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Ecological vulnerability assessment is crucial for environment protection,

ecological restoration and resource utilization. However, many former studies

have limitations in the indicator system of the assessment, which were not

comparable for different types of ecologically vulnerable areas. It is difficult to

apply directly to the ecological vulnerability assessment of different types and in

various regions. Aiming to solve these problems, the study proposed a well-

established and comprehensive indicator system for ecological vulnerability

assessment and conducted ecological vulnerability assessment application of

five types of typical ecologically vulnerable areas of China based on remote

sensing, meteorological, geographic and other data. The results show that the

average EVIs value of Zhangbei County ranging from 0.525 to 0.559 are the

highest among the five research areas during the four periods, followed by Zoige

region and Xiamen bay. However, the region with the lowest average EVI value

varies. In 2005 and 2015, it was Taihe County, while in 2010 and 2020, it was the

Sanjiangyuan region. The variation of average EVIs in the five typical areas

presents slight fluctuation and remains generally stable from 2005 to 2020. It

indicates that the environmental protection measures and projects undertaken

by the Chinese government in recent years have had a striking effect, curbing the

trend of ecological environment deterioration.
KEYWORDS

ecologically vulnerable areas, indicator system, spatial-temporal variations, remote
sensing, spatial analysis
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1 Introduction

The ecologically vulnerable region, also known as an Ecotone

(Niu, 1989), refers to the transitional area between two different

types of ecosystems. These regions are characterized by internal

instability, sensitivity to external stimuli, vulnerability to loss, and

challenges in recovery. Additionally, their environmental

degradation surpasses the existing socio-economic and

technological capabilities to sustain long-term human

development (De Lange et al., 2010). The ecological environment

conditions in these transitional areas differ from the core areas of

the two different ecosystems. These regions experience significant

changes in their ecological environment and have become critical

areas for ecological protection. The objective of ecological

vulnerability assessment is to identify the key factors that

contribute to vulnerability, examine the pathways through which

vulnerability occurs, and elucidate the variations in exposure under

different human activities and natural environmental conditions

(Preston et al., 2011; Shukla et al., 2018; Yang et al., 2023).Various

methods have been employed for the specific assessment of

vulnerability in ecologically vulnerable regions. These methods

include fuzzy comprehensive assessment (Dixon, 2005; Martino

et al., 2005; Wang et al., 2008; Liu et al., 2017), the analytic hierarchy

process (AHP) (Li and Fan, 2014; Song et al., 2010), principal

component analysis (PCA) (Huang et al., 2003; Li et al., 2006),

artificial neural network evaluation (Park et al., 2004), land-cover

change assessment (Swetnam et al., 2011), and landscape valuation

(Aspinall and Pearson, 2000). Among them, the AHP technique is

one of the most commonly adopted assessment tools (Liu

et al., 2017).

China has some of the largest ecologically vulnerable areas, the

most vulnerable ecological types, and the most obvious ecological

vulnerabilities in the world (Zou et al., 2021; Zhang et al., 2017a, b).

The spatial distribution of vulnerable ecological areas ranges from

the arid and semi-arid regions in the north to the hilly and

mountainous areas in the southwest, the Qinghai-Tibet Plateau

area, and the aquatic-terrestrial ecotone in the eastern coastal

regions (Ma et al., 2023; He et al., 2023; Tian and Chang, 2012;

He et al., 2018; Li et al., 2011; Song et al., 2015; Liu et al., 2017).Most

methods of ecological vulnerability assessment focus on specific

research areas by selecting specific indicators to evaluate a particular

vulnerability phenomenon or by selecting multiple indicators to

conduct a comprehensive evaluation of the vulnerable environment

(Liu et al., 2017; Song et al., 2015; Zhang et al., 2017b), making them

unsuitable for large-scale and multi-type environmental

assessments of ecologically vulnerable areas. Due to the

development of spatial information technology, multi-source,

multi-temporal and large-scale evaluation indicators can be

obtained through remote sensing (RS) and geographic

information system (GIS) technology (Kamran and Yamamoto,

2023; Dai et al., 2022; Cutter et al., 2003; Hao et al., 2003; Metzger

et al., 2005; Rahman et al., 2009; Liu et al., 2017), which significantly

improves evaluation efficiency and reduces evaluation costs.

Establishing an assessment indicator system for ecological

vulnerability in China can help the government standardize and
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promote the protection of ecologically vulnerable areas, clarify

protection priorities, and provide evidence for crafting reasonable

strategies (Song et al., 2015; Li and Fan, 2014; Lu et al., 2012). Thus,

there exists an acute need for a comprehensive and objective

assessment of China’s eco-environment (Liu et al., 2017).

Many studies have tried to developa framework forassessing the

vulnerability of ecological systems with high applicability (Ma et al.,

2023; He et al., 2023; De Lange et al., 2010). However, most of these

methods remain at the qualitative level. Although a few methods

have quantitative attributes, there are still many problems (Zou and

Yoshino, 2017; Hou et al., 2016; Hong et al., 2016), including:

①Limitations in the research area, and the research object is

relatively single, often only targeting a particular type of area

(such as mountains, grasslands, or farmland) for evaluation, and

the evaluation results are difficult to compare between different

types of areas; ②The selected indicators are not easily obtainable,

resulting in poor operability; ③The assignment of weights for each

indicator is either subjective or calculated entirely using

mathematical methods, which results in poor flexibility and often

leads to research results deviating from reality.

The study proposed a well-established and comprehensive

indicator system for ecological vulnerability assessment using

“natural cause-result performance” model based on remote

sensing and GIS, which can achieve refined assessment of

ecological vulnerability at the pixel scale. The indicator system

can be used for the quantitative assessment of five types of

ecologically vulnerable areas in China combining common and

proprietary indicators, which has changed the traditional

assessment system for single vulnerability type. Spatial-temporal

variations for typical regions in China from 2005 to 2020 were

analyzed based on the Ecological Vulnerability Index (EVI)

calculated from this indicator system.The indicator system can

also help the relevant eco-environment managers developing

scientific policies to monitor the ecological vulnerability status

and promote efficient protection and sustainable utilization of

ecological resources.
2 Date and methods

2.1 Study area

To study ecological vulnerability in China, we selected five

typical experimental regions according to the “Outline of national

ecological fragile area protection plan” issued by the Ministry of

Environmental Protection, PRC (Ministry of Environmental

Protection, PRC, 2008), including: Zhangbei County in Northern

China’s agro-pastoral ecotone; Zoige Plateau in Southwestern

China’s hilly agro-pastoral ecotone; Xiamen Bay’s aquatic-

terrestrial ecotone; Taihe County’s hilly red soil region of

Southern China; and the Sanjiangyuan region in the Qinghai-

Tibet Plateau’s compound erosion zone (Figure 1). The areas of

these regions range from 1786 km2 to 349408 km2.

The Zoige Plateau is located in the northeastern part of the

Qinghai-Tibet Plateau and forms the largest plateau swamp wetland
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in the world (Jiang et al., 2017). The climate is characterized by a

typical humid/semi-humid monsoon climate in the continental

cold-temperate zone (Shen et al., 2019). Xiamen Bay is an

estuarine harbor along the southeast coast of China located

between Xiamen City, Longhai City, and Kinmen County in

Fujian Province (Qian et al., 2023). Human activities and rapid

urbanization pose significant risks to the ecological health of

estuaries and undermine ecosystems’ ability to maintain natural

functions (Pan et al., 2016; Wang et al., 2018; Zhang et al., 2020;

Chen et al., 2021). Taihe County is located in central southern

Jiangxi Province.The terrain within Taihe County centers around
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the Ganjiang River Valley, extending in four directions and

gradually rising, forming a basin landform northeast to

southwest. The southeast and west rise, while the middle

descends (Liu et al., 2008). Zhangbei County is located in the

interleaving zone between farmland and animal husbandry areas

in northern Hebei province. It constitutes the main part of the

poverty belt around Beijing and Tianjin (Huang et al., 2019) and has

been identified by the national government as a key area for

conducting the project of converting arable land into grassland

and forestland (Liu and Li, 2017; Sun et al., 2016). The Sanjiangyuan

region, in the northeastern Qinghai-Tibet Plateau, contains the
FIGURE 1

Locations of the five typical experimental regions with various spatial scale in China (Purple area: Sanjiangyuan region in the Qinghai-Tibet Plateau’s
compound erosion zone; Green area: Zhangbei County in Northern China’s agro-pastoral ecotone; Blue area: Zoige Plateau in Southwestern
China’s hilly agro-pastoral ecotone; Red area: Xiamen Bay’s aquatic-terrestrial ecotone; Pink area: Taihe County’s hilly red soil region of
Southern China).
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headwaters of Asia’s three longest rivers: the Yangtze, Yellow, and

Lancang. It is the world’s largest, highest, and most concentrated

aquatic region (Fan et al., 2010; Liu et al., 2017; Li, 2012).
2.2 Date collection

This study collected five categories of data across four time

periods - 2005, 2010, 2015, and 2020: remote sensing data, DEM

data, landscape data, topsoil text data, meteorological data, socio-

economic and statistical data, and water quality data. The detailed

information of data categories, sources and resolution is as shown

in Table 1.

This study utilized two types of remote sensing data: Moderate

Resolution Imaging Spectroradiometer (MODIS) and Landsat

imagery. Specifically, MOD13A3 data acquired from https://

ladsweb.nascom.nasa.gov/data/search.html were used to extract

vegetation information. Landsat TM/ETM/OLI images from the

United States Geological Survey (USGS; http://glovis.usgs.gov/)

were used to retrieve information of chlorophyll concentration in

water and suspended sediment concentration in water.

Digital elevation model (DEM) data, critical for ecological

vulnerability (EV) analysis, was acquired from the National

Aeronautics and Space Administration’s (NASA) Shuttle Radar

Topographic Mission (SRTM) at 90 m spatial resolution (http://
Frontiers in Ecology and Evolution 04
srtm.csi.cgiar.org/). This data was resampled to 1 km resolution,

and regional slope maps at 1 km resolution were compiled using

ArcGIS 10.5.

Topsoil text classification data were derived from the

Harmonized World Soil Database (HWSD 1.2 version), which

was accessed over the internet,and downloaded at: http://

www.iiasa.ac.at/web/home. Water qulity data are collected

from National Environmental Monitoring centre (https://

www.cnemc.cn/).

Meteorological data was acquired from the China

Meteorological Data Sharing Service (cdc.cma.gov.cn/). The

original records from primary surface meteorological stations

were archived as ASCII files submitted by meteorology personnel

in each province, city, and county. These station data were

interpolated into continuous surface data using an ordinary

Kriging method with a spherical semi-variogram model (Kumar

et al., 2023).

Socio-economic data consisted of statistical data in grids and

tables. Population density and GDP data from 2005-2020 at 5-year

intervals were acquired from the Thematic Database for Human-

Earth System (Institute of Geographic Sciences and Natural

Resources Research, CAS, 2000) at 1x1 km resolution. All socio-

economic data were converted to raster format using ArcGIS 10.5.

Per capita, arable and grassland area statistics were calculated by

integrating Land Use/Cover Change(LUCC) data with statistical
TABLE 1 Data categories, sources and resolution.

Data
categories

Data sets Data sources Temporal
resolution

Spatial resolution Acquire
time

Remote
Sensing
products

MODIS MOD13A3 National Aeronautics and Space
Administration’s (NASA) (https://
ladsweb.nascom.nasa.gov/data/search.html)

1 month; synthetic
annual
resolution product

1 km 2005, 2010,
2015, 2020

Landsat TM/ETM/OLI United States Geological Survey (USGS) (http://
glovis.usgs.gov/)

16 day 30 m; resampled into 1 km
spatial resolution

2005, 2010,
2015, 2020
(June, July
and
August)

landscape type LUCC data Data center for resources and environmental
sciences(RESDC),Chinese Academy of Science
(https://www.resdc.cn)

5 year 1 km 2005, 2010,
2015, 2020

DEM SRTM DEM data
4.1 version

NASA Shuttle Radar Topographic Mission
(SRTM) (http://srtm.csi.cgiar.org/)

/ 90 m; resampled into 1 km
spatial resolution

Released
in 2003

Topsoil
text data

HWSD 1.2 version Harmonized World Soil Database(http://
www.iiasa.ac.at/web/home)

/ 30 are-sec; resampled into 1
km spatial resolution

Released
in 2012

Meteorological
data

National meteorological
stations of China

China Meteorological Data Sharing Service
(http://cdc.cma.gov.cn/)

1 day; synthetic
annual
resolution product

Vector point format;
interpolated into raster with 1
km spatial resolution

2005, 2010,
2015, 2020

Social-
economic and
statistical data

Statistical raster and
numerical data of
population, GDP

RESDC (https://www.resdc.cn) and National
Bureau of Statistics of China
(http://www.stats.gov.cn)

1 year 1 km 2005, 2010,
2015, 2020

Water
quality data

National surface water
quality monthly report

China National Environmental Monitoring
centre(https://www.cnemc.cn/)

1 month; synthetic
annual
resolution product

Vector point format;
interpolated into raster with 1
km spatial resolution

2005, 2010,
2015, 2020
fr
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population data for each county. These data are critical for

evaluating human impacts on the eco-environment.

All datasets were projected using the Albers projection and

transferred to 1 km × 1 km raster data to unify the scale.
2.3 Methodology

2.2.1 Construction of the indicator system
Establishing an indicator system is key to assessment, as it

considers both the internal function and structure of eco-

environmental systems and their relationship with external

factors. Its indicators are comprehensive and extensive and

generally reflect the vulnerable state of the ecological environment

from the aspects of natural, social and economic development. The

selection of theoretical model is the foundation to constructing an

ecological vulnerability assessment indicator system. Many

commonly used conceptual models such as PSR (Pressure-State-

Response) and SRP (Sensitivity-Resilience-Pressure) are evolved

from the “cause-result” model. And the “cause-result” model can

clearly analyze the causes of ecological vulnerability in typical areas.

Namely, when the ecosystem itself is highly sensitive, it generates

primary ecological vulnerability; When an ecosystem is disturbed

by human activities beyond its threshold for maintaining its own

stability, secondary vulnerability arises. Therefore, this study adopts

the “cause-result” model to construct the ecological vulnerability

assessment indicator system for typical vulnerable areas in China

(Wu and Tang, 2022).

Numerous indicators could be derived to evaluate ecological

vulnerability based on analyzing its causes and characteristics.

However, including all possible causes and manifestations would

generate an unwieldy indicator system, increasing workload and

diluting key indicators, leading to inaccurate results. Therefore, we

streamline the system by selecting only the main causal and

characteristic indicators. The dominant vulnerability factors and

characteristics differ across China’s vast and ecologically diverse

territory. Thus, varying indicators are required, reducing the

comparability of assessment results between regions.

Moreover, using region-specific indicators would produce

results similar to natural zoning. To overcome this, we added

ecological vulnerability performance indicators as a correction

factor. Ultimately, we established an assessment indicator system

that considers operability (i.e., the accessibility of indicators),

comparability, and simplicity and differs from natural zoning.

The leading causal indicators of ecological vulnerability include

vegetation, terrain, soil, climate, and water bodies. The result

performance indicators encompass economic development, social

health, and related factors.

Establishing the assessment indicator system can be divided

into the following steps. The leading causes of ecological

vulnerability of the five typical ecologically vulnerable areas were

identified. Then, vulnerability performance and characteristics were

analyzed through extensive investigation and research. On this

basis, optional vulnerability factors for each ecologically

vulnerable area were selected, including common vulnerability

indicators applicable to all ecologically vulnerable areas and
Frontiers in Ecology and Evolution 05
specific vulnerability indicators for each area.Finally, the indicator

system includes 7 first-level indicators, and 23 second-level

indicators were established, as shown in Table 2.

2.2.2 Indicator calculation
There are 7 first-level indicators in the indicator system. The

explanation, calculation and normalization of the relationship

between each indicator and vulnerability are as follows.

2.2.2.1 Vegetation

The First-level indicators of vegetation include two Second-level

indicators: Vegetation coverage (I1) and LAI (leaf area index) (I2).

Vegetation coverage negatively correlates with ecological

vulnerability. This comprehensive indicator quantifies vegetation

covering the land surface. Vegetation coverage is retrieved from

remote sensing data. First, NDVI is calculated from Red and NIR

satellite imagery. Then, vegetation coverage is calculated using the

following formula based on the relationship between coverage and

NDVI:

  fg =
NDVI − NDVI0
NDVI∞ − NDVI0

(1)

Where NDVI0 represents the NDVI value of bare land or non-

vegetated area, and NDVI∞ represents the NDVI value of high

vertical density pixels. Generally, the minimum value of NDVI in

the image is taken as NDVI0, and the maximum value is taken as

NDVI∞. The corresponding relationship between vegetation

coverage and evaluation index scores is shown in Table 3.

LAI is a comprehensive indicator of the utilization of light

energy and the canopy structure of vegetation. LAI indicator in the

study is acquired from Global Inventory Modeling and Mapping

Studies (GIMMS LAI3g) products provided by the GIMMS

program at the Global Land Cover Facility, University of

Maryland (http://sites.Bu.edu/cliveg/).
2.2.2.2 Land cover and spatial pattern

The indicators of land cover and spatial pattern include

landscape fragmentation index (I3), landscape diversity index (I4),

land use intensity (I5) and Shoreline type (I6). The landscape

fragmentation index represents the fragmentation degree of

natural and artificial segmentation. it is positively correlated with

ecological vulnerability and is calculated by the following formula.

C = on
i=1

(Ni − 1)
A

(2)

Where n is the number of landscape types, Ni is the number of

patches of landscape type i, and A is the total area of each type of

landscape. The land cover data is derived from GlobeLand30, the

30-meter resolution global land cover data product developed

by China.

The landscape diversity index is negatively correlated with

ecological vulnerability.Commonly used landscape diversity

indexes include the Shannon-weaver diversity index and Simpson

diversity index. This study uses the Shannon diversity index, and

the calculation method is shown in the following formula:
frontiersin.org
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TABLE 2 Indicator System of ecological vulnerability in Typical China.
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cause indicators

Vegetation

Vegetation
coverage(I1)

– √ √

LAI(I2) – √ √

Land use and
spatial pattern

Landscape
fragmentation

index(I3)
+ √ √

Landscape diversity
index(I4)

– √ √

Land use
intensity(I5)

+ √ √

Shoreline type(I6) Assignment by type

Topography
Altitude(I7) +

Slope(I8) + √ √

Soil

Soil texture(I9) Assignment by type √ √

Soil erosion
intensity(I10)

+ √

Water

Chlorophyll
concentration in

water(I11)
+

Suspended sediment
concentration in

water(I12)
+

Surface water
quality(I13)
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Climate
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H = −om
i=1PilnPi (3)

Where H is the landscape diversity index, Pi is the area

percentage of landscape type i, and m is the number of

landscape types.

Land use intensity refers to the percentage of construction land

area within a defined extent. It is calculated as:

I = on
i=1(GiCi)� 100% (4)

Where I represents the intensity of land use in the study area. Gi

represents the intensity grade value of the ith land use type. Ci is the

proportion of the ith land use type to the total land area.n is the

number of land use types of land systems in the study area. The land

use type is classified according to the degree of human interference

in its natural state.

China’s offshore marine comprehensive survey and evaluation

program divides the coastline types into five categories: bedrock

shoreline, sandy shoreline, silty and muddy shoreline, biological

shoreline and artificial shoreline. Different shoreline types are

vulnerable to different risks of seawater erosion, and the causes of

coastal erosion are in turn the reduction of river sediment into the

sea, artificial sand mining, sea level rise and coastal engineering. As

shown in Table 3.

2.2.2.3 Topography

The indicators of topography include altitude (I7) and slope (I8).

Altitude is one of the important geomorphic vulnerability factors.

In the complex erosion vulnerability area of the Qinghai-Tibet

Plateau, many vulnerability performances vary with altitude, such

as rainstorms, debris flow and salinization. The vertical water and

heat conditions changes are evidentin a southwest farming-pastoral

ecotone in mountainous areas. Generally, under the same

conditions of other factors, the higher the altitude, the higher the

ecological vulnerability, and the altitude is positively correlated with

the ecological vulnerability (Li et al., 2006; Wang et al., 2008).

The slope is one of the important topographic factors. The

larger the slope, the easier it is to induce some natural disasters, such

as landslides and debris flows. Generally, with the same other

factors, the greater the slope, the higher the ecological

vulnerability, and vice versa. Due to the complex relationship

between slope and erosion amount, it is generally believed that

the larger the slope, the stronger the erosion, significantly when the

slope increases to more than 15°, the erosion amount increases

rapidly. When the slope increases to a certain value, the erosion

amount will not increase. Given this, the slope is divided into five

levels according to the potential risk rating standard of soil erosion

published by the Ministry of Water Resources in 1997. The

corresponding relationship between the slope classification and

the index score is shown in Table 3.

2.2.2.4 Soil

The indicators of soil include soil texture (I9) and soil erosion

intensity (I10). Different soil textures present different ecological

vulnerabilities. Soil erosion intensity is a narrow sense of water and

soil loss, which can quantitatively express and measure the amount

and intensity of soil erosion in a particulararea. The soil erosion
T
A
B
LE

2
C
o
n
ti
n
u
e
d

C
ri
te
ri
a
la
ye

r
Fi
rs
t-

le
ve

l
in
d
ic
at
o
rs

Se
co

n
d
-l
e
ve

l
in
d
ic
at
o
rs

In
d
ic
at
o
r
ty
p
e
*

A
g
ro
-p

as
to
ra
l
e
co

to
n
e

o
f
N
o
rt
h
e
rn

C
h
in
a

H
ill
y
re
d
so

il
re
g
io
n
o
f
So

u
th
-

e
rn

C
h
in
a

H
ill
y
ag

ro
-p

as
to
ra
l
e
co

to
n
e

o
f
So

u
th
w
e
st
e
rn

C
h
in
a

C
o
m
p
o
u
n
d
e
ro
si
o
n
ar
e
a
o
f

Q
in
g
h
ai
-T

ib
e
t
P
la
te
au

A
q
u
at
ic
-t
e
rr
e
st
ri
al

e
co

to
n
e
o
f

co
as
ta
l
ar
e
as

D
ro
ug
ht

in
de
x(
I 1
8)

+
√

√
√

√

A
ve
ra
ge

w
in
d

sp
ee
d(
I 1
9)

+
√

√

R
es
ul
t

pe
rf
or
m
an
ce
in
di
ca
to
rs

so
ci
al
ec
on

om
y

P
er

ca
pi
ta
G
D
P
(I
20
)

–
√

√
√

√
√

P
op

ul
at
io
n

de
ns
it
y(
I 2
1)

+
√

√
√

√
√

P
er

ca
pi
ta

cu
lti
va
te
d

ar
ea
(I
22
)

+
√

√
√

√

P
er

ca
pi
ta

gr
as
sl
an
d

ar
ea

(I
23
)

–
√

√

*
“+
”
re
pr
es
en
ts
an

in
di
ca
to
r
po

si
ti
ve
ly
re
la
te
d
to

ec
ol
og
ic
al
vu
ln
er
ab
ili
ty
,“
-”
re
pr
es
en
ts
an

in
di
ca
to
r
ne
ga
ti
ve
ly
re
la
te
d
to

ec
ol
og
ic
al
vu
ln
er
ab
ili
ty
,“
+
/-
”
re
pr
es
en
ts
an

in
di
ca
to
r
th
at
ha
s
a
m
ix
ed

re
la
ti
on

sh
ip
,b
ei
ng

po
si
ti
ve
ly
re
la
te
d
in

so
m
e
ec
ol
og
ic
al
vu
ln
er
ab
ili
ty
ty
pe
s
bu

t
ne
ga
ti
ve
ly

re
la
te
d
in

ot
he
rs
.“
√
”
in
di
ca
te
s
th
e
pr
es
en
ce

of
th
at

in
di
ca
to
r
in

th
e
sy
st
em

fo
r
th
at

ec
ol
og
ic
al
ly

vu
ln
er
ab
le
ar
ea
.

frontiersin.org

https://doi.org/10.3389/fevo.2024.1406444
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Xu et al. 10.3389/fevo.2024.1406444
intensity is calculated using the look-up table method (Ministry of

Water Resources of the People’s Republic of China, 1997), as shown

in Table 3. The relationship between soil and ecological

vulnerability is shown in Table 4.

2.2.2.5 Water

The indicators of water include chlorophyll concentration in

water (I11), suspended sediment concentration in water (I12) and

surface water quality (I13). Chlorophyll concentration in the water

body is an indicator of plankton distribution and the most

fundamental indicator to measure the primary productivity and

eutrophication of the water body. The movement of suspended

sediment in the coastal waters often causes the port channel

siltation and the coastline’s deformation. The chlorophyll

concentration and suspended sediment concentration in water

retrieved from remote sensing are divided into five levels by

cluster analysis, namely:<x1, x1-x2, x2-x3, x3-x4,>x4. x1, x2, x3,

x4 are obtained by calculating the mean value and mean square

deviation. The vulnerability of the ecological environment’s impact

on surface water quality is divided into five levels according to the

National Environmental Quality Standard for Surface Water of

China,As shown in Table 3.
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2.2.2.6 Climate

The indicators of climate include accumulated temperature

above 0°C (I14), accumulated temperature above 10°C (I15),

average annual rainfall (I16), rainfall in flood season (I17), dryness

index (I18) and average wind speed (I19). The accumulated

temperature is the sum of the daily average temperature greater

than a critical temperature value, and the accumulated temperature

above 0°C is the sum of the daily average temperature ≥ 0°C, the

same is the indicator of accumulated temperature above 10°C. Heat

resources not only directly affect the formation of ecosystems but

also affect the evolution of ecological vulnerability through the

coordination with water resources, forest coverage and other

aspects. The accumulated temperature is negatively correlated

with ecological vulnerability.

Average annual precipitation is an important indicator of water

resources in a region. The amount of precipitation can affect the

formation of a fragile ecological environment through runoff and

groundwater. However, excessive precipitation will also affect

ecological vulnerability, so there is a positive correlation between

precipitation and ecological vulnerability. The five ecological

vulnerability area types examined in this study have distinct

characteristics. Frequent and intense rainstorms and severe
TABLE 3 The intervals of standardization for some indicators.

Vulnerability
classification

potential
vulnerability

slight
vulnerability

moderate
vulnerability

heavy
vulnerability

severe
vulnerability

Vegetation coverage (%) >70 50-70 30-50 10-30 <10

Land use intensity 1 1-2 2-3 3-4 4-5

Shoreline type bedrockshoreline artificial shoreline biological shoreline sandy shoreline silty shoreline

slope 0°-3° 3°-7° 7°-13° 13°-22° 22°-90°

soil texture bedrock clayey gravelly loamy sandy

Soil erosion intensity 1 2 3 4 5-6

chlorophyll concentration in water* <x1 x1-x2 x2-x3 x3-x4 >x4

suspended sediment concentration
in water*

<y1 y1-y2 y2-y3 y3-y4 >y4

Surface water quality level-I level-II level-III level-IV level-V

Average annual rainfall <800 800-1000 1000-1200 1200-1500 1500-2000

Standardized score 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
*The values of x1,x2,x3 and x4 are the clustering thresholds of the chlorophyll concentration, and the values of y1, y2, y3 and y4 are the clustering thresholds of the concentration of
suspended sediment.
TABLE 4 Look-up table of soil erosion intensity.

Land type Slope <5° 5°-8° 8°-15° 15°-25° 25°-35° >35°

Forest and grasscoverage in noncultivated
land (%)

60-75 1 2 2 2 3 3

45-60 1 2 2 3 3 4

30-45 1 2 3 3 4 5

<30 1 3 3 4 5 6

Slope cropland 1 2 3 4 5 6
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surface water erosion characterize the vulnerability of the southern

red soil hilly area.However, the vulnerability of Aquatic-terrestrial

ecotone in coastal areas is characterized by frequent occurrences of

climate disasters such as tides, typhoons, and rainstorms. The

corresponding relationship between the annual average

precipitation and vulnerability of the former two regions is shown

in Table 3. The other three types of ecological vulnerability areas,

including northern forest, grass, agriculture and animal husbandry

staggered area, southwest farming-pastoral ecotone in the

mountainous area, and compound erosion area of Qinghai-Tibet

Plateau are characterized by varying degrees of water shortage. The

annual average precipitation in these areas is negatively correlated

with regional ecological vulnerability.

Rainfall during the flood season indicates vulnerability to

natural disasters. Higher rainfall increases disaster vulnerability in

the evaluated area. This positive correlation makes flood season

precipitation a useful indicator of ecological vulnerability.

The dryness index (K) indicates regional aridity, typically

quantified by water and heat budgets. K, calculated via a modified

Sheranov formula, measures the balance of water and heat.

Imbalance results in extreme drought under hot, dry climates.

Higher dryness values reflect greater ecological fragility and

positive correlation with environmental vulnerability.

K = 0:1
T10

P10
(5)

Where T10 refers to an annual accumulated temperature above

10°C, P10 refers to annual precipitation during the days when the

temperature is above 10°C.

The wind has serious erosion damage on the surface and plants.

Strong winds have intensified the land’s sandy process and the

desertification area’s expansion, causing more destructive disastrous

weather such as sandstorms, which severely damage vegetation. The

degree of wind is characterized by the average wind speed, which

positively correlates with ecological vulnerability.
2.2.2.7 Social economy

The indicators of social economy include per capita GDP (I20),

population density (I21), per capita cultivated area (I22) and per

capita grassland area (I23). Per capita GDP indicates the regional

economic development level and negatively correlates with

ecological vulnerability. The population density of a region is also

an important factor affecting the vulnerability of the ecological

environment, and it is positively correlated with ecological

vulnerability. Per capita cultivated area represents the

combination of population and land resources and is also one of

the main factors contributing to the vulnerable ecological

environment. It is positively related to ecological vulnerability.

Animal husbandry is important in the Qinghai-Tibet Plateau

composite erosion ecological area and the northern farming-

pastoral ecotone. The per capita grassland area can represent the

carrying capacity of livestock, which is negatively correlated with

the vulnerability of the ecological environment.
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2.2.3 Indicator standardization
As the measurement of each indicator is expressed in different

units, the indicators must be standardized by converting them into

dimensionless values between 0 and 1 before calculation. Distinct

standardization methods are employed for selected indicators

according to national standards or references, as shown in Table 3.

Other indicators are standardized by normalization. The standards of

positive indicators are normalized through Equation 6, and the

standards of negative indicators are normalized by Equation 7.

y =
X − Xmin

Xmax − Xmin
(6)

y =
Xmax − X

Xmax − Xmin
(7)

Where Xmax refers to the maximum value of the indicator, Xmin

refers tothe minimum value of the indicator, and y refers to the

normalized value for the indicator.

2.2.4 Weight calculation
The weight of each indicator is calculated by Analytic Hierarchy

Process (AHP).The AHP technique is one of the most commonly

adopted assessment tools (Li et al., 2009; Ying et al., 2007; Liu et al.,

2017). The basic process of determining the weight coefficient of

AHP includes four steps. (1) Constructing the hierarchical structure

model of tomographic analysis. (2) Construct the interpretation

matrix. (3) Sorting by layer and checking the consistency. (4) Total

ranking to obtain decision results.

Using AHP to calculate the weight requires the relative

importance of each indicator. The relative importance is obtained

through expert consultation and literature review based on analyzing

the characteristics and causes of each ecologically vulnerable area.

The study consulted more than 40 experts and referenced

approximately 120 relevant literature to determine the relative

importance ranking of each indicator (Gao et al., 2012; Liu et al.,

2017; Zhang et al., 2017a; Guo et al., 2020; Boori et al., 2021; Yang

et al., 2023; Jiang et al., 2023). The weight of each indicator varies

from each other. The comparison between different ecologically

vulnerable areas needs to comprehensively consider the types of

vulnerable areas and regional vulnerability characteristics. The study

calculated a group of reference weights for each of the five ecologically

vulnerable areas based on AHP according to the causes,

characteristics and specific vulnerability phenomena of each

ecologically vulnerable area, as shown in Table 5.

2.2.5 Ecological vulnerability
comprehensive index

The ecological vulnerability is expressed by the Ecological

Vulnerability Index (EVI). EVI is calculated by the quality index

method, which is the weighted sum of all standardized secondary

index values, as shown in the following formula.

EVI = on
j=1IjWj (8)
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TABLE 5 Indicator weight of ecological vulnerability in typical China.

Criteria
layer

First-level
indicators

Second-level
indicators

Northern
forest, grass,
agriculture
and animal
husbandry
staggered

area

Southern
red soil
hilly area

Southwest
farming-
pastoral

ecotone in
mountainous

area

Compound
erosion area of

Qinghai-
Tibet Plateau

Aquatic-
terrestrial
ecotone in
coastal
areas

Nature
cause

indicators

Vegetation

Vegetation
coverage(I1)

0.1002 0.1481 0.0756 0.1137 0.1139

LAI(I2) 0.0700 0.0494 0.0252 0.1137 0.1139

Land use and
spatial pattern

Landscape
fragmentation

index(I3)
0.0714 0.0222 0.0502 0.0416 0.0848

Landscape diversity
index(I4)

0.0714 0.0445 0.0502 0.0416 0.0848

Land use
intensity(I5)

0.0714 0.0222 0.1507 0.0416 0.0848

Shoreline type(I6) 0.0000 0.0000 0.0000 0.0000 0.1229

Topography
Altitude(I7) 0.0000 0.0000 0.0293 0.0733 0.0000

Slope(I8) 0.0690 0.1380 0.1463 0.0733 0.0000

Soil

Soil texture(I9) 0.0794 0.0228 0.0566 0.0758 0.0000

Soil erosion
intensity(I10)

0.0000 0.1593 0.0000 0.0000 0.0000

Water

Chlorophyll
concentration in

water(I11)
0.0000 0.0000 0.0000 0.0000 0.3663

Suspended sediment
concentration in

water(I12)
0.0000 0.0000 0.0000 0.0000 0.2906

Surface water
quality(I13)

0.0000 0.0000 0.0000 0.0000 0.1748

Climate

Accumulated
temperature above 0

°C(I14)
0.0000 0.0000 0.0000 0.0471 0.0000

Accumulated
temperature above

10 °C(I15)
0.0240 0.0121 0.0274 0.0000 0.0954

Average annual
rainfall(I16)

0.0614 0.0485 0.0274 0.0540 0.0000

Rainfall in flood
season(I17)

0.0534 0.1390 0.046 0.0114 0.0000

Dryness(I18) 0.0856 0.0273 0.0651 0.1078 0

Average wind
speed(I19)

0.0428 0.0000 0 0.0621 0

Result
performance
indicators

social economy

Per capitaGDP (I20) 0.0676 0.0940 0.068 0.0410 0.0624

Population
density(I21)

0.0490 0.0306 0.1125 0.0486 0.0624

Per capita cultivated
area(I22)

0.0488 0.0420 0.0695 0.0244 0

Per capita grassland
area (I23)

0.0346 0.0000 0 0.0290 0
F
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Where EVI represents the comprehensive index of ecological

vulnerability,n is the number of indicators in the evaluation system.

Ij is the standardized value of the jth indicator, andWj is the weight

of the jth indicator.

2.2.6 Ecological vulnerability status stratification
Ecological vulnerability status stratification can help us to

understand ecologica l vulnerabi l i ty changes and the

comprehensive ecosystem condition. Various methods are

employed to classify the EVI into different levels, including

natural break classification (Zou et al., 2021), manual threshold

and so on. However, the grading results obtained by the natural

break point method are not convenient for comparing the

vulnerability of the same region at different periods, nor for

comparing the vulnerability between different regions, as their

segmentation thresholds for EVI maps are unfixed, which

minimizes within-class variation and maximizes between-class

variation and varies with the statistical characteristic values of

EVI maps. The manual threshold method, which uses unified

fixed thresholds to classify ecological vulnerability levels, is more

convenient for quantitatively comparing ecological vulnerability in

different periods and regions.

The ecologically vulnerable environment is divided into five

levels:potential vulnerability, slight vulnerability, moderate

vulnerability, heavy vulnerability and severe vulnerability,

according to the value of EVI using the manual threshold

method.The relationship between EVI value and vulnerability

level is shown in Table 6.
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The final result of the assessment is expressed as the thematic

map of the ecological vulnerability level, supplemented by the

corresponding descriptive text of the spatial distribution of the

ecological vulnerability, including the ecological functions and

system vitality of the assessed ecological vulnerability area. The

temporal and spatial variations of ecological vulnerability in the

study areas can also be analyzed based on the multi-temporal

remote sensing and climatic data.All the processing and analyses

regarding spatial data were carried out using ArcGIS10.2.
3 Results

3.1 Spatial and temporal characteristics of
the EVI

Data for the indicators was collected in the five experimental

regions for 2005, 2010, 2015, and 2020. Ecological vulnerability was

assessed based on the indicator system presented. All spatial

datasets were processed with the same projections and

resolutions. The comparisons of average EVI value in the five

study areas in 2005, 2010, 2015 and 2020 are shown in Table 7.

The average EVIs value of Zhangbei County ranging from 0.525 to

0.559 are the highest among the five research areas during the four

periods, followed by Zoige region and Xiamen bay. However, the

region with the lowest average EVI value varies. In 2005 and 2015, it

was Taihe County, while in 2010 and 2020, it was the

Sanjiangyuan region.

Figures 2A-D shows the spatial distribution of EVI in Zoige

region, located in the hilly agro-pastoral ecotone of Southwestern

China, for 2005, 2010, 2015, and 2020. According to the statistic, the

average value of EVI in the Zoige region for 2005, 2010, 2015 and

2020 is respectively 0.461, 0.479, 0.465 and 0.481, ranging from

0.296 to 0.576, 0.307 to 0.596, 0.298 to 0.603and 0.312 to 0.598, with

the standard deviations of 0.041, 0.040, 0.043 and 0.040.The results

indicate that the ecological vulnerability of the Zoige region

changed relatively little from 2005to 2020, with an average EVI

value ranging from 0.29 to 0.62. EVI values are higher in the

northwest compared to the middle and southeast regions. The trend

of ecological vulnerability in Zoige shows a gradual increase

over time.

Figures 3A–D shows the spatial distribution of EVI in the

Sanjiangyuan region, located in the compound erosion area of the
TABLE 6 Relationships between EVI value and vulnerability levels.

vulnerability
levels

EVI
value

Description of environmental
status in ecologically

vulnerable areas

potential
vulnerability

0≤EVI<0.2

The ecological environment is in a normal
state, not disturbed and damaged, and the
ecosystem is structurally complete
and functional.

Slight
vulnerability

0.2≤EVI<0.4

The ecological environment is slightly
vulnerable, the ecosystem is disturbed, the
ecosystem structure is quite complete and
functional, and it can be restored under its
own regulation.

moderate
vulnerability

0.4≤EVI<0.6

The ecological environment is moderately
vulnerable, the ecosystem is less damaged,
and the system structure tends to
deteriorate, but the basic functions can still
be maintained.

Heavy
vulnerability

0.6
≤EVI<0.8

The ecological environment presents
intense vulnerability, which seriously
affects the realization of ecosystem
functions. There are large ecological
problems and many ecological disasters.

Severe
vulnerability

0.8≤EVI ≤ 1

The ecological environment is extremely
vulnerable;the ecosystem structure is
incomplete, the function is low, and
degradation changes occur.
TABLE 7 Comparisons of EVI value in the five study areas in 2005, 2010,
2015 and 2020.

Region name
Average EVI value

2005 2010 2015 2020

Zoige 0.461 0.479 0.465 0.481

Sanjiangyuan 0.431 0.425 0.439 0.432

Xiamen 0.456 0.464 0.443 0.470

Taihe 0.389 0.436 0.419 0.465

Zhangbei 0.559 0.545 0.533 0.525
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Qinghai-Tibet Plateau, for 2005, 2010, 2015, and 2020.The EVI

spatial distribution shows greater ecological vulnerability in the

northwest and western areas of the Sanjiangyuan region. In

contrast, the ecological environment in the central region of the

Sanjiangyuan region is relatively slight, while the ecological

vulnerability in the eastern region of the Sanjiangyuan region is

relatively heavy.According to the statistic, the average value of EVI

in Sangjiangyuan region for 2005, 2010, 2015 and 2020 is

respectively 0.431, 0.425, 0.439 and 0.432, ranging from 0.295 to

0.597, 0.271 to 0.602, 0.313 to 0.614 and 0.299 to 0.601, with the

standard deviations of 0.041, 0.041, 0.042 and 0.042. According to

thetemporal distribution characteristics, the ecological vulnerability

value in the Sanjiangyuan region shows a fluctuation of first

decreasing, then increasing, and then decreasing again, indicating

that the trend of ecosystem degradation in Sanjiangyuan region has

been preliminarily curbed.

The spatial distributions of EVI in Xiamen Bay in the aquatic-

terrestrial ecotoneofcoastal areas for 2005, 2010, 2015 and 2020 are

shown in Figures 4A–D. The spatial heterogeneity of ecological

vulnerability in Xiamen is high, and the ecological vulnerability
Frontiers in Ecology and Evolution 12
value of the mainland area in the north of Xiamen is low, but the

ecological vulnerability value of Xiamen Island is high. The

ecological vulnerability of the water body part in the land water

junction area is lower than that of the land part as a

whole.According to the statistic, the average value of EVI in the

Xiamen region for 2005, 2010, 2015 and 2020 is respectively 0.456,

0.464, 0.443 and 0.470, ranging from 0.213 to 0.709, 0.126 to 0.731,

0.127to 0.716 and 0.126 to 0.728, with the standard deviations of

0.108, 0.102, 0.100 and 0.113. Overall, with environmental

governance, there is a trend of decreasing water body

vulnerability and increasing land comprehensive vulnerability.

The spatial distributions of EVI in Taihe county in the hilly red

soil region of Southern China for 2005, 2010, 2015 and 2020 are

shown in Figures 5A–D. The overall EVI of Taihe County varies

greatly in spatial distribution, with some regions in the west and

southeast being at a relatively high value of vulnerability, while the

northern and central regions are at a relatively low value of

vulnerability.According to the statistic, the average value of EVI

in the Taihe region for 2005, 2010, 2015 and 2020 is respectively

0.389, 0.436, 0.419and 0.465, ranging from 0.192 to 0.727, 0.251 to
FIGURE 2

Spatial distribution of EVI in Zoige region in (A) 2005, (B) 2010, (C) 2015, (D) 2020.
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0.779, 0.256to 0.752 and 0.279 to 0.798, with the standard

deviations of 0.089, 0.081, 0.074 and 0.078.

The spatial distributions of EVI in Zhangbei County in the

agro-pastoral ecotone of Northern China for 2005, 2010, 2015 and

2020 are shown in Figures 6A-D. According to the statistic, the

average value of EVI in the Zhangbei region for 2005, 2010, 2015

and 2020 is respectively 0.559, 0.545, 0.533 and 0.525, ranging from

0.483 to 0.715, 0.411 to 0.686, 0.415to 0.666 and 0.432 to 0.677, with

the standard deviations of 0.017, 0.034, 0.032 and 0.020.From 2005

to 2020, the ecological vulnerability of the Zhangbei region showed

a trend of first increasing and then decreasing, with an overall

ecological vulnerability index ranging from 0.41 to 0.72, ranking in

moderate and heavy vulnerability levels. Among them, some

regions in the Southwest experienced significant changes in

vulnerability during the four phases, showing a trend of

increasing and then decreasing vulnerability. The vulnerability

level in the eastern region was lower than in the western region.
3.2 Dynamic change of
ecological vulnerability

General changes in ecological vulnerability for the five study

areas from 2005 to 2020 were analyzed in the context of EVI values

presented in Table 8. The area of each ecological vulnerability level

for five study areas is computed based on the geo-statistics method.

There were only two ecological vulnerability levels in the Zoige

region,slight and moderate, from 2005 to 2020. Most areas in the

Zoige regionwere at a moderate vulnerability level. The area of
Frontiers in Ecology and Evolution 13
moderate vulnerability level was 26209 km2 in 2005, which accounts

for 93.4% of the total area.That was 27502 km2 in 2010 (account for

98.0%), 26245 in 2015 (account for 93.4%) and 27526 in 2020

(account for 98.1%). Overall,the ecological vulnerability in the

Zoige region has undergone minimal changes from 2005 to 2020.

In the compound erosion area of the Qinghai-Tibet Plateau,

there were three ecological vulnerability levels in the Sanjiangyuan

region from 2005 to 2020, slight, moderate, and heavy. In 2005,

about 271152 km2 area was a moderate vulnerability, accounting for

77.6% of the total area. The remaining area was a slight

vulnerability. Although the area with a moderate vulnerability

level decreased to 261054 km2 and a slight vulnerability level

increased to 88350 in 2010, a severe vulnerability area of 4 km2

emerged. The area with moderate vulnerability level increased to

285730km2 in 2015 and then decreased to 271432 in 2020. Overall,

although the ecological vulnerability of the Sanjiangyuan region

fluctuated from 2005 to 2020, the change was insignificant. As an

Urban ecosystem greatly disturbed by human activities, Xiamen Bay

contained four levels of ecological vulnerability which ranged from

potential vulnerability to heavy vulnerability during 2005 and 2020.

There was no area with potential vulnerability in 2005, but it

increased to 13km2in 2010, 15km2 in 2015 and 88km2 in 2020.

The area with a slight vulnerabilitylevel was485km2 in 2005, which

decreased to 407km2 in 2010, then increased to 602 km2 in 2015,

and finally decreased to 272 km2 in 2020. At any time between 2005

and 2020, the area with moderate vulnerability level in the Xiamen

regionwas the largest, accounting for 65.8% in 2005, 67.5% in 2010,

59.2% in 2015, and 69.2% in 2020 of the total area. At the same time

as the area with potential vulnerability levels increased, the area
FIGURE 3

Spatial distribution of EVI in Sanjiangyuan region in (A) 2005, (B) 2010, (C) 2015, (D) 2020.
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with severe vulnerability levels also showed a fluctuating upward

trend from 2005 to 2020.Taihe County, whichis located in the hilly

red soil region of Southern China, contained three levels of

ecological vulnerability areas from 2005 to 2020. The area with

slight vulnerability was1454km2in 2015, accounting for 55.3% of the

total area. At the same time,only an area of 2km2 was heavy

vulnerability. However, the area with slight vulnerability

decreased to 734km2 in 2020, and the area with heavy

vulnerability increased to 103km2. The ecological environment of

Taihe County showed a significant deterioration trend from 2005 to

2020.The ecological vulnerability of Zhangbei County in the agro-

pastoral ecotone of Northern China was relatively unified. Most

areas in Zhangbei were moderate vulnerability, which was 4072km2

in 2005, 3919km2 in 2010, 4009km2 in 2015, and 4130km2 in 2020,

respectively, accounting for 98.6%, 94.9%, 97.0% and 100% of the
Frontiers in Ecology and Evolution 14
total area. Overall, the ecological vulnerability of Zhangbei County

remains stable, with little change from 2005 to 2020.
4 Discussion

4.1 Trends in ecological
vulnerability changes

In this paper, we built a indicator system to evaluate the

ecological vulnerability of five experimental areas in China at

different scales and spatial locations based on remote sensing,

meteorological, geographic and other data and analyzes the

spatio-temporal variability of the EVI maps in four periods

during 2005 and 2020. We found that the ecosystems of these five
FIGURE 4

Spatial distribution of EVI in Xiamen Bay in (A) 2005, (B) 2010, (C) 2015, (D) 2020.
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FIGURE 5

Spatial distribution of EVI in Taihe County in (A) 2005, (B) 2010, (C) 2015, (D) 2020.
TABLE 8 Dynamic change of the ecological vulnerability in the five study areas.

Region name EV level 2005 (km2) 2010 (km2) 2015 (km2) 2020 (km2)

Zoige
slight vulnerability 1862 569 1826 545

moderate vulnerability 26209 27502 26245 27526

Sanjiangyuan

slight vulnerability 78256 88350 63648 77975

moderate vulnerability 271152 261054 285730 271432

heavy vulnerability 0 4 0 2

Xiamen

potential vulnerability 0 13 15 88

slight vulnerability 485 407 602 272

moderate vulnerability 1175 1205 1058 1236

heavy vulnerability 126 161 111 180

Taihe

slight vulnerability 1454 1119 1265 734

moderate vulnerability 1173 1489 1358 1792

heavy vulnerability 2 21 6 103

Zhangbei
moderate vulnerability 4072 3919 4009 4130

heavy vulnerability 59 212 122 1
F
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typical variable areas in China are generally at moderate levels of

vulnerability, which is consistent with previous assessments of

ecological vulnerability in China or regions (Liu et al., 2017; Zhao

et al., 2018).

From the perspective of temporal trends, the mean EVI across

the five experimental areas exhibited minimal fluctuation and

remained generally stable from 2005 to 2020, as shown in

Figure 7. This indicates China’s recent environmental protection
Frontiers in Ecology and Evolution 16
measures and projects have curbed ecological deterioration.

Especially in Zhangbei country, the average EVI shows a

significant downward trend, for afforestation has been taken as

an important means to improve the ecological environment, and

key ecological engineering such as the Beijing and Tianjin

sandstorm source control project and the matching of returning

farmland to forests and barren mountains have been organized

and implemented.
FIGURE 6

Spatial distribution of EVI in Zhangbei County in (A) 2005, (B) 2010, (C) 2015, (D) 2020.
FIGURE 7

Temporal variability of the average EVI across the five experimental areas during 2005 and 2020.
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4.2 Applicability and limitations of the
indicator system

There are many studies on EVI in many countries based on

meteorological data, geographic data and remote sensing data, but

its the first time a unique study to establish an indicator system for

various types of ecological vulnerability, especially suitable for most

vulnerable types in China (Liu et al., 2017; Zhang et al., 2017a; Guo

et al., 2020; Boori et al., 2021; Yang et al., 2023). Compared to other

studies, they utilized a fixed set of indicators to evaluate specific

areas or types of vulnerability. In contrast, this study employed a

combination of common indicators and specialized indicators to

evaluate various types of vulnerable areas. Moreover, it enables

quantitative comparisons of the evaluated areas from different

spatio-temporal perspectives. By utilizing advanced remote

sensing and GIS technologies to obtain spatio-temporal data at

different scales, and utilizing remote sensing inversion or extraction

of ecological indices and spatialization of meteorological

observation data, the vulnerability assessment results are superior

to other methods in terms of quality, accuracy, and real-time

monitoring, while spending less effort and lower costs. When

comparing this study to other studies, its methodology can be

applied to assess vulnerability or conduct risk assessments in any

regional study area. However, other studies have limitations

stemming from various local factors, weight,diverse regional

aspects, and differences in scale and data availability, among other

factors (Song et al., 2010). In an advancement, this study showed

factors attributed to RSEI dynamics and change patterns with

statistics, and in the last RSEI validation,which not only related to

the actual situation of the area but also reliable the development

requirements of the region.

There are also some limitations in the study. Firstly, it is difficult to

determine the optimal threshold for grading evaluation indicators, so

we can only refer to relevant national standards, previous research

literature, or equal intervals to determine the thresholds. Secondly, the

determination of weights requires experts to rank the importance of

each indicator due to the use of AHP, which makes the indicator

system somewhat subjective. Finally, this study used a fixed manual

threshold method to facilitate a quantitative comparison of

vulnerability in different periods and regions to grade the

vulnerability evaluation results. However, the distribution of

ecological vulnerability index values showed significant heterogeneity

in different levels, making the vulnerability grading results not obvious.
5 Conclusion

This study employs the constructed ecological vulnerability

evaluation indicator system to evaluate the ecological vulnerability of

five experimental areas in China at different scales and spatial locations

based on remote sensing, meteorological, geographic and other data

and analyzes the spatio-temporal variability of the EVI maps in four

periods during 2005 and 2020. The results show the constructed

ecological vulnerability evaluation indicator system in this study has

good applicability and robustness. The ecological vulnerability of the
Frontiers in Ecology and Evolution 17
five experimental areas presented little fluctuation and remained

generally stable from 2005 to 2020. The trend of ecological

environment deterioration has curbed the environmental protection

measures and projects taken by China government in recent years.
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