropout at the end

of the model prevents overfitting by randomly deactivating certain

neurons (Srivastava et al., 2014).

Through a visual comparison of the four sets of featuremaps shown

in Figure 7, it is apparent that different convolutional kernels emphasize

various image details (Goodfellow et al., 2016). As the depth of the
B C D EA

FIGURE 7

Model architecture and layer visualization of DenseNet121. The example original image is Helicosphaera carteri. (A) Output of the first convolution
layer; (B) Output of the first DenseBlock; (C) Output of the second DenseBlock; (D) Output of the third DenseBlock; (E) Output of the
fourth DenseBlock.
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convolutional operations increases, the feature map representations

transition from concrete to abstract (Zhang and Zhu, 2018),

progressively encoding the image into a numerical form.
4.2 Comparison and selection of data
augmentation methods

The training set in this study faces several challenges, such as a

limited number of samples, an imbalanced distribution of species,

and substantial scene variations. This study conducted comparative

experiments on 10 data augmentation methods. The experimental

results showed that the combination of random rotation, random

mirroring, random brightness, and gamma correction provided the

most significant enhancement in model accuracy.

Random rotation augmented the model’s ability to induce

rotational invariance in fossil features, improving the accuracy by

1.82%. As fossil orientations vary considerably in images of

calcareous nannofossils, random rotation allows the model to

overlook these differences and focus on key features distinguishing

fossil species. Random mirroring enhances the model ’s

understanding of fossil image morphology, boosting the accuracy

by 2.34%. Mirror transforms of fossil images simulate different

preservation states of fossils in thin sections, allowing the model to

disregard these variations and better learn calcareous nannofossil

morphology. Overall, random rotation and random mirroring

achieved significant performance improvements. Although typical

CNN filters are not affected by rotation or mirroring when handling

basic features, their ability to generalize complex features is clearly

insufficient. To address this limitation, early-stage data augmentation

is necessary. Compared to the original image (Figure 8A), random
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brightness (Figures 8B, C) strengthened the model’s capability to

extract features under different lighting conditions, resulting in a

2.86% accuracy improvement. The images in this study were obtained

from various publications by researchers from different institutions.

The technical parameters vary with the acquisition equipment and

collection processes. These variations cause significant brightness

disparities in calcareous nannofossil images. Random brightness

linearly alters pixel values, expanding the distribution of the image

data. Gamma correction, a nonlinear transform, boosted the accuracy

by 2.08%. As shown in Figure 8D, gamma correction highlighted the

image details, providing the model with more valuable information

for training. Ultimately, the combined use of random rotation,

random mirroring, random brightness, and gamma correction

attained the highest relative model accuracy at 85.68%. Previous

studies have also employed a combination of various data

augmentation methods. For instance, Taylor and Nitschke (2018)

conducted systematic benchmark testing on multiple data

augmentation methods, indicating that methods such as random

rotation and random mirroring significantly enhance the overall

accuracy of CNN models. Cubuk et al. (2019) proposed an

automatic data augmentation method, revealing that the synergy of

multiple data augmentation methods usually improves model

performance. This is particularly true for datasets with limited

samples. Appropriate data augmentation could expand the dataset

from multiple aspects, enhancing training sample diversity.

Niu (2021) categorized these 10 data augmentation methods

into three types: geometric distortion (random translation, random

rotation, random scaling, and mirroring), optical distortion

(random brightness, random contrast, gamma correction, and

Gaussian blur), and random occlusion (random masking and salt-

and-pepper noise). The validation set is sensitive to geometric
B C D

E F G

A

FIGURE 8

Comparison of multiple data augment methods for images: take Helicosphaera euphratis as an example. (A) Original image (Senemari and Jalili,
2021); (B) Reduce lightness; (C) Enhance lightness; (D) Gamma correction; (E) Gaussian blur; (F) Random blockage (Black block: pixel values are set
to 0, used as blockage); (G) Pepper-salt noise.
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distortion and optical distortion augmentation methods while being

insensitive to random occlusion methods.

In the geometric distortion type, our training results indicate

sensitivity toward random rotation and random mirroring, and

insignificant effects of random translation and random scaling. The

ineffectiveness of random translation is attributed to convolution

operations that extract features by sliding filters over images.

Therefore, CNN can detect corresponding features despite slight

shifts in fossil patterns. Random scaling offers negligible model

enhancement, because the down-sampling of multiple convolutional

and pooling layers inherently possesses a degree of scale invariance. As

most images have minor differences in proportions, the reliance on

large-scale invariance is minimal.

Regarding the optical distortion type, our training results

indicate sensitivity toward random brightness and gamma

correction, insignificant effects of random contrast, and a negative

impact from Gaussian blur. Random contrast essentially performs a

linear transform similar to convolutional operations, resulting in

nearly zero improvement in model performance. After Gaussian

blur processing (Figure 8E), a significant decrease in model

accuracy occurred, probably because many images already had

insufficient clarity. Gaussian blur further diminished more

detailed information, outweighing the benefits of noise reduction.

In the random occlusion type, the primary focus is enhancing

the model’s robustness and avoiding overreliance on local

information. Our training results indicate insensitivity toward

both random masking and salt-and-pepper noise. The core

concept of our method stems from dropout. The activation values

of certain neurons are reduced to zero with a probability to lower

the network model’s overreliance on certain neurons, thereby

shifting attention to overall fossil structure features. Calcareous

nannofossil images commonly contain noise signals, local

occlusions, local blurriness, and fragmentation. Therefore, this

study tentatively compared random masking and salt-and-pepper

noise (Figures 8F, G). The two augmentation methods led to a

0.26% increase and a 2.08% decrease in accuracy, respectively,

failing to achieve the expected performance improvement. By

analyzing the image distribution, it was found that these images

do not have issues such as fragmentation or occlusion. Images of the

same fossil were collected from multiple publications. However,

different publications reported different imaging scenarios and

considered a limited image sample size. As a result, random

masking and salt-and-pepper noise erased the already few

features of the original data, worsening the model generalization.

This shows that when the sample size is relatively small, random

occlusion does not contribute to the model performance. However,

for other domains with large datasets, random occlusion may still

serve as an effective data augmentation method.

In summary, data augmentation techniques can mimic

rotations, mirroring, and brightness variations encountered in the

identification of calcareous nannofossils, effectively enhancing

identification accuracy. For the validation set, the combination of

random rotation, random mirroring, random brightness, and

gamma correction achieved the highest relative model accuracy,

increasing it by 5.73%. Despite the laborious collection of images

from established published databases, books, and journals, the
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augmentation techniques. To improve the effectiveness of model

training in the future, it is necessary to further collect Miocene

sediment and add microscopic images to the training set.
4.3 Confusion matrix and the
morphological causes

Based on the confusion matrix for the test images classified by

the DenseNet121 model (Figure 6), 11 calcareous nannofossil

species had a recall in the range of 95–100%, four genera had a

recall in the range of 90–95%, and three genera had a recall of less

than 90%. This represents a very good assessment of the majority of

calcareous nannofossil species using the DenseNet121 model in this

study, which is consistent with the model providing a macro F1-

score of 94.62%. Species with a recall of 90–95% are Ceratolithus

acutus, Discoaster quinqueramus, Sphenolithus disbelemnos, and

Sphenolithus heteromorphus. The species with a recall lower than

90% were Amaurolithus primus, Discoaster berggrenii, and

Sphenolithus delphix.

This low recall value represents an error in the discrimination of

calcareous nannofossil species caused by morphological similarities

between species. The species with the lowest recall was Sphenolithus

delphix with a recall of 76.19%. 32 Sphenolithus delphix were correctly

identified, four were incorrectly identified as Sphenolithus belemnos,

three were incorrectly identified as Discoaster berggrenii, and three

were incorrectly identified as Sphenolithus heteromorphus.

Sphenolithus delphix is a conical discoasterid with a concave base

and composed of a mass of elements radiating from a common origin.

The apical spine and two basal spines of Sphenolithus delphix are

slender and elongated, resulting in a triradiate outline. The remaining

spines were small and compact. Under cross-polarized light, the apical

spine was prominent and the basal spines were faint at 90° and 270°.

The reverse was true at 0° and 180°. The fact that the genus

Sphenolithus has a common conical discoasterid with a concave

base and apical spine, as well as the differences in the images

presented by Sphenolithus delphix at different extinction angles,

contributed to the low identification rate of this species. The species

with the second-lowest recognition rate wasDiscoaster berggrenii, with

a recall rate of 86.54%. About 45 Discoaster berggrenii were correctly

identified, four were incorrectly identified as Catinaster coalitus and

three were incorrectly identified as Discoaster quinqueramus.

Discoidal discoasteralids are formed from a single, non-birefringent

cycle in the plan view. Radiate nanoliths of Discoaster with each ray.

Radiate nanoliths of Discoaster with each ray formed from a discrete

crystal unit. Catinaster is characterized by forked ray tips, which form

a basket-like structure. Catinaster is characterized by bifurcated ray

tips, which form a basket-like structure. However, bothDiscoaster and

Catinaster are Discoasteraceae, with radially symmetric nanoliths that

cause morphological confusion. The species with the third-lowest

recognition rate was Amaurolithus primus, with a recognition rate of

87.50%. About 35 Amaurolithus primus were correctly identified and

five were incorrectly identified as Nicklithus amplificus. Both

Nicklithus and Amaurolithus belong to the Ceratolithaceae family

and both have horseshoe-shaped nanoliths and simple hoop-shaped
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nanoliths, causing morphological confusion. However, Nicklithus has

a straight left arm with knots, and the model does not judge this

detail well.

The remaining four calcareous nannofossil species with recall

values in the 90–95% range were as follows: 33 Ceratolithus acutus

were correctly identified, two were incorrectly identified as Nicklithus

amplificus, and one was incorrectly identified as Sphenolithus

heteromorphus. Approximately 50 Discoaster quinqueramus were

correctly identified, two were incorrectly identified as Discoaster

berggrenii, one was incorrectly identified as Discoaster hamatus,

and one was incorrectly identified as Discoaster kugleri. About 31

Sphenolithus disbelemnos were correctly identified, two were

incorrectly identified as Sphenolithus delphix and one was

incorrectly identified as Helicosphaera carteri. 37 Sphenolithus

heteromorphus was correctly identified, one was incorrectly

identified as Sphenolithus delphix, and one was incorrectly

identified as Triquetrorhabdulus carinatus. Many of the questions

above address species similar to those in the previous section; overall,

the models are more likely to make errors in judging species when

they have morphological similarities, which often arise from their

evolutionary significance.

This result demonstrates the potential of the DenseNet121

convolutional neural network model for studying the evolutionary

relationships of calcareous nannofossils. Adaime used neural

networks to develop an explicit phylogenetic toolkit for analyzing

the overall shape, internal structure, and texture of pollen grains

(Adaime et al., 2023). This study shows that the phylogenetic

history encoded in pollen morphology can be detected using

neural networks. This is similar to what is shown in the

confusion matrix used in the present study.
4.4 Identification of other classes

During the identification of the calcareous nannofossils, there

were numerous other unidentifiable fossil species, older redeposited

fossils, and non-fossil fragments. With these practical considerations,

this study specially created ‘other’ classes to include all other

fragments, excluding the 18 calcareous nannofossil species, images

exclusively from the real world. The model must first be able to

distinguish between other classes and known species and then

identify species within the 18 known species. In this study, the

rectified linear unit (ReLU) was used as the activation function for

the last layer of DenseNet121 (Agarap, 2018). Following the methods

of Vareto et al. (2017) and Mahdavi and Carvalho (2021), an initial

classification of known species/other classes was conducted on

images fed into the model.

Statistical analysis was performed on the model’s inference results

for the test set of known species and images of other classes. The

results revealed that the distribution of output activation values for

the known species had a mean of 7.4985 and a variance of 2.0115,

whereas the distribution for the unknown classes had a mean of

4.6388 and a variance of 2.5488. Based on these distribution

differences, a decision threshold was set to distinguish other types

outside the key fossil species of the Miocene Calcareous Nannofossil
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Zone. According to the calculation results, when the threshold was set

to 5.3, the model achieved the highest accuracy in differentiating

between known and other class images, reaching 84.14%. When the

activation value was greater than 7.9, the species was deemed as a key

fossil species of the Miocene Calcareous Nannofossil Zone. Then, the

species identification of the image could be further completed using

sigmoid as the activation function of the final output layer (Han and

Moraga, 1995). For images with activation values between 5.3 and 7.9,

the model may have ambiguity while predicting for this data segment.

If images with activation values greater than 5.3 are categorized as

known species, there could be a misclassification rate of 9.09%.

Owing to the efficient network structure of DenseNet121 and

powerful computation capabilities of NVIDIA T4, the image

identification speed was approximately 138 images per second,

significantly higher than the testing speed in the works of

researchers such as Dollfus and Beaufort (1999).

Currently, AICN has achieved good discriminatory ability for

identifying 18 key fossil species of the Miocene Calcareous

Nannofossil Zone and clearly distinguished debris outside these 18

species. However, the images of calcareous nannofossils faces multiple

issues, including an inadequate sample size, an unbalanced distribution

of image quantities across different species, and disparities in image

quantities under different microscopes. In the future, the limited

sample size issue can be addressed by continuously capturing fossil

images to establish a larger and more complete fossil library, coupled

with data augmentation techniques.

In terms of model identification capabilities, four data

augmentation methods, namely, random rotation, random

mirroring, random brightness, and gamma correction, were

combined and applied to the DenseNet121 CNN model. This

approach achieved an individual species identification accuracy of

nearly 95%. However, the discrimination accuracy for the other classes

only reached 84.14%. To enhance the model’s discrimination

capabilities for other classes, more sophisticated methods, such as

ensemble learning, active learning, and model uncertainty evaluation

like Bayesian deep learning, can be explored. In the actual division of

stratigraphic fossil zones, individual fossil identification is only the

initial step. The delineation of fossil zones requires consideration of the

first and last appearance data of fossil profiles. To expedite and

enhance the fossil identification process, future efforts should focus

on developing robust detection models capable of automatically

scanning and recognizing entire thin sections.
5 Conclusions

Based on this research, the following results and insights

were obtained:
(1) A novel CNN-based automated assisted identification

method (AICN) was developed to classify 18 key fossil

species in the Miocene Calcareous Nannofossil Zone using

images acquired under orthogonally polarized, single-

polarized, and scanning electron microscopy.
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(2) This study evaluated ten data enhancement methods and

found that a combination of random rotation, random

mirroring, random brightness, and gamma correction was

the most effective way to improve recognition efficiency.

(3) By leveraging the DenseNet121 model, AICN achieved an

impressive identification accuracy of 94.56% for 18 key

fossil species in the Miocene Calcareous Nannofossil Zone

at a speed of over 138 images per second, effectively

assisting researchers in fossil identification.

(4) The model emulated real-world data, first being able to

distinguish between 18 known species and all other

fragments in other classes, and second being able to

identify species within the 18 known species.
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Appendix A. Taxonomic appendix

The list includes all taxa cited in the paper. The taxonomy and

relative bibliographical references can be found in Perch Nielsen

(1985) and Young and Bown (1997).

Amaurolithus primus (Bukry and Percival, 1971) Gartner and

Bukry (1975).

Calcidiscus premacintyrei (Wise and Windsor, 1976)

Theodoridis (1984).

Ceratolithus acutus Gartner and Bukry (1974).

Catinaster coalitus Martini and Bramlette (1963).

Discoaster berggrenii Bukry (1971).

Discoaster hamatus Martini and Bramlette (1963).

Discoaster kugleri Martini and Bramlette (1963).

Discoaster quinqueramus Gartner (1969).

Discoaster signus Bukry (1971).

Helicosphaera carteri (Wallich, 1877) Kamptner (1954).

Helicosphaera euphratis Haq (1966).

Nicklithus amplificus (Bukry and Percival, 1971) Raffi, Backman

and Rio (1998).

Ret i cu lo fenes t ra pseudoumbi l i cus (Gartner , 1967)

Gartner (1969).

Sphenolithus belemnos Bramlette and Wilcoxon (1967).

Sphenolithus delphix Bukry (1973).

Sphenolithus disbelemnos Fornaciari and Rio (1996).

Sphenolithus heteromorphus Deflandre (1953).

Triquetrorhabdulus carinatus Martini (1965).
Appendix B. Appendix of image data
references for key fossils from the
Miocene Calcareous Nannofossil Zone

We hereby make the following declarations regarding the use of

image data in our study on Miocene calcareous nannofossil

classification using deep learning technology:

The use of images in this study is strictly for academic research

purposes and does not involve any commercial purposes. All images

used in the study have been properly credited, indicating the

original author and source. We strictly adhered to the data

mining policies of the copyright holders. The images used during

the data mining process are owned by the original copyright

holders. Any third-party use in any form must comply with the

policies and requirements of the copyright holders.
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