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Introduction: The Kuye River Basin, a typical erosion area of the Loess Plateau

region with the second largest tributary of the Yellow River Basin, faces significant

environmental challenges and intense human activities. Balancing environmental

sustainability and economic development in this region is urgent.

Methods: Therefore, this study takes this basin as the object and evaluates the

landscape ecological risk and human activity intensity from 2000 to 2022 based

on land use/land cover, population distribution and nighttime lighting data. And a

geographically weighted regression model was used to reveal the correlation

between the two.

Results and discussion: Results showed that the average landscape ecological

risk index in 2000, 2015, and 2022 were 9.01×10-4, 5.61×10-4, and 7.40×10-4,

respectively. This shows that the overall landscape ecological risk index is low in

the first 15 years and then gradually increases over time. Cultivated land,

grassland and construction land are the main landscapes, the expansion of

7.95 times construction land is a key factor in the intensification of human

activities, mainly concentrated in the northwest, followed by a gradual expansion

towards the south-east, and likewise the landscape ecological risks follow the

same trend. Medium to high intensity human activities exacerbate landscape

ecological risks, with a significant positive correlation, while low intensity human

activities cause little damage to landscape ecology. To achieve sustainability, it is

necessary to effectively control construction land and improve land use

structure. Then, in the planning work, priority will be given to the northwest

region with high human activity intensity and high landscape ecological risks, and

the governance direction will gradually shift to the southeast region. These

findings provide empirical evidence to support decision-making and

underscore the need for comprehensive strategies to mitigate landscape

ecological risks and promote sustainable development in the Kuye River Basin.
KEYWORDS

land use/land cover, human activity intensity, landscape metrics, landscape ecological
risk assessment, correlation, Kuye River basin
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1 Introduction

Throughout the course of industrial civilization, individuals

have achieved significant material gratification via the use of

enhanced production. (1) Nevertheless, the excessive need for

primary resources has imposed a significant strain on ecological

systems (Hauschild et al., 2020; Hou et al., 2022). Research has

demonstrated that worldwide terrestrial environments have

experienced different levels of deterioration, such as higher levels

of carbon emissions, erosion of soil, decrease in biodiversity, and

extinction of species. These degradations are caused by a

combination of natural and human-induced factors, and this

pattern is expected to worsen in the future (Rapport and Maffi,

2011; Sutton et al., 2016; Cerretelli et al., 2018). The natural factors

that influence and drive the evolution of regional ecosystems over a

relatively brief timeframe are typically stable and resistant to

significant sudden changes. However, due to rapid socio-

economic development, human activities have become

increasingly intense. These changes have a substantial impact on

the land surface, indirectly modifying land use patterns and patches.

Simultaneously, they have profound effects on landscape patterns

and ecological processes. Consequently, there has been a substantial

rise in ecological risks, posing a serious threat to regional ecological

security and human well-being. Ultimately, this has led to the

emergence of regional landscape ecological risk (Ding et al., 2012;

Han and Li, 2019; Gurbuz et al., 2020; Jun et al., 2022). Alterations

in land-use and land-cover are commonly related to changes in

landscape ecological risk (Gong et al., 2015; Peng et al., 2015a).

Anthropogenic influences, including governmental policy,

urbanisation, and socioeconomic growth, have been found to

exert a substantial influence on ecological risk in several instances

(Sallis et al., 2006; Xiao et al., 2021; Wu et al., 2024). Nevertheless,

the impact of the human footprint on landscape ecological risk

exhibited an unpredictable pattern. For instance, various phases of

urbanization might have contrasting impacts on the ecological risk

of landscapes (Airiken et al., 2022; Fang et al., 2022). Increased

green land size alone does not guarantee a reduction in risk,

however optimising the entire spatial plan has been shown to

have a significant impact (Weigand et al., 2023). The complex

interplay between many factors is a significant obstacle in the field

of ecological management (Lynch et al., 2008). Hence, it is

imperative to conduct a thorough and unbiased depiction of

landscape ecological risks, human activities, and their

corresponding response levels. This scientific endeavour is crucial

for achieving a harmonious relationship between humans and land,

while also addressing the inherent contradictions within the

territorial system. Moreover, it enables the exploration of regional

sustainable development (Su et al., 2021).

It is well known that landscape ecological risk is defined as the

unfavorable consequences of the cyclic interaction of landscape

patterns and ecological processes under the influence of human

activities (Angeler and Alvarez-Cobelas, 2005). The phrase “human

activities” encompasses many forms of development, use, and

conservation of the natural ecological environment by individuals

for the purpose of meeting their own survival and development

requirements (Wei et al., 2023a; Ren et al., 2024). The tight
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association between regional human activity intensity and

variations in landscape ecological risk can be shown by

quantitative and visual characterisation (Wu, 2023). The

assessment of ecological risk in landscapes, which emerged in the

1990s, centres on the quantitative analysis of the spatial variability

of risk in comparison to conventional ecological risk assessment.

The findings of this study serve as a crucial foundation for

facilitating the development and enhancement of regional

ecological networks and the sustainable management of ecological

environments (Cao et al., 2019; Yan et al., 2021; Chen X. D. et al.,

2022). Landscape ecological risk assessment studies have effectively

demonstrated the geographical and temporal variability and scale-

related impacts of ecological risk by employing multi-objective,

multi-scale, multi-hierarchical systems and various interaction

linkages (Yang et al., 2021). After conducting extensive research

for over three decades, scholars have identified a strong correlation

between landscape patterns and ecological risk. This correlation has

been established using the traditional ecological risk evaluation

model and the theory of landscape ecology. Additionally, the

evaluation method has been integrated with geostatistics.

Furthermore, the scope of the research has been expanded to

encompass various levels of administrative territorial units (Tian

et al., 2023), different types of natural geographic units (Feng et al.,

2022), as well as watershed units and tributaries (Zhao et al., 2022).

The study material encompasses a wide range of topics, including

the assessment of ecological riskiness in landscape patterns, the

impact of risk on size, the degree of risk, the spatial-temporal

distribution pattern, the movement of centers of gravity, analysis of

cold and hot spots, and exploration of driving mechanisms. In the

context of our research framework, we have expanded our analysis

of landscape ecological risk receptors from a single-dimensional

approach to a three-dimensional framework encompassing the

ecological adaptive cycle (Zhao and Zeng, 2021), ESRISK (Cao

et al., 2018), DPSIR (Shao et al., 2008), PSR (Zhang et al., 2011), risk

“source-sink” (Wang et al., 2018a), landscape pattern-ecological

process (Hu and Wang, 2007), and reciprocal feedbacks (Chen

et al., 2003), among other multidimensional landscape ecological

risk evaluation methods. The comprehensive examination of

landscape ecological risk assessment can enhance our

comprehension of the socio-economic and natural development

trajectory of a given area, particularly in evaluating the

consequences of substantial human choices on the regional

ecological system. The acquisition of information through these

analytical processes enables us to derive insights from previous

experiences, recognise deficiencies, and plays a pivotal role in

facilitating efficient risk management and fostering sustainable

growth. Simultaneously, upon amalgamation, synthesis, and

deduction, it has been observed that while the visualisation of

spatial mapping technology pertaining to land use and landscape

ecological risk is progressively advancing alongside the rapid

advancement of 3S technology (Zhang et al., 2023), the progress

in spatial data preparation concerning human activities remains

relatively sluggish. This can be attributed to the diverse

characteristics of human activities and the intricate nature of

human behaviour. The lack of geographical data about the

magnitude of human activities has significantly limited
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researchers’ ability to elucidate the intricate interplay between

human activities and ecological dangers. Consequently, this has

led to a prolonged period of study disengagement and isolation

pertaining to these two domains. Hence, previous research has

predominantly considered human activities as supplementary

variables of information, with little quantitative examinations of

the link between landscape ecological risk and human activity

(Wang et al., 2017). The thorough use of both approaches may

enhance the examination of the intricate interplay between

individuals and land, while also establishing a connection between

human welfare and alterations in the ecological environment. This,

in turn, can offer more robust theoretical backing for the

formulation of regional policies aimed at protecting the

ecological environment.

Kuye River Basin, situated on the right bank of the North Main

Stream of the Yellow River, is the second most significant tributary

within the middle section of the Yellow River known as He Long.

Additionally, it is a representative river within the erosion zone of the

Loess Plateau. Kuye River Basin is a region that experiences frequent

rainfall and is highly susceptible to large-scale floods. It serves as a

primary source of floods in the northern main stream of the Yellow

River. Additionally, it plays a crucial role in transporting sediment to

the Yellow River, particularly coarse sediment. The area affected by soil

and water erosion accounts for over 95% of the total basin area. Over

the years, the average quantity of sand transported is 111 million

tonnes. The highest yearly sand transit is 335 million tonnes, with a

maximum sand concentration of 1,700 kg/m3. This sand primarily

flows into the Yellow River as mud. In the present context, Kuye River

Basin exemplifies a region characterised by significant human activity,

notable economic progress, and exceptional ecological condition. The

Shenfu-Dongsheng mega-coal field, which ranks as the ninth largest

coal field globally, traverses the central region of the basin. The mining

area encompasses approximately 28.51% of the total basin area,

resulting in significant alterations to the geomorphological

characteristics due to coal mining activities. Furthermore, the process

of fast urbanisation has exacerbated the tensions between the

preservation of arable land, economic growth, and ecological

conservation within the basin. Consequently, the subsequent

environmental issues have significantly impeded and postponed the

region’s sustainable development. Hence, the primary objective of this

research is to investigate the relationship between regional landscape

ecological risks and human activities in the Kuye River Basin. The

study seeks to examine the scale response and spatial and temporal

correlation between these factors. Additionally, it aims to elucidate the

development of human-land relations within the basin, offering

insights for optimising regional national land space and ecological

security. Furthermore, the findings of this study can contribute to the

prevention of regional ecological risks and the restoration of ecological

systems. That is, the aim of this study is to analyse the landscape

ecological risks and the intensity of human activities in the Kuye River

Basin and the interrelationships. So this article focuses on the

sustainable development of the social economy and ecological

environment in the Kuye River Basin. It employs ArcGIS and

Fragstats software to assess and visualize land use structure,

landscape ecological risks, and human activity intensity, along with

their interrelationships, from 2000 to 2022. Then, based on the
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visualization results, identify key ecological protection areas such as

landscape ecological risks and high-value areas of human activity

intensity, and plan routes to ensure long-term regional stability

and prosperity.
2 Overview of the study area and
data sources

2.1 Overview of the study area

Kuye River Basin, situated on the right bank of the North Main

Stream of the Yellow River, is the second largest tributary in the middle

section of the Yellow River, between the River Dragon (Figure 1). It is

also a representative river in the Loess Plateau erosion zone and a

significant contributor to flooding in the North Main Stream of the

Yellow River. Kuye River Basin is part of the characteristic vulnerable

region of the Yellow River Basin and serves as a crucial zone for soil

and water conservation management (Yuan et al., 2023). Recognizing

and enhancing the ecological status is essential for fostering high-

quality development in the Yellow River Basin. The river has its source

inMixed Tree Village, Chaideng Township, Dongsheng District, Ordos

City, Inner Mongolia Autonomous Region. It flows in a southeast

direction through 6 counties (banners, cities) in Ordos City and Yulin

City, Shaanxi Province. It ends at Sha’an Village, Shenmu City, where it

joins the Yellow River. The main stream of the river spans a length of

242km and covers an area of 8706km2. It has two major tributaries, the

Wulanmulun River and Quince Niuchuan River. The upper sections of

the river are characterised by sandy steppes, while the middle and lower

sections are characterised by loess hills and gullies. The overall surface

vegetation in the basin is limited, with a well-developed scouring gully

that exhibits a predominantly dendritic distribution. The gully density

in the valley ranges from 5-9km/km2, with depths exceeding 100m.

From the geographical characteristics, watershed is located in Mao

Wusu sand and loess plateau hills and gullies in the transition zone, the

terrain is high in the northwest and low in the southeast, with an

elevation of 800~1300m, soil structure is sparse, sparse natural

vegetation, coupled with the type of climate belongs to the arid and

semi-arid region, by the continental monsoon, the average multi-year

precipitation is 415mm, precipitation spatial and temporal distribution

of extremely uneven, June to September precipitation accounted for

75%~81% of precipitation, the maximummonthly precipitation occurs

in July and August, precipitation accounts for 50%~60% of the annual

precipitation. The mean precipitation over multiple years is recorded at

415mm. The spatial and temporal distribution of precipitation exhibits

significant disparities, with June to September constituting 75% to 81%

of the total annual precipitation. Conversely, the months of July and

August experience the highest monthly precipitation, equivalent to

50% to 60% of the total annual precipitation. The soil erosion problem

in the Kuye River Basin is quite significant due to the occurrence of

severe cold and minimal snow in winter, limited rainfall and early frost

in spring and autumn, and frequent heavy rain in summer. This issue is

further exacerbated by the effect of hydraulic erosion and wind erosion.

Kuye River Basin is renowned for its intricate geomorphic

composition, characterised by significant soil erosion, recurrent

droughts, substantial precipitation, dust storms, and substantial
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deposition of coarse silt towards the yellow region. The Shenfu

Dongsheng mega-coal field, which is the eighth largest in the world,

is located in the middle of the watershed. The mining area covers

28.51% of the entire watershed area. As a result, the watershed has

become a central location for China’s long-term development of the

Jin, Shaanxi, and Mongolia energy and heavy chemical industry.

Nevertheless, due to the rapid pace of urbanisation and the

expansion of industrial and mining activities, there has been a

significant rise in population and the implementation of predatory

management practices. Consequently, these factors have resulted in

notable conflicts between human populations and land, exacerbated

soil erosion, a substantial decline in the provision of ecological

services and values, and the severe fragmentation and degradation

of ecological landscapes.
2.2 Data sources

In this thesis, in an attempt to systematically study the response of

landscape ecological risks and human activities, Kuye River Basin was

taken as the research object, and specific studies were carried out with

the help of remote sensing image data, digital elevation model elevation

data and socio-economic data. Among them, (1) Landsat TM 4-5 and

Landsat 8 OLI_TIRS satellite remote sensing image data were acquired

through the Geo-spatial Data Cloud Platform (http://www.gscloud.cn).

(2) The land use data of the study area in 2000, 2005, 2010, 2015 and

2022 were classified using remote sensing images. Referring to the

national land use classification standard (GB/T 21010-2017) (Jiao

and Yang, 2008), and according to the image accuracy and the

actual situation of the study area, the land use types were divided

into six categories, which are cultivated land, wood land, grassland,

waters, construction land, and unutilized land, with a resolution of
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30m. Using ENVI of Visualizing Images 5.3.1 software, the land use

structure of the Kuye River Basin from 2000 to 2022 was derived by

supervised classification and visual analysis of remote sensing

images. (3) Digital elevation model data with a spatial resolution

of 30 m from the Geospatial Data Cloud (http://www.gscloud.cn).

(4) Data characterizing the intensity of human activities include not

only land-use structure data, but also population distribution

data and nighttime lighting data, which are derived from

the China Population Spatial Distribution Kilometer Grid

Dataset and Nighttime Lighting Dataset of the Resource and

Environmental Science Data Registration and Publishing System

(http://www.resdc.cn/). (5) Landscape factor data were

obtained by analysis in Fragstats software (https://fragstats.org/

index.php/downloads).
3 Method

3.1 Land use structure

3.1.1 Land use dynamics
The concept of land use dynamics pertains to the measurable

alteration of land use categories within a specific timeframe,

primarily indicating the magnitude of land use modifications and

variations in the pace of change across different regions. This may

be categorised into two types: single land use dynamics and

comprehensive land use dynamics (Xiao et al., 2022). Equation 1

calculates the single land use dynamic attitude, which measures the

rate of change of a certain land use type during a given time period

in the region (Ordonez et al., 2014). The comprehensive land use

dynamic attitude is a method employed to analyse the overall

transfer of land use types during a specific time period (Wei
FIGURE 1

Overview map of the study area.
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et al., 2023b). This approach allows for the assessment of significant

regional changes in comprehensive land use. Additionally, it

facilitates the comparison of comprehensive land use changes

between local areas and the entire region, as well as between local

areas themselves. The calculation method for this analysis is as

follows.

LUTnow−before   =  
LUTnow  − LUTbefore

LUTbefore � Time
 � 100% (1)

LUT synthesize=  o
 n
i=1DLUT

x−y

2o n
i=1LUT

 x

� �
 � 1

Time
 � 100% (2)

Where: LUTnow-before is the motivation of a single land use type

in the study period; LUTnow and LUTbefore are the area of a land use

type at the end and the beginning of the study period, respectively;

Time is the study period; LUTsynthesize is the synthesized land use

motivation; LUTx is the number of land use types of type x at the

beginning;△LUTx-y is the absolute value of the area of land of type

x converted to unutilized land types from the beginning to the end.

LUTx-y is the absolute value of the area from the beginning to the

end of the study period in which type x is transformed into

unutilized land use types.
3.1.2 Land-use transfer matrix
The land use transfer matrix is a tool that illustrates the

dynamic process of interconversion between different land use

types within a specific region during a defined time period, both

at the beginning and conclusion of the period (Zhang et al., 2016).

The dataset encompasses both the static data pertaining to each

category within a specific region at a particular moment, as well as

more comprehensive information regarding the outflow and inflow

of each category at the commencement and conclusion of the study

period, as determined through the following calculations.

SQij =  

SQ11 SQ12 SQ13 … SQ1n

SQ21 SQ22 SQ23 … SQ2n

SQ31 SQ32 SQ33 … SQ3n

… … … … …

SQn1 SQn2 SQn3 … SQnn

2
666666664

3
777777775

(3)

Where: S represents the land use area; n represents the number

of land use types before and after the transfer; i,j (i,j = 1,2,…n)

represents the area of land use types before and after the transfer,

respectively; and SQij denotes the area of land use type i before the

transfer that is converted to land use type j after the transfer.
3.2 Landscape ecological risk and human
activity intensity calculation

3.2.1 Risk sample plot division
The ArcToolbox-Data Management Tools-Sampling-Create

Fishnet method of operation in the ArcGIS computer mapping

application programme was employed to compute the two indicators

of landscape ecological risk and human activity intensity. The study
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area was partitioned into 417 square grids, each with a side length of

5km, based on the size of the evaluation units and the area of the study

area. These evaluation units were utilized to calculate the landscape

ecological risk index and the human activity intensity index, with the

respective values located at the centre of each independent unit.

3.2.2 Calculation of landscape ecological risk
index based on landscape pattern index

The Landscape Ecological Risk Index (LERI) is employed as a

metric to assess the ecological risk resulting from the land use patterns

within a given region. This index serves as a significant indication for

establishing a connection between ecological risk and human activities.

The index calculation incorporates explanatory variables that

encompass both intrinsic and extrinsic factors that influence the

ecological risk of landscapes. Extrinsic factors pertain to the level of

disruption experienced by the ecosystem during periods of stress, as

indicated by the degree of landscape disturbance. On the other hand,

intrinsic factors pertain to the susceptibility of ecosystems during

periods of pressure, as indicated by the degree of landscape

vulnerability. Internal factors encompass the extent to which

ecological systems are susceptible to stress, and are distinguished by

the level of landscape vulnerability. The paper utilises Fragstats

software to analyse the current conditions of the study area and

existing research (Liao et al., 2022). It focuses on constructing a

landscape ecological risk evaluation model for the Kuye River Basin,

utilizing the landscape disturbance index and landscape vulnerability

index. The model is calculated using the following formula:

Di = aFi + bSi + cFDi (4)

Fi =
Ni

Ai
(5)

Si=
1
2

ffiffiffiffiffiffi
Ni

A

r
� A
Ai

(6)

FDi=
2 ln ( pi4 )

lnAi
(7)

Ri = Di � Vi (8)

ERI=o
n

i=1

Aki

Ak
�Ri (9)

The disturbance index of the i-th landscape type is denoted as Di.

The weights of each landscape index are represented by a, b, and c,

respectively. The sum of a, b, and c is equal to 1. This work utilises the

findings of other studies, including Yufang (Yu et al., 2022), and

incorporates the current conditions of the study region. The weight

assigned to variable an is 0.5, the weight assigned to variable b is 0.3,

and the weight assigned to variable an is 0.2. Landscape fragmentation

is denoted by the symbol Fi. Landscape separation is denoted as Si,

whereas landscape fractal dimension is denoted as FDi. In the context

of landscape type i, Ni represents the quantity of patches, Ai represents

the area, A represents the overall area (measured in hm2), and Pi

represents the perimeter (measured in m) of landscape type i. The
frontiersin.org
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variable Ri represents the extent of landscape loss in landscape type i,

while Vi represents the landscape fragility index of landscape type i.

The landscape fragility index is assigned to various landscape types

based on previous research findings (Guo et al., 2023). Specifically,

unutilized land, waters, cultivated land, grassland, wood land, and

construction land are assigned values of 6, 5, 4, 3, 2, and 1, respectively.

The fragility index for each landscape type is then calculated after

normalisation. The normalisation process was employed to produce

the vulnerability index for each landscape type. The ecological risk

index (ERI) represents the ecological risk of the i-th risk plot. Aki

represents the area of the i-th kind of landscape in the k-th risk plot,

whereas Ak represents the size of the k-th risk plot.
3.2.3 Analysis of spatiotemporal change in
landscape ecological risk

The examination of spatiotemporal variations in the ecological

risk value of the landscape is carried out through a three-step

process. Ecological risk levels are categorised based on the presence

of natural breaks. Natural breaks are well-suited for illustrating

inherent patterns in the data, as they decrease the variability within

each class and maximise the variability between different classes

(Liang et al., 2018; Lei et al., 2020). All units from the years 2000,

2005, 2010, 2015, and 2022 were aggregated and categorised into

ten periods based on the landscape ecological risk levels. Five risk

levels were obtained by combining every two neighbouring periods.

Additionally, the construction of the rate of risk change index aims

to assess the disparity in the rate of growth in landscape ecological risk

values across various units throughout different time periods. This

analysis helps to detect the geographical and temporal variations in risk

changes. The index of risk change rate refers to the mean yearly

increment in the ecological risk value of a given unit, expressed as a

percentage relative to the original value of ecological risk. Greater,

positive index values signify accelerated rates of risk expansion, lesser

values signify decelerated risk expansion, and negative values signify

diminished risk. The computation of the rate of risk change index is as

follows:

RRCi=
LERVt2

i �LERVt1
i

LERVt1
i

� 1
Dt

�100% (10)

RRCi is the rate of risk change of unit i; LERV is the landscape

ecological risk value; and are the landscape ecological risk index of unit

k at time t1 and t2, respectively; and Dt is the time span from t1 to t2.

3.2.4 Calculation of the intensity of
human activity

The assessment of human activities’ intensity serves as a reliable

measure for evaluating the extent of human impact on the natural

environment (Wang et al., 2009). The current approaches to

quantifying the intensity of human activities may be categorised into

two distinct spatial characterisation methods: direct spatialization and

indirect spatialization. ground use change is a phenomenon that

encompasses a wide range of human economic and social activities.

It may be seen as the observable outcomes of human actions on the

ground surface, serving as an effective means to measure the extent of

human activity. Nevertheless, the approach of assessing the magnitude
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of human activities exclusively through land-use change poses

challenges in accurately representing the diverse, intricate, and

interconnected nature of human activities. Additionally, this method

may introduce a certain level of endogenous influence when compared

to landscape ecological risk evaluation, which also relies on land-use

data. This study presents spatial distribution data of nighttime lighting

and population, building upon previous research. It draws upon the

findings of Rong Yi et al. (Rong et al., 2017) and combines three

methods: Lohani list method, the Leopold matrix method, and the

Delphi method. By averaging the coefficients, the study reduces

coefficient error and assigns different coefficients to measure the

intensity of impacts from various human activities on different land-

use types. Finally, distinct coefficients were allocated to various land use

categories in order to develop a complete evaluation model of human

activity intensity in the Yangtze River Delta region. The formulas for

these coefficients are as follows. Furthermore, the Jenks optimal natural

fracture method was employed to classify human activity intensity into

five distinct levels, namely low intensity, lower intensity, medium

intensity, higher intensity, and high intensity, in order to visually

represent the spatial and temporal evolution characteristics of human

activity intensity from 2000 to 2022. This classification was based on

the findings of previous research (Wang et al., 2021).

HAI = nNTL + pPD + lLU (11)

Where: HAI denotes the intensity of human activities; n, p, l are

the index weights of the normalized nighttime lighting index NTL,

population distribution data PD and land use data LU, respectively.

We refer to the research results of Chen Hongjin et al. (Chen H. J.

et al., 2022), and n, p and l are taken as 0.3, 0.3 and 0.4, respectively.
3.3 Spatial and temporal correlations
between landscape ecological risk and
human activity intensity

This research integrates an overview of the study area in the

Kuye River Basin with geographical Statistics Tools to examine the

geographical and temporal relationship between landscape

ecological risk and the intensity of human activities in the region

from 2000 to 2022.The Geographic Distribution-Center of Mean

and Directional Distribution module of ArcGIS programme is used

for measuring the geographic distribution. It is a tool for doing

spatial statistics.The unique problem was analysed using the

Geographically Weighted Regression Model of ArcGIS software,

which is a spatial relationship modelling technique.
3.3.1 Geographic distribution of metrics
The Mean Center of Geographic Distribution module of the

Spatial Statistics function of ArcGIS is used to identify the

geographic center of a group of elements. The specific calculation

formula is as follows:

The mean center can be expressed as:

�X=o
n
i=1xi
n

,    �Y=o
n
i=1yi
n

(12)
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Where: xi and yi are the coordinates of element i and n is equal

to the total number of elements. The weighted average center

expansion is:

�Xw=
on

i=1wixi

on
i=1wi

,    �Yw=
on

i=1wiyi

on
i=1wi

(13)

Where: wi is the weight at element i. The tool also calculates the

center of the third position if there is a Z attribute for each element:

�Z=o
n
i=1zi
n

,    �Zw=
on

i=1wizi

on
i=1wi

(14)

The Directional Distribution module, located within the Spatial

Statistics Functions of ArcGIS’s Metric Geographic Distribution, is

utilized to provide a concise summary of the spatial attributes of

geographic elements. This includes measures such as central

tendency, dispersion, and directional tendency. By examining the

distribution of these elements, we can determine if they are narrow

and directional, enabling us to intuitively perceive the data’s

tendency. The determination of the directional distribution, also

known as the standard deviation ellipse, involves the computation

of the standard deviation of the x- and y-coordinates relative to the

mean’s centre. This calculation establishes the axis of the ellipse,

thereby earning it the designation of a standard deviation ellipse.
3.3.2 Geographically weighted regression models
Geographically weighted regression is a variant of the

conventional linear regression model (Kang et al., 2014). It

incorporates the spatial location of the data into the equation for

computation. This regression approach considers the specific

attributes of the spatial variables and can efficiently adjust the

weights at the local level. Each sample point is assigned an

independent coefficient value, enhancing the accuracy of the

obtained results in reflecting the real-world context. The formula

for calculation is as follows:

yi=b0(ui; vi)+o
p

k¼1

bk(ui; vi)Xik+eiði=1,2,3,…nÞ (15)

Where: b0 (ui,vi) is the coordinates of the sampling point, bk (ui,
vi) is the k-th regression coefficient on sampling point i, is the

geographic location correlation function, which is obtained by using

the weighting function in the estimation process, p is the number of

explanatory variables, Xik is the value of explanatory variable Xk on

point i, and ei is the random disturbance term.
4 Results

4.1 Land use structure

The analysis of the land use area and changes in the Kuye River

Basin from 2000 to 2022, based on the interpretation of the five-

phase remote sensing map, revealed that the primary land use types
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in the basin are cultivated land, grassland, and construction land.

These land use types collectively account for an average of 85.63% of

the total land use area over multiple years.

As shown in Figure 2, the area of wood and grassland accounted

for the most, and the combined area of the both from 2000 to 2022

was 602576.5234hm2, 612346.2168hm2, 620415.5156hm2,

602723.5285hm2, and 576075.5507hm2, which accounted for

69.15%, 70.27%, 70.27%, 70.27%, 71.20%, 69.17%, and 66.12% of

the total land use type, whose area and share were more than half of

the total land use type, 71.20%, 69.17%, and 66.12%, respectively,

with their areas and percentages reaching more than half of the total

land use types. The land-use landscape pattern in the Kuye River

Basin is spatially spread, including the majority of the basin,

including its northern, central, and southern portions. However, it

is more densely inhabited in the northwestern and western half of the

central part of the basin, resulting in a distinct pattern. The cultivated

land areas from 2000 to 2022, as seen in Figure 2, were as follows:

174236 .2982hm2 , 158599 .294hm2 , 151845 .0701hm2 ,

149024.3916hm2, and 146599.1395hm2. These areas accounted for

proportions of 20.00%, 18.20%, 17.43%, 17.10%, and 16.83%

correspondingly. The spatial distribution of cultivated land in the

watershed, as depicted in Figure 3, exhibits a notable degree of

uniformity. Specifically, the southern, central, and northern districts

of the watershed are predominantly occupied by cultivated land

dedicated to grain cultivation. This agricultural activity serves as the

primary source of sustenance for the social populations residing in

Shenmu City, Fugu County, Yulin City, Shaanxi Province,

Dongsheng District, Kangbash District, Dalate Banner,

YijinhuoLuo Banner, Ordos City, Inner Mongolia Autonomous

Region, and other regions within the Kuye River watershed area.

Although the proportion of construction land is comparatively lower

than that of grassland, there is a consistent upward trend. Specifically,

the area of construction land in 2022 is 7.95 times greater than the

area of construction land in 2000. This trend is indicative of the

economic and social progress of urban areas, as depicted in Figure 2.

Simultaneously, the Kuye River Basin exemplifies a region

characterised by significant human activity, notable economic

progress, and exceptional ecological condition. The Shenfu-

Dongsheng mega-coal field, which ranks as the ninth largest coal

field globally, traverses the central region of the basin. The mining

area encompasses 28.51% of the entire basin area, resulting in

significant alterations to the geomorphological characteristics due

to coal mining activities. The extent of unutilized land areas has

exhibited varying degrees of change between 2000 and 2022, with a

general rising trajectory. These areas are mostly concentrated in the

northern, northwest, and other regions, as seen in Figures 2, 3.

Waters, being a significant resource for social production and

ecological environment, are experiencing a gradual decline in both

distribution range and area. This observation is supported by the

analysis of five-phase remote sensing images, which reveal the

following values: 25783.58hm2, 23336.7553hm2, 23072.5271hm2,

21206.1525hm2, and 21737.2323hm2 (Figures 2, 3). Additionally, it

is evident that the water resources of the primary tributaries within
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the basin, namely the Wulanmulun River and Quince Niuchuan

River, together with the remaining 19 tributaries, have seen varied

levels of impact.
4.2 Land-use dynamics and transfers

According to the data presented in Figure 4, the land use

patterns observed in the Kuye River Basin exhibit a consistent

pattern characterised by three rises and three declines. Specifically,

there is an upward trend in the extent of wood land, unutilized land,

and construction land, whereas there is a downward trend in the

areas of arable land, grassland, and waters. The period from 2000 to

2010 witnessed a significant prevalence of grassland, cultivated land,
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and wood land, accounting for a combined proportion of 89.15% in

2000, 88.48% in 2005, and 88.63% in 2010. From 2010 to 2022, there

was a substantial alteration in the land cover composition of the

watershed, characterised by a decrease in cultivated land, grassland,

wood land, and waters. Among these, the area of cultivated land

decreased by 0.29% from 151845.0701hm2 to 146599.1395hm2. The

area of wood land decreased by 0.37% from 49,842.0514hm2 to

47,616.5412hm2. The area of grassland decreased by 0.62% from

570573.4642hm2 to 528459.0095hm2. Lastly, the area of waters

decreased by 0.48% from 23072.5271hm2 to 21737.2323hm2. On

the other hand, the amount of land that was not being used grew by

1.63% from 48,588.7927hm2 in 2010 to 58,120.255hm2 in 2022.

Additionally, the amount of land used for building climbed by

12.55% from 27,444.8848hm2 in 2010 to 68,782.2425hm2 in 2022.
FIGURE 2

The land use area of Kuye River Basin from 2000 to 2022.
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The phenomenon of land use transfers was marked by a notable

expansion in the extent of developed land and unutilized land,

accompanied by different degrees of reduction in unutilized land.

Wood land and grassland constituted the majority of the

transferred construction land, representing 5.17% and 28.41% of

the total increase in construction land area, respectively. The
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extension of construction land within the watershed is closely

linked to the notable impacts of escalating human activities,

particularly urbanisation and rapid population rise. These factors

contribute to an increased demand for construction land.

Furthermore, the extensive extraction of coal in the Shendong

and Shenfu coal fields within the Kuye River Basin, encompassing
FIGURE 3

The spatial and temporal distribution of land use in Kuye River Basin from 2000 to 2022.
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the establishment of production and residential areas for coal

miners, transportation infrastructure, and supporting services, will

result in a substantial expansion of construction land. Water, being

a crucial prerequisite for the sustenance and advancement of

human civilization, holds significant importance as a dynamic

element within the natural and social milieu. It serves as an

indispensable foundational natural resource that is indispensable

for upholding the integrity of the Earth’s ecological system and

facilitating the progress of the economic framework. However, over

the span of 2000 to 2022, there has been a notable reduction of

4,046.3477 cubic meters in water availability. This decline can be

attributed to various natural and socio-economic factors, including

the extensive utilization of irrigation water for cultivating arable

land, irrational water consumption for domestic purposes, and the

water demand associated with the cultivation of wood and

grassland. The reasons of water scarcity may be attributed to both

environmental and socio-economic factors. These factors include

the excessive use of irrigation water for cultivating arable land, the

illogical consumption of water for home purposes, and the water

demands associated with the expansion of wood land and grassland.
4.3 Landscape pattern index and
change characteristics

Aiming to analyze the landscape pattern index and change

characteristics of the Kuye River Basin, we exported the land use
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remote sensing data in raster format to Fragstats software by using

ArcGIS to calculate the number of patches and patch area of each

land type in this paper. Afterwards, Equations 4–8 were combined

to calculate landscape separation, landscape disturbance, landscape

fragmentation and landscape loss to characterize the overall

landscape pattern. According to the data presented in Figure 5,

there was a consistent annual increase in the number of patches

from 2000 to 2022. Additionally, the density of patches exhibited a

pattern of initial decrease followed by subsequent increase.

Specifically, the number of patches rose from 4713 in 2000 to

6522 in 2022. Conversely, the density of patches across all land

types experienced a consistent annual decrease from 2000 to 2015,

dropping from 0.0945 to 0.0771. With a further increase to 0.0788

in 2022, it can be deduced that landscape fragmentation is on the

rise. This indicates that different types of landscapes are becoming

more scattered after 2015 due to human disturbance and the spread

of urban building in the watershed.

By analyzing Figure 6, we observed that the separation index

exhibits a consistent pattern of decreasing and then increasing in

response to changes in patch density. Notably, in 2022, the maximum

value of 1.2252 indicates the highest level of landscape separation and

fragmentation caused by human interference. The extent of landscape

degradation, which indicates the extent of loss of ecological

characteristics resulting from both natural and human-induced

disturbances (Xu et al., 2016), exhibited a consistent upward trend

from 2000 to 2022. This observation suggests that the degradation of

ecological attributes in the Kuye River Basin is becoming more
FIGURE 4

Land use transfer in Kuye River Basin from 2000 to 2022.
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pronounced and severe, as evidenced by the respective degree of loss

indices of 0.2391, 0.2588, 0.2750, 0.2827, and 0.2904. In summary,

based on an analysis of the landscape pattern index, it can be

observed that the watershed has experienced a progressive rise in

anthropogenic disturbances over time. Consequently, the landscape

pattern has become more intricate and fractured, exhibiting

heightened levels of fragmentation.

Regarding each land use type (Figure 7), the Kuye River Basin

experienced a decline in the area of cultivated land and grassland

patches compared to an increase in the area of construction land

patches between 2000 and 2022. Specifically, the area of cultivated

land and grassland decreased by 27,696.96hm2 and 36,706.14hm2,

respectively. The size of construction land patches has progressively

grown, with a notable rise in the number of patches between 2010-

2022 compared to 2000-2010. This growth may be attributed mostly

to the rapid urbanisation of the Kuye River Basin in the last 12

years. The patch density and separateness indices for construction

land have experienced a decrease from 0.0484 and 1.1016 in 2000 to

0.0137 and 0.2374 in 2022. However, it is worth noting that the

degree of decrease in patch density and separateness indices

between 2000 and 2010, which were 0.0278 and 0.6973

respectively, is significantly greater than the values observed

between 2010 and 2022, which were 0.0069 and 0.1669.

Specifically, following 2010, there was an increase in the extent of

construction land, but it became subject to control within the

watershed. This led to an increase in agglomeration, a decrease in

segregation, and a shift in the development of construction land

from dispersed to centralized. However, it is important to note that

the level of human disturbance and fragmentation was intensifying,

albeit at a reduced rate of increase. Water patches formed by the

main tributaries Wulanmulun River and Quince Niuchuan River

with 19 other tributaries decreased by 4041.81hm2, while the

separation index of the watershed and the landscape loss index

also decreased by 0.099 and 0.0254. In summary, the changes in the

landscape pattern index for each land use change similarly show

that the area of construction land is increasing year by year, and the
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landscape pattern tends to become more complex and fragmented,

with increased fragmentation.
4.4 Landscape ecological risks

The landscape ecological risk is often categorized into five

categories, namely the low level, lower level, medium level, high

level, and higher level. This categorization serves to illustrate the

varying degrees of risk associated with different methods and

management measures. ArcGIS utilizes the Jenks techniques of

natural breaks classification to automatically categorize the

landscape ecological risk of the Kuye River Basin into five tiers

based on the value of landscape ecological risk. The study identified

five distinct categories of landscape ecological risk, namely the low

risk level, lower risk level, medium risk level, higher risk level, and

greatest risk level. The geographical distribution of multi-cores was

observed in the landscape ecological risk levels of the Kuye River

Basin. Utilized to provide a cartographic representation of the

spatial arrangement of landscape ecological vulnerability in the

designated research region spanning from 2000 to 2022, illustrating

the alterations in the vulnerable area (Figure 8).

The Kuye River Basin had average landscape ecological risk

levels of 9.01×10-4, 7.43×10-4, 7.24×10-4, 5.61×10-4, and 7.40×10-4

in the years 2000, 2005, 2010, 2015, and 2022, respectively. The

results of this study indicate a consistent decline in ecological risk

within the Kuye River Basin between the years 2000 and 2022,

followed by a subsequent stabilisation at a comparatively low level.

The collective proportion of the two phenomena at the five specific

time intervals was 93.05%, 96.76%, 96.26%, 98.23%, and 93.52%,

respectively. This corresponds to 93% to 98% of the total area

affected by ecological risk in the entire watershed. Nevertheless,

there was an observed rise in the level of landscape ecological risk

subsequent to 2015, accompanied by a commensurate decline in the

number of places characterized by lower and low landscape

ecological risk. During the period from 2000 to 2015, the areas
FIGURE 5

Number of landscape patches and density of patches in different years in the Kuye River Basin.
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characterized by elevated landscape ecological risk were measured

to be 6705.417hm2, 1614.559hm2, 2258.859hm2, and 1433.923hm2.

Conversely, areas with high landscape ecological risk were recorded

as 517.7411hm2, 509.7809hm2, 541.2127hm2, and 450.6185hm2.

The time span from 2015 to 2022 witnessed a notable shift, as the

proportion of both entities rose to 0.88% and the total area

expanded from 7223.1581 hm2 in 2000 to 7654.494 hm2 in 2022.

When doing a comparative analysis of the Risk Reduction

Coefficient (RRC) for the Kuye River Basin over several time
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periods, it is seen that the total risk decreased at a faster rate

during periods I (2000-2005) and IV (2015-2022). Conversely, the

fall in overall risk was somewhat slower during period II (2005-

2010), with RRC values of -3.52%, -4.83%, and -0.50%, respectively.

During period III (2010-2015), the risk experienced a consistent

annual rise of 0.44%.

From a geographical perspective, it can be observed that areas

with high ecological risk are predominantly situated in the northern

and southern portions of the basin. Conversely, regions with
FIGURE 7

Number of landscape patches and patch density in the Kuye River Basin based on each land type.
FIGURE 6

Landscape pattern index.
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reduced ecological risk and low ecological risk are distributed over

the majority of the basin, encompassing the eastern, western,

southern, and northern areas. Geographically, these places with

elevated ecological risk exhibit significant variations in height,

latitudinal and vertical zonation, as well as substantial expansions

of developed land (Figures 1, 3). The combined impacts of the

increased construction land area of 60,133.3598hm2 and human

intervention between 2000 and 2022 have resulted in the dispersion,

finer, and fragmented distribution of landscape types in these

regions. This has given rise to a distinct vertical band spectrum,

characterized by fragmented landscape patches. Consequently, the

ecological integrity and stability of the environment have been

compromised, thereby increasing ecological risks. The landscape

type in the Kuye River Basin is primarily characterized by wood

land and grassland, which are distributed in the east-west and

north-south regions of the low ecological risk area. The primary

objective of this landscape type is to preserve a high level of

landscape integrity and ensure the stability of wood land and

grassland ecosystems. Additionally, it exhibits a strong resistance

to external interference and poses a low level of ecological risk.

Conversely, the region characterized by moderate ecological risk is

mostly concentrated in the vicinity of the watershed.
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4.5 Intensity of human activity

The level of human activities in the research region was

classified into five classes: low intensity, lower intensity, medium

intensity, higher intensity, and high intensity, in accordance with

the spatially measurable operational approach to landscape

ecological risk. The data shown in Figure 9 illustrates a notable

rise in the level of human activities within the designated research

region between the years 2000 and 2022. Notably, the period from

2015 to 2022 exhibited the most substantial growth, with a recorded

rate of 12.07%.

The study area exhibits high-intensity human activities that

align with the characteristics of high landscape ecological risk. The

distribution area demonstrates a linear upward trend, with the

growth area primarily consisting of construction land and the more

densely populated northern district. Simultaneously, there is a

gradual expansion towards the south. The relevant area, initially

measuring 2613.5hm2, experienced an increase to 6039.2869hm2 in

2005. Subsequently, it further rose to 19519.5174hm2 in 2010 and

27507.1999hm2 in 2015. Finally, it experienced a rapid increase to

76,472.9192hm2 in 2022. During the time frame spanning from

2000 to 2010, the level of human activities had a relatively low
FIGURE 8

Landscape ecological risk.
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intensity, mostly characterised by lower and low intensity activities,

collectively accounting for 67.37% of the total. From 2010 forward,

particularly starting from 2015, there was a prevalence of medium

and greater intensities. The area of medium-intensity human

activities was 485077.0675hm2 in 2015 and increased to

489734.0619hm2 in 2022. The area of higher-intensity human

activities increased to 257428.3342hm2 and further increased to

187772.8694hm2. By 2022, the intensity scale of this phenomenon

has reached a significant level, representing 8.83% of the total

human activities within the watershed between 2000 and 2022.

This is a substantial growth of 73,859.4192 hm2 in area, as opposed

to the 2,613.5 hm2 recorded in 2000.

With the exception of the northern region, where human

activities are concentrated, the landscape type primarily consists of

wood and grassland. The absence of deforestation and land

reclamation can be attributed to the implementation of integrated

watershed management and ecological protection policies.

Consequently, the surrounding areas experience minimal human

activities, resulting in the preservation of their ecological systems. By

2022, the combined area of lower and low-intensity human activities

is projected to reach 47,259.4238hm2 and 64,387.9941hm2,

representing 5.46% and 7.44% respectively.
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4.6 Correlation analysis between human
activity intensity and landscape
ecological risk

The spatial statistics tool module of ArcGIS software was

employed to investigate the spatial influence link between

landscape ecological risk and human activity intensity in the

research region using the geographically weighted regression

model. The research employed regression analysis to examine the

relationship between landscape ecological risk and human activity

intensity index. The dependent variable was landscape ecological

risk, while the explanatory variable was human activity intensity

index. The distance weight decay function was chosen as the

Gaussian function kernel, and a geographically weighted

regression model was utilized to assess the extent of human

activity intensity’s influence. According to the data presented in

Figure 10, it can be observed that the standardized residuals for

most regions within the Kuye River Basin fall within the range of

[-2.5,2.5]. It is important to note that if the absolute value of the

standardized residuals exceeds 2.5, the reliability of the regression

forecast for the respective area is compromised. This observation

suggests that the model is appropriately fitted.
FIGURE 9

Intensity of human activity.
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Regression coefficient spatial distribution map can reflect, spatially

landscape ecological risk and human activity intensity of the influence

of the relationship, when the regression coefficient is positive indicates

that the landscape ecological risk and human activity intensity is

positively proportional to each other, and vice versa. From the figure,

it can be seen that the regression coefficient is positive in the northern

part of the basin, especially in the northwestern region, part of the

central part and the southeastern part, and the surrounding region, and

the value of the regression coefficient is increasing after 22 years of

development, especially from 2010 (Figure 11), and the values of the

regression coefficient for the five time points of the period of 2000-2022

are in the ranges of [0.0688,0.4764], [0.0886, 0.5047], [0.0731,1.2096],

[0.0445,0.6803], [0.1031,0.7343]. The landscape type primarily consists

of construction land, and the ecological risk of the region is higher. This

is indicated by a positive regression coefficient with a larger value,

suggesting that the region is characterized by medium and high

intensity human activities. This implies that as human activities

intensify in the region, the ecological risk of the landscape

also increases.

The mean centre of human activities was determined to be

located in the middle north of the watershed using the Spatial

Statistics Tools - Metrics Geographic Distribution - Mean Centre

module of ArcGIS software. The xy coordinates of the mean centre

of human activities at the start of the study, during the five time

nodes from 2000-2022, were (446611.5473, 4228106.8413). At the

conclusion of the study, the xy coordinates were (446371.7634,

4230844.2566). The central point of the mean landscape ecological

risk was found to be situated in the central northern region of the

watershed. According to Figure 12 of the distribution map of

landscape ecological risk movement direction in ArcGIS, it can be

observed that the average centre of landscape ecological risk is

exhibiting a northward shift.

The findings from the Spatial Statistics Tools-Metrics Geographic

Distribution-Directional Distribution (Standard Deviation Ellipse)

module of ArcGIS software indicate that human activities are

primarily concentrated in the northwestern region of the study

area, as evidenced by the expansion of the large-scale construction

land area (Figure 13). The escalation of human activities and the swift

growth of other industrial enterprises have resulted in a rise in the

level of human activities in the region, which subsequently expanded

towards the southeast. This indicates a pattern of human activities
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moving from the northwest to the southeast. Similarly, the

distribution of ecological risks in the landscape aligns with the

direction of human activity. Consequently, this has caused a certain

level of disturbance to the overall integrity, interconnectedness, and

density of patches in the landscape, eventually increasing the

ecological vulnerability of the environment. In contrast, the

landscape type primarily consists of wood land and grassland,

resulting in a relatively low human population density and low

intensity of human activities. Consequently, the ecological risk

associated with this landscape is also low. This can be attributed to

the high altitude of the region, sparse population, and the absence of

concentrated residential, industrial, mining, and other construction

land in the distribution area. The coverage of wood land and

grassland is high, and with the advancement of socio-economic

development, there is a certain degree of expansion in the area of

construction land, population growth, and the establishment of other

industrial enterprises. However, these factors are unlikely to

significantly impact the ecological risk of the landscape. The

expansion of construction land area, population increase, and other

industrial businesses, in conjunction with socioeconomic

development, is unlikely to have a detrimental impact on the

ecological risk of the landscape. Negative return coefficients range

from [-0.4965,-0.1516], [-0.4905,-0.16660], [-0.8410,-0.0806],

[-0.6872,-0.6251], and [-0.4957,-0.0155] during the period 2000-

2022, respectively.
5 Discussions and conclusions

5.1 Discussion

In recent years, there has been a shift in the focus of ecological

risk assessment from primarily examining the effects of pollution on

ecosystems to considering more significant factors related to human

activities such as land use, urbanization, and demographic changes.

In the 2000s, humans continued to seek economic advantages while

progressively becoming aware of the importance of environmental

conservation, resulting in a partial improvement in ecological

quality (Wang and Sun, 2016). During the 2010s, the

establishment of ecological civilization was implemented and

yielded significant results, leading to a substantial reduction in
FIGURE 10

Standardized residuals of geographically weighted regression models.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1409515
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Wu et al. 10.3389/fevo.2024.1409515
ecological risk (Zhang et al., 2021; Ran et al., 2022). Additionally,

the scope of research has expanded from a single population to

encompass landscape and watershed scales (Fu and Lu, 2006; Peng

et al., 2015b). The linkage between regional development and the

ecological environment is established through landscape ecological

risk assessment. This assessment examines the changes in the

regional ecological environment due to watershed development

and offers a quantitative foundation for decision-making in

ecological and environmental management within the study area.

Moreover, it serves as a scientific reference for the coordinated

development of the region’s society, economy, and ecology (Jin

et al., 2021; Ma and Liu, 2021). The objective of this study is to

examine the ecological risk posed by human activities in the Kuye

River Basin. Specifically, the focus is on the Yellow River, which

erodes soil and covers over 95% of the basin’s total area. The Yellow

River plays a crucial role in transporting sediments, particularly

coarse sediments, and serves as a key channel for the construction of

China’s “Jin-Shaan-Mengzhou Energy and Heavy Chemical

Industry Base.” The study aims to promote the harmonious

development of human activities and the ecological environment

within the context of China’s rapid socio-economic development

and comprehensive land use, including industrial, mining, and

other industries. Simultaneously, as the focal point of the

establishment of the “Jin, Shan, and Meng Energy and Heavy

Chemical Base” in China in the forthcoming century, the

expeditious advancement of the social economy, encompassing

the mining industry, coupled with the optimal utilization of land
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resources, will facilitate the symbiotic progress of human

endeavours and the ecological milieu.

Simultaneously, as the focal point of the establishment of the “Jin,

Shan, and Meng Energy and Heavy Chemical Base” in China in the

forthcoming century, the expeditious advancement of the social

economy, encompassing the mining industry, coupled with the

optimal utilization of land resources, will facilitate the symbiotic

progress of human endeavours and the ecological milieu. This

tendency can be linked to the dominance of wood land, grassland,

and cultivated land types in the watershed, which have a significant

influence on landscape patterns. The majority of the Kuye River is

covered by grassland, encompassing the northern, central, and

southern regions of the watershed. However, the western half of

the northwestern and central areas exhibit a higher density of

grassland, resulting in a distinctive land use landscape pattern

within the watershed. Furthermore, the basin contains cultivated

land in the southern, central, and northern districts. These districts

are densely distributed and serve as the primary food source for

various social groups in Shenmu City (a county-level city) and Fugu

County of Yulin City in Shaanxi Province, as well as Dongsheng

District, Kangbash District, Dalate Banner, and Yijinhuo Luo Banner

of Ordos City in the Inner Mongolia Autonomous Region. These

districts are part of the Kuye River Basin. The primary factor behind

this is the introduction and execution of the Kuye River Basin

Comprehensive Plan. This plan emphasises the integration of

prevention and treatment, prioritising protection, highlighting key

aspects, and enhancing basin management. It also emphasises the
FIGURE 12

Distribution of mean center and direction of landscape ecological risk.
FIGURE 11

Regression coefficients of geographically weighted regression models.
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organic combination of wood land and grassland, engineering, and

farming measures on a watershed scale. This approach aims to

enhance environmental quality, vegetation cover, and land-use

structure. Following the introduction and implementation of

various programmes and engineering measures, such as the

“National Ecological Environment Protection Outline,” “Yellow

River Ecological Protection and Governance Battle Action

Programme,” and “Inner Mongolia Yellow River Soil and Water

Conservation Ecological Function Key Tributary of the Kuye River

Basin Ordos Project Area Governance Project,” the Kuye River Basin

wood land and grassland area have consistently improved. These

types of land serve multiple ecological purposes (O’Connor and

Kuyler, 2009), including water conservation (Zhang et al., 2022),

soil preservation (Zhang et al., 2024), and species protection (Kivinen

et al., 2022).

However, following 2015, the fast rise of population and the coal

industry have resulted in an expansion of its territory and share. The

upward trend in construction land suggests that the expansion of

construction land in the region has been influenced by the growing

human activities, particularly due to urbanization and rapid

population growth in the watershed. This has resulted in an

increased demand for construction land. The expansion of coal

mining operations in Shenfu and other coal fields in the Kuye

River Basin has led to a substantial growth in the construction land

area due to the construction of production and living facilities. These

facilities include residential land for coal miners, transportation land,

and other services. Consequently, the escalation in human activities

led to a decline in the rationality of landscape structure, with an

augmentation of landscape fragmentation and an elevation in the risk

value associated with landscape patterns. The findings of Ma Yingyi

et al. (Ma and Liu, 2021) align with this observation. In the 21st

century, significant phases of industrialization, urbanization, and

infrastructural development have transpired, resulting in a

sustained high demand for land development (Wang et al., 2018b).

The study found that industrialization, urbanization, and

infrastructural development has contributed to an increase in

landscape ecological risk and human activity intensity in various

regions (Cheng et al., 2023). Based on the findings of this study

regarding the spatial and temporal relationship between landscape

ecological risk and human activity intensity, it is observed that both

landscape ecological risk and human activity exhibit a gradual
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expansion from the northwest to the southeast. This expansion is

primarily observed in the northwestern region of the Kuye River

Basin, as well as in certain parts of the central region and the

southeast region. Additionally, the surrounding areas with a high

intensity of human activities also demonstrate a positive regression

coefficient. Consequently, areas characterized by intensive human

activity and high activity levels exhibit a positive correlation with

landscape ecological risk. The human activities in this region are

extensive and substantial, and they have a direct correlation with the

ecological risk of the landscape. In other words, high-intensity human

activities elevate the degree of ecological risk in the landscape.

Urbanisation has led to the dispersal of housing construction land

and coal mining industry land, as well as an increase in hydropower

projects (Liu et al., 2023). As a result, construction land has become a

significant and abundant source of interference. This has led to the

generation of a large amount of waste soil and waste residue, which

contribute to soil erosion. This has caused extensive and profound

soil erosion, as well as an increase in the ecological risk value of the

landscape. However, the regulation of landscape ecological risk is

relatively slow in addressing these issues. Hence, the aforementioned

region has significant importance in the context of ecological

restoration and management within the Kuye River Basin. In

forthcoming planning endeavours, it is imperative to prioritize the

regulation of regions characterized by high levels of human activity

and elevated landscape ecological risks. The ecological management

and building efforts will primarily target the northwestern section of

the watershed, with a progressive shift towards the southeast

direction. This research concept and methodology can be utilized

in regions beyond the Kuye River Basin where landscape ecological

risk and human activity intensity are elevated. Upon analyzing the

regional land use structure, landscape ecological risks, and human

activities along with their interrelationships, we can implement

rational land use planning, preserve landscape integrity, mitigate

landscape ecological risks, and identify critical management areas

while devising management strategies, thereby transforming the

conflict between humans and land into a harmonious coexistence

(Wang, 2023).

This study aimed to develop human activity intensity indices

that encompass natural, economic, and social levels. These indices

were designed to accurately represent the characteristics of human

activities in the study area. By avoiding the limitations of previous
FIGURE 13

Distribution of mean center and direction of anthropogenic intensity.
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studies that focused on a single variable, this approach ensured a

comprehensive representation of the indices. Additionally, we

examined the spatial correlation between these indices by

constructing landscape ecological risk indices. This method

enhances the examination of landscape ecological risk by

providing insights into ecological risk management based on land

use patterns. Additionally, it analyses the impact of human activity

intensity on regional landscape ecological risk, offering scientific

assistance for regional scientific planning and development

strategies within the framework of the “two mountains” theory.

The selection of the geographically weighted regression model for

regression analysis in the spatial correlation study is based on its

superior fit. This approach addresses the limitation of ordinary

linear regression in accounting for the spatial heterogeneity of

indicators, thereby enhancing the accuracy of the research.
5.2 Conclusion

The classification of landscape types within the research region

was conducted using Landsat 4-5TM and Land 8 OLI_TIRS series

data, as well as ENVI software, with a focus on remote sensing data

and landscape ecology. The landscape types were classified into six

primary categories, including cultivated land, grassland, wood land,

waters, construction land, and unutilized land. The research region

was evaluated for landscape ecological risk using ArcGIS and

Fragstats software. This assessment was conducted across three

dimensions: a landscape disturbance index, landscape vulnerability

index, and landscape loss index. The spatial correlation

characteristics of landscape ecological risk and human activity

intensity were analyzed using the geographically weighted

regression model and spatial statistical function of ArcGIS

software, based on the spatial distribution data of land use, night

lighting, and population from 2000 to 2022. The study yielded some

significant findings and conclusions.
Fron
(1) The human disturbances in the Kuye River Basin have had

heightened impacts between 2000 and 2022, resulting in a

more intricate and fragmented landscape pattern

characterised by increasing fragmentation. The

predominant landscape types in the Kuye River Basin

have consistently been cultivated land, grassland, and

construction land. The overall trend in these areas is a

decline in the size of cultivated land and grassland patches,

while the area of construction land patches is increasing.

Construction land is gradually expanding from the

northwest to the southeast of the basin.

(2) The Kuye River Basin has a pattern of declining and then

rising landscape ecological risk. Specifically, the landscape

ecological risk level of the basin saw a decline from 2000 to

2015, followed by an increase thereafter. Spatially, it has a

distribution pattern characterised by “high values in the

northern and southern regions and low values in the

middle”. From a geographical perspective, it can be

observed that areas with high ecological risk are

predominantly situated in the northern and southern
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portions of the basin. Conversely, regions with reduced

ecological risk and low ecological risk are distributed over

the majority of the basin, encompassing the eastern,

western, southern, and northern areas.

(3) An increasing ecological risk in the landscape has been

observed in the northern part of the basin, particularly in the

northwestern region, as well as in parts of the central and

southeastern parts of the basin, and in the surrounding areas.

This correlation is attributed to the medium-emphasis and

high-intensity human activities in these areas. In the remaining

areas of the watershed, there is a limited presence of human

life, with minimal human activity and a low level of ecological

danger to the landscape. The origins of this phenomenon can

be attributed to the elevated altitude of the region, little human

presence, and extensive covering of wooded areas and

grasslands. The extension of building land area, population

increase, and development of other industrial businesses do

not pose a significant threat to the ecological danger of the

landscape, as a result of socio-economic development.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

YW: Data curation, Writing – original draft. FQ: Funding

acquisition, Project administration, Writing – review & editing.

LL: Formal Analysis, Writing – review & editing. XD: Supervision,

Formal Analysis, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. Study on the

hydraulic erosion process of thin overburden arsenic sandstone

slopes in exposed arsenic sandstone areas (2024QN03062),

Evolution of ecosystem structure and function and its impact on

water and sediment processes in the watershed (2022 EEDS

KJXM005-01), Study on Gully Slope Erosion Mechanism in Pisha

Sandstone Area of Yellow River Basin (2021SHZR2545), Study on

Erosion Process of Bare Bedrock-soil Composite Slope in Pisha

Sandstone Area (41967008).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1409515
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Wu et al. 10.3389/fevo.2024.1409515
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Ecology and Evolution 19
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Airiken, M., Zhang, F., Chan, N. W., and Kung, H. T. (2022). Assessment of spatial
and temporal ecological environment quality under land use change of urban
agglomeration in the North Slope of Tianshan, China. Environ. Sci. pollut. Res. 29,
12282–12299. doi: 10.1007/s11356-021-16579-3

Angeler, D. G., and Alvarez-Cobelas, M. (2005). Island biogeography and landscape
structure: Integrating ecological concepts in a landscape perspective of anthropogenic
impacts in temporary wetlands. Environ. pollut. 138, 420–424. doi: 10.1016/
j.envpol.2005.04.020

Cao, Q. W., Zhang, X. W., Lei, D. M., Guo, L. Y., Sun, X. H., Kong, F. E., et al. (2019).
Multi-scenario simulation of landscape ecological risk probability to facilitate different
decision-making preferences. J. Cleaner. Production. 227, 325–335. doi: 10.1016/
j.jclepro.2019.03.125

Cao, Q. W., Zhang, X. W., Ma, H. K., and Wu, J. S. (2018). Research progress of
landscape ecological risk and evaluation framework based on ecosystem services:
ESRISK. J. Geogr. 73, 843–855. doi: 10.11821/dlxb201805005

Cerretelli, S., Poggio, L., Gimona, A., Yakob, G., Boke, S., Habte, M., et al. (2018). Spatial
assessment of land degradation through key ecosystem services: The role of globally
available data. Sci. Total. Environ. 628-629, 539–555. doi: 10.1016/j.scitotenv.2018.02.085

Chen, L. D., Fu, B. J., Xu, J. Y., and Gong, J. (2003). Landscape pattern identification
method based on source-sink ecological process - landscape spatial load contrast index.
Ecology 11, 2406–2413. doi: CNKI:SUN:STXB.0.2003-11-025

Chen, H. J., Liu, L., Zhang, Z. Z., Liu, Y., T,ian, H., Kang, Z. W., et al. (2022). The
spatial-temporal correlation between human activity intensity and surface temperature
on the northern slope of Tianshan Mountains. Geograph. J. 77, 1244–1259.
doi: 10.11821/dlxb202205014

Chen, X. D., Yang, Z. P., Wang, T., and Han, F. (2022). Landscape ecological risk and
ecological security pattern construction in world natural heritage sites: a case study of
Bayinbuluke, Xinjiang, China. Isprs. Int. J. Geo-Information. 11, 6. doi: 10.3390/
ijgi11060328

Cheng, X. M., Zhang, Y. P., Yang, G. F., Nie, W. B., Wang, Y. Y., Wang, J., et al.
(2023). Landscape ecological risk assessment and influencing factor analysis of basins
in suburban areas of large cities - A case study of the Fuchunjiang River Basin, China.
Front. Ecol. Evol. 11. doi: 10.3389/fevo.2023.1184273

Ding, D., Sallis, J. F., Conway, T. L., Saelens, B. E., Frank, L. D., Cain, K. L., et al.
(2012). Interactive effects of built environment and psychosocial attributes on physical
activity: A test of ecological models. Ann. Behav. Med. 44, 365–374. doi: 10.1007/
s12160-012-9394-1

Fang, Y., Wang, J., Fu, S. H., Zhai, T. L., and Huang, L. Y. (2022). Changes in
ecological networks and eco-environmental effects on urban ecosystem in China’s
typical urban agglomerations. Environ. Sci. pollut. Res. 29, 46991–47010. doi: 10.1007/
s11356-022-19226-7

Feng, Z. H., Lai, H. M., Wu, D. F., Lin, T. H., and Chen, C. L. (2022). Study on the
spatial-temporal coupling mechanism of urban spatial expansion and landscape
ecological risk-Taking Guangzhou as an example. Smart. City. 8, 7–11.
doi: 10.19301/j.cnki.zncs.2022.08.003

Fu, B. J., and Lu, Y. H. (2006). The progress and perspectives of landscape ecology in
China. Prog. Phys. Geography-Earth. Environ. 30, 232–244. doi: 10.1191/
0309133306pp479ra

Gong, J., Yang, J. X., and Tang, W. W. (2015). Spatially explicit landscape-level
ecological risks induced by land use and land cover change in a national ecologically
representative region in China. Int. J. Environ. Res. Public Health 12, 14192–14215.
doi: 10.3390/ijerph121114192

Guo, X. Y., Zhang, Z. K., Zhang, X. Q., Bi, M., and Das, P. (2023). Landscape
vulnerability assessment driven by drought and precipitation anomalies in Sub-Saharan
Africa. Environ. Res. Lett. 18, 6. doi: 10.1088/1748-9326/acd866

Gurbuz, I. B., Nesirov, E., and Ozkan, G. (2020). Investigating environmental
awareness of citizens of Azerbaijan: A survey on ecological footprint. Environ. Dev.
Sustainabil. 23, 10378–10396. doi: 10.1007/s10668-020-01061-w

Han, F. L., and Li, C. T. (2019). Environmental impact of tourism activities on
ecological nature reserves. Appl. Ecol. Environ. Res. 17, 9483–9492. doi: 10.15666/aeer/
1704_94839492

Hauschild, M. Z., Kara, S., and Ropke, I. (2020). Absolute sustainability: Challenges
to life cycle engineering. Cirp. Annals-Manufactoring. Technol. 69, 533–553.
doi: 10.1016/j.cirp.2020.05.004
Hou, J. D., Zhou, R., Ding, F., and Guo, H. X. (2022). Does the construction of
ecological civilization institution system promote the green innovation of enterprises?
A quasi-natural experiment based on China’s national ecological civilization pilot
zones. Environ. Sci. pollut. Res. 29, 67362–67379. doi: 10.1007/s11356-022-20523-4

Hu, W. W., andWang, G. X. (2007). Research progress on wetland landscape pattern
and ecological process. Geosci. Prog. 9, 969–975. doi: CNKI:SUN:DXJZ.0.2007-09-011

Jiao, K., and Yang, Z. S. (2008). Comparative analysis of the old and new standards of
land use classification in China. Modern. Agric. Sci. Technol. 1, 296–297 + 300.
doi: 10.3969/j.issn.1007-5739.2008.23.196

Jin, M. T., Xu, L. P., and Xu, Q. (2021). Multi-scenario landscape ecological risk
assessment and prediction based on FLUS-Markov model-Taking Kezhou in southern
Xinjiang as an example. Arid. Zone. Study. 38, 1793–1804. doi: 10.13866/j.azr.2021.06.3

Jun, Z. J., Ming, L. K., Qiang, C. Y., Min, W., and Xin, P. Z. (2022). Impacts of
changing conditions on the ecological environment of the Shiyang River Basin, China.
Water Supply. 22, 5689–5697. doi: 10.2166/ws.2022.197

Kang, L. J., Di, L. P., Deng, M. X., Shao, Y. Z., Yu, G. N., and Shrestha, R. (2014). Use
of geographically weighted regression model for exploring spatial patterns and local
factors behind NDVI-Precipitation correlation. Iee. J. Selected. Topics. Appl. Earth
Observ. Remote Sens. 7, 4530–4538. doi: 10.1109/JSTARS.2014.2361128

Kivinen, S., Koivisto, E., Keski-Saari, S., Poikolainen, L., Tanhuanpää, T., Kuzmin, A.,
et al. (2022). A keystone species, European aspen (Populus tremula L.), in boreal
forests: Ecological role, knowledge needs and mapping using remote sensing. For. Ecol.
Manage. 462. doi: 10.1016/j.foreco.2020.118008

Lei, J. R., Chen, Z. Z., Chen, Y. Q., Chen, X. H., Li, Y. L., and Wu, T. T. (2020).
Evolution of wetland landscape ecological security pattern in Hainan Island from 1990
to 2018. Ecol. Environ. J. 29, 293–302. doi: 10.16258/j.cnki.1674-5906.2020.02.010

Liang, F. C., Liu, H. R., Liu, S. Y., Qi, X. X., and Liu, L. M. (2018). The spatial
reconstruction strategy of coastal landscape ecological security network in southern
Fujian-Taking Jimei District of Xiamen City as an example. Econ. Geogr. 38, 231–239.
doi: 10.15957/j.cnki.jjdl.2018.09.027

Liao, G., He, P., Gao, X., Lin, Z. Y., Huang, C. Y., Zhou, W., et al. (2022). Land use
optimization of rural production-living-ecological space at different scales based on the BP-
ANN and CLUE-S models. Ecol. Indic. 137, 108710. doi: 10.1016/j.ecolind.2022.108710

Liu, Q., Yu, F. H., Xia, X., Zhang, M. Y., Wang, X. M., Mu, X. M., et al. (2023). Landscape
pattern evolution and driving forces of land use in Kuye River Basin from 1980 to 2020. Soil
Water Conserv. Res. 30, 335–341. doi: 10.13869/j.cnki.rswc.2023.05.029

Lynch, H. J., Hodge, S., Albert, C., and Dunham, M. (2008). The greater Yellowstone
ecosystem: Challenges for regional ecosystem management. Environ. Manage. 41, 820–
833. doi: 10.1007/s00267-007-9065-3

Ma, Y. Y., and Liu, Z. F. (2021). Landscape ecological risk assessment and its dynamic
response to urbanization in Jiangsu Province. J. Nanjing. Forestry. Univ. (Natural. Sci.
Edition). 45, 185–194. doi: 10.12302/j.issn.1000-2006.202008049

O’Connor, T. G., and Kuyler, P. (2009). Impact of land use on the biodiversity
integrity of the moist sub-biome of the grassland biome, South Africa. J. Environ.
Manage. 90. 1, 384–395. doi: 10.1016/j.jenvman.2007.10.012

Ordonez, A., Martinuzzi, S., Radeloff, V. C., and Williams, J. W. (2014). Combined
speeds of climate and land-use change of the conterminous US until 2050. Nat. Climate
Change 4, 811–816. doi: 10.1038/NCLIMATE2337

Peng, J., Dang, W. X., Liu, Y. X., Zong, M. L., and Hu, X. X. (2015b). Research
progress and prospect of landscape ecological risk assessment. J. Geogr. 70, 664–677.
doi: 10.11821/dlxb201504013

Peng, J., Zong, M. L., Hu, Y. N., Liu, Y. X., and Wu, J. S. (2015a). Assessing landscape
ecological risk in a mining city: a case study in Liaoyuan City, China. Sustainability 7,
8312–8334. doi: 10.3390/su7078312

Ran, P. L., Hu, S. G., and Tong, L. Y. (2022). Exploring changes in landscape
ecological risk in the Yangtze River Economic Belt from a spatiotemporal perspective.
Ecol. Indic. 137. doi: 10.1016/j.ecolind.2022.108744

Rapport, D. J., and Maffi, L. (2011). Eco-cultural health, global health, and
sustainability. Ecol. Res. 26, 1039–1049. doi: 10.1007/s11284-010-0703-5

Ren, H. Y., Liu, Y. J., Wang, X. H., Sun, H. R., and Fu, H. (2024). Evolution of land
use landscape pattern and influencing factors in rapid urbanization areas: A case study
of Suzhou City. J. Northeast Normal. Univ. (Natural. Sci. Edition). 56, 143–153.
doi: 10.16163/j.cnki.dslkxb202201170001
frontiersin.org

https://doi.org/10.1007/s11356-021-16579-3
https://doi.org/10.1016/j.envpol.2005.04.020
https://doi.org/10.1016/j.envpol.2005.04.020
https://doi.org/10.1016/j.jclepro.2019.03.125
https://doi.org/10.1016/j.jclepro.2019.03.125
https://doi.org/10.11821/dlxb201805005
https://doi.org/10.1016/j.scitotenv.2018.02.085
https://doi.org/CNKI:SUN:STXB.0.2003-11-025
https://doi.org/10.11821/dlxb202205014
https://doi.org/10.3390/ijgi11060328
https://doi.org/10.3390/ijgi11060328
https://doi.org/10.3389/fevo.2023.1184273
https://doi.org/10.1007/s12160-012-9394-1
https://doi.org/10.1007/s12160-012-9394-1
https://doi.org/10.1007/s11356-022-19226-7
https://doi.org/10.1007/s11356-022-19226-7
https://doi.org/10.19301/j.cnki.zncs.2022.08.003
https://doi.org/10.1191/0309133306pp479ra
https://doi.org/10.1191/0309133306pp479ra
https://doi.org/10.3390/ijerph121114192
https://doi.org/10.1088/1748-9326/acd866
https://doi.org/10.1007/s10668-020-01061-w
https://doi.org/10.15666/aeer/1704_94839492
https://doi.org/10.15666/aeer/1704_94839492
https://doi.org/10.1016/j.cirp.2020.05.004
https://doi.org/10.1007/s11356-022-20523-4
https://doi.org/CNKI:SUN:DXJZ.0.2007-09-011
https://doi.org/10.3969/j.issn.1007-5739.2008.23.196
https://doi.org/10.13866/j.azr.2021.06.3
https://doi.org/10.2166/ws.2022.197
https://doi.org/10.1109/JSTARS.2014.2361128
https://doi.org/10.1016/j.foreco.2020.118008
https://doi.org/10.16258/j.cnki.1674-5906.2020.02.010
https://doi.org/10.15957/j.cnki.jjdl.2018.09.027
https://doi.org/10.1016/j.ecolind.2022.108710
https://doi.org/10.13869/j.cnki.rswc.2023.05.029
https://doi.org/10.1007/s00267-007-9065-3
https://doi.org/10.12302/j.issn.1000-2006.202008049
https://doi.org/10.1016/j.jenvman.2007.10.012
https://doi.org/10.1038/NCLIMATE2337
https://doi.org/10.11821/dlxb201504013
https://doi.org/10.3390/su7078312
https://doi.org/10.1016/j.ecolind.2022.108744
https://doi.org/10.1007/s11284-010-0703-5
https://doi.org/10.16163/j.cnki.dslkxb202201170001
https://doi.org/10.3389/fevo.2024.1409515
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Wu et al. 10.3389/fevo.2024.1409515
Rong, Y., Li, C., Xu, C., and Yan, Y. (2017). Spatial differentiation of ecosystem
service value changes and human activities in the process of urbanization-a case study
of Huanghua City. J. Ecol. 36, 1374–1381. doi: 10.13292/j.1000-4890.201705.00

Sallis, J. E., Cervero, R. B., Ascher, W., Henderson, K. A., Kraft, M. K., and Kerr, J.
(2006). An ecological approach to creating active living communities. Annu. Rev. Public
Health 27, 297–332. doi: 10.1146/annurev.publhealth.27.021405.102100

Shao, C. F., Ju, M. T., Zhang, Y. F., and Li, Z. (2008). Evaluation of eco-
environmental security in Tianjin Binhai New Area based on DPSIR model. J. Saf.
Environ. 5, 87–92. doi: 10.3969/j.issn.1009-6094.2008.05.024

Su, J., Yin, H. W., and Kong, F. H. (2021). Ecological networks in response to climate
change and the human footprint in the Yangtze River Delta urban agglomeration,
China. Landscape Ecol. 36, 2095–2112. doi: 10.1007/s10980-020-01129-y

Sutton, P. C., Anderson, S. J., Costanza, R., and Kubiszewski, I. (2016). The ecological
economics of land degradation: Impacts on ecosystem service values. Ecol. Econ. 129,
182–192. doi: 10.1016/j.ecolecon.2016.06.016

Tian, Y. N., Ma, L., and Wu, Q. (2023). Land use evolution and landscape ecological
risk assessment in Inner Mongolia section of the Yellow River Basin. Ecol. Sci. 42, 103–
113. doi: 10.14108/j.cnki.1008-8873.2023.05.013

Wang, H. (2023). Regional ecological risk assessment of the Yellow River Delta High-
efficiency Eco-economic Zone, China, with respect to human production-living
disturbance. Environ. Dev. Sustainabil. doi: 10.1007/s10668-023-03986-4

Wang, J. L., Chen, C. L., Ni, J. P., Xie, D. T., and Shao, J. A. (2018a). Evaluation of
agricultural non-point source pollution resistance and spatial pattern of ‘source-sink’
risk in small watershed. Acta Agric. Eng. 34, 216–224 + 306. doi: CNKI:SUN:
NYGU.0.2018-10-027

Wang, J., Guan, S. Q., Yan, W. B., and Jiao, B. B. (2021). Spatio-temporal evolution
characteristics and carbon emission effects of production-living-ecological land in
Qinghai Province. Environ. Sci. Technol. 44, 212–218. doi: 10.19672/j.cnki.1003-
6504.2021.04.027

Wang, J., Lin, Y. F., Glendinning, A., and Xu, Y. Q. (2018b). Land-use changes and
land policies evolution in China’s urbanization processes. Land. Use Policy 75, 375–387.
doi: 10.1016/j.landusepol.2018.04.011

Wang, M., and Sun, X. F. (2016). Potential impact of land use change on ecosystem
services in China. Environ. Monit. Assess. 188, 4. doi: 10.1007/s10661-016-5245-z

Wang, J. Z., Zhang, G. H., Nie, Z. L., and Yan, M. J. (2009). Quantitative assessment
of human activity intensity in plain area of Hutuo River Basin. Resour. Environ. Arid.
Area. 23, 41–44. doi: CNKI:SUN:GHZH.0.2009-10-008

Wang, T., Zhang, C., Yu, X. Y., and Cao, X. W. (2017). Land use change and its
impact on landscape ecological risk in Erhai Lake Basin. J. Ecol. 36, 2003–2009.
doi: 10.13292/j.1000-4890.201707.029

Wei, C. J., Wang, Y. F., and Cai, X. S. (2023b). Study on dynamic evolution of land
use and ecological environment in Shandong Province. J. Appl. Basic. Eng. Sci. 31,
1183–1189. doi: 10.16058/j.issn.1005-0930.2023.05.010

Wei, J. Y., Yu, R., Fu, D. Y., Su, Y., and Wang, Q. (2023a). Spatial-temporal
correlation analysis of landscape ecological risk and human activity intensity in
Chengdu-Chongqing urban agglomeration. J. Anhui. Agric. Univ. 50, 887–896.
doi: 10.13610/j.cnki.1672-352x.20230915.001

Weigand, M., Wurm, M., Droin, A., Stark, T., Staab, J., Rauh, J., et al. (2023). Are
public green spaces distributed fairly? A nationwide analysis based on remote sensing,
open street map and census data. Geocarto. Int. 38, 1. doi: 10.1080/
10106049.2023.2286305

Wu, H. F. (2023). Study on human activity intensity and land use landscape pattern
change in Yuncheng City. Kunming. Univ. Sci. Technol. doi: 10.27200/
d.cnki.gkmlu.2023.001244
Frontiers in Ecology and Evolution 20
Wu, W. L., Huang, Y., Zhang, Y., and Zhou, B. (2024). Research on the synergistic
effects of urbanization and ecological environment in the Chengdu-Chongqing urban
agglomeration based on the Haken model. Sci. Rep. 14, 117. doi: 10.1038/s41598-023-
50607-1

Xiao, X. Y., Huang, X., Jiang, L. L., and Jin, C. X. (2022). Empirical study on
comparative analysis of dynamic degree differences of land use based on the
optimization model. Geocarto. Int. 37, 9847–9864. doi: 10.1080/10106049.2022.2025919

Xiao, Y., Li, Y., and Huang, H. (2021). Conflict or coordination? Assessment of
coordinated development between socioeconomic and ecological environment in
resource-based cities: Evidence from Sichuan province of China. Environ. Sci. pollut.
Res. 28, 66327–66339. doi: 10.1007/s11356-021-15740-2

Xu, K. P., Wang, J. J., Chi, Y. Y., Liu, M., and Lu, H. J. (2016). Countermeasures for
land use optimization and sustainable utilization in Yunnan-Guizhou Plateau based on
comprehensive ecological risk. Ecology 36, 821–827. doi: 10.7666/d.Y1795500

Yan, Y. C., Ju, H. R., Zhang, S. R., and Chen, G. K. (2021). The construction of
ecological security Patterns in coastal areas based on landscape ecological risk
assessment-a case study of Jiaodong Peninsula, China. Int. J. Environ. Res. Public
Health 18, 22. doi: 10.3390/ijerph182212249

Yang, G., Zhang, Z. J., Cao, Y. H., Zhuang, E. N., Yang, K., and Bai, Z. K. (2021).
Spatio-temporal heterogeneity of landscape ecological risk in large open-pit mining
areas in northern Shanxi. Ecology 40, 187–198. doi: 10.13292/j.1000-4890.202101.003

Yu, F., Liu, J., Xia, L. H., Long, X. C., and Xu, Z. W. (2022). Landscape ecological risk
assessment based on LUCC in Weibei highland of Shaanxi. China Environ. Sci. 42,
1963–1974. doi: 10.19674/j.cnki.issn1000-6923.20220112.002

Yuan, Y., Sheng, Y., Liu, L. F., Wang, S., Li, J., and An, L. (2023). Study on the spatial
and temporal evolution characteristics of habitat quality and its influence mechanism
in the Cave Wild River Basin. For. Grass. Resour. Res. 6, 67–74. doi: 10.13466/
j.cnki.lczyyj.2023.06.008

Zhang, X. M., Du, H. M., Wang, Y., Chen, Y., Ma, L., and Dong, T. X. (2021).
Watershed landscape ecological risk assessment and landscape pattern optimization:
Take Fujiang River Basin as an example. Hum. Ecol. Risk Assess. 27, 9-10, 2254–2276.
doi: 10.1080/10807039.2021.1970511

Zhang, Z. Y., Ge, H. L., Li, X. N., Huang, X. Y., Ma, S. L., and Bai, Q. F. (2023).
Spatiotemporal patterns and prediction of landscape ecological security in
Xishuangbanna from 1996-2030. PloS One 18, 11. doi: 10.1371/journal.pone.0292875

Zhang, J. Y., Su, W. C., and Zhang, F. T. (2011). Evaluation of land ecological security
in the Three Gorges Reservoir Ecological Economic Zone based on PSR model. China
Environ. Sci. 31, 1039–1044. doi: CNKI:SUN:ZGHJ.0.2011-06-035

Zhang, C., Wang, L., Zhang, Q. X., and Chen, G. F. (2016). Study on land use transfer
matrix and spatial change in Buha River Basin. Water Conservancy. Hydropower.
Technol. 47, 6–11. doi: 10.13928/j.cnki.wrahe.2016.05.002

Zhang, Y. G., Zhao, Y., Chen, Q. W., Zhu, Y. J., Liu, B., Zhang, X. M., et al. (2024).
Capacity of forests and grasslands to achieve carbon neutrality in China. Forests 15, 6.
doi: 10.3390/f15061060

Zhang, X. W., Zhu, W. W., Yan, N. N., Wei, P. P., Zhao, Y. F., Zhao, H., et al. (2022).
Research on service value and adaptability zoning of grassland ecosystem in Ethiopia.
Remote Sens. 14, 11. doi: 10.3390/rs14112722

Zhao, Y., Tao, Z., Wang, M. N., Chen, Y. H., Wu, R., and Guo, L. (2022). Landscape
ecological risk assessment and planning enlightenment of Songhua River Basin based
on Multi-Source heterogeneous data fusion. Water 14, 24. doi: 10.3390/w14244060

Zhao, A. C., and Zeng, J. (2021). Study on the adaptive development of water
environment ecological space from the perspective of landscape pattern optimization-
Taking the ancient town of Taierzhuang along the Grand Canal as an example. Chin.
Garden. 37, 62–67. doi: 10.19775/j.cla.2021.05.0062
frontiersin.org

https://doi.org/10.13292/j.1000-4890.201705.00
https://doi.org/10.1146/annurev.publhealth.27.021405.102100
https://doi.org/10.3969/j.issn.1009-6094.2008.05.024
https://doi.org/10.1007/s10980-020-01129-y
https://doi.org/10.1016/j.ecolecon.2016.06.016
https://doi.org/10.14108/j.cnki.1008-8873.2023.05.013
https://doi.org/10.1007/s10668-023-03986-4
https://doi.org/CNKI:SUN:NYGU.0.2018-10-027
https://doi.org/CNKI:SUN:NYGU.0.2018-10-027
https://doi.org/10.19672/j.cnki.1003-6504.2021.04.027
https://doi.org/10.19672/j.cnki.1003-6504.2021.04.027
https://doi.org/10.1016/j.landusepol.2018.04.011
https://doi.org/10.1007/s10661-016-5245-z
https://doi.org/CNKI:SUN:GHZH.0.2009-10-008
https://doi.org/10.13292/j.1000-4890.201707.029
https://doi.org/10.16058/j.issn.1005-0930.2023.05.010
https://doi.org/10.13610/j.cnki.1672-352x.20230915.001
https://doi.org/10.1080/10106049.2023.2286305
https://doi.org/10.1080/10106049.2023.2286305
https://doi.org/10.27200/d.cnki.gkmlu.2023.001244
https://doi.org/10.27200/d.cnki.gkmlu.2023.001244
https://doi.org/10.1038/s41598-023-50607-1
https://doi.org/10.1038/s41598-023-50607-1
https://doi.org/10.1080/10106049.2022.2025919
https://doi.org/10.1007/s11356-021-15740-2
https://doi.org/10.7666/d.Y1795500
https://doi.org/10.3390/ijerph182212249
https://doi.org/10.13292/j.1000-4890.202101.003
https://doi.org/10.19674/j.cnki.issn1000-6923.20220112.002
https://doi.org/10.13466/j.cnki.lczyyj.2023.06.008
https://doi.org/10.13466/j.cnki.lczyyj.2023.06.008
https://doi.org/10.1080/10807039.2021.1970511
https://doi.org/10.1371/journal.pone.0292875
https://doi.org/CNKI:SUN:ZGHJ.0.2011-06-035
https://doi.org/10.13928/j.cnki.wrahe.2016.05.002
https://doi.org/10.3390/f15061060
https://doi.org/10.3390/rs14112722
https://doi.org/10.3390/w14244060
https://doi.org/10.19775/j.cla.2021.05.0062
https://doi.org/10.3389/fevo.2024.1409515
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

	Exploring landscape ecological risk with human activity intensity and correlation in the Kuye River Basin
	1 Introduction
	2 Overview of the study area and data sources
	2.1 Overview of the study area
	2.2 Data sources

	3 Method
	3.1 Land use structure
	3.1.1 Land use dynamics
	3.1.2 Land-use transfer matrix

	3.2 Landscape ecological risk and human activity intensity calculation
	3.2.1 Risk sample plot division
	3.2.2 Calculation of landscape ecological risk index based on landscape pattern index
	3.2.3 Analysis of spatiotemporal change in landscape ecological risk
	3.2.4 Calculation of the intensity of human activity

	3.3 Spatial and temporal correlations between landscape ecological risk and human activity intensity
	3.3.1 Geographic distribution of metrics
	3.3.2 Geographically weighted regression models


	4 Results
	4.1 Land use structure
	4.2 Land-use dynamics and transfers
	4.3 Landscape pattern index and change characteristics
	4.4 Landscape ecological risks
	4.5 Intensity of human activity
	4.6 Correlation analysis between human activity intensity and landscape ecological risk

	5 Discussions and conclusions
	5.1 Discussion
	5.2 Conclusion

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


