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Staring into a crystal ball:
understanding evolution and
development of in vivo aquatic
organismal transparency
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1Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University,
Yokohama, Japan, 2School of Frontier Engineering, Kitasato University, Sagamihara, Japan
Organismal transparency is an ecologically important trait that can provide

camouflage advantages to diverse organisms. Transparent organisms are quite

common—especially in oceans. Organismal transparency requires low

absorption and scattering of light in the body across multi-scale levels.

However, it is still not fully understood how such organisms achieve these

requirements. Understanding this process requires multiple approaches from

various fields and methods. Here, we offer recent insights on this topic from the

viewpoints of evolution, developmental biology, and evaluation methodologies

of organismal transparency. We also propose “organismal transparency biology”

as a new interdisciplinary field of study. Furthermore, we suggest that tunicates

are an ideal model animal for studying in vivo organismal transparency.
KEYWORDS

bio-transparency, eco-evo-devo, hyperspectral imaging, tunicate, Ascidiidae,
Ascidiella aspersa
1 Introduction

Organismal transparency is an important camouflage strategy that aids in defense

against visual predators. Organismal transparency is commonly seen in aquatic animals

such as jellyfish, siphonophores, some crustaceans, pteropods, some squids, fish larvae and

tunicates (McFall-Ngai, 1990; Johnsen, 2001, 2014; Kakiuchida et al., 2017; Bagge, 2019;

Shito et al., 2020). Transparency requires that the species minimize both light absorption

and scattering (Kerker, 1969). This involves equalizing the refractive index inside and

outside the organism, altering its physical surface properties, and avoiding the creation of

opaque organic molecules like pigments. Here, we introduce how light scattering,

reflection, and absorption relate to organismal transparency and then describe the

factors that contribute to improving transparency—namely optical cleaning agents (OCA).
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1.1 Light absorption

As incident light passes through the interior of the organism, its

intensity decreases due to light absorption. Most organic molecules in

organisms do not absorb visible light except for pigments (Inyushin

et al., 2019). Natural pigments and other molecules found in marine

organisms have specific absorption wavelengths (Pettersen et al.,

2014). Pigments absorb the light, and this feature protects animals

from harmful UV radiation, transport oxygen by blood cells, and

facilitating optical sensation. There are many different strategies to

reduce light absorption of pigments. For example, icefish eliminate

their own hemoglobin and have transparent blood cells (Ruud, 1954).

Transparent glass frogs conceal their body by relocating approximately

89% of the red blood cells to the liver during sleep. Relocation of red

blood cells to liver minimizes light absorption and scattering in other

tissues, thus enhancing transparency at the whole-body level. Thus,

transparency in this species increases by two- to three-fold due to the

inability to see red blood cells (Taboada et al., 2022).

Transparency is not only achieved via the absence of

pigmentation as in some albino mutants. A relatively transparent

mutant lacking pigment (Wakamatsu et al., 2001) was created in

medaka leading to transparency. Even in such cases, achieving

perfect transparency is limited due to optical scattering.

Transparency is also immediately opaque after the death of an

transparent oocyte (Shito et al., 2023). This means that not having

pigmentation is a minimum requirement for organismal

transparency which is not an active strategy for organismal

transparency (Bhandiwad and Johnsen, 2011).

The light absorption of living organisms also changes with

metabolism (Table 1). For example, in anemone shrimp, the

hemolymph penetrates the muscle fibers more when metabolic

activity is high due to exercise, thus disrupting the uniformity of

the refractive index of the tissue and making the muscle appear

opaque (Bagge et al., 2017).
1.2 Light reflection

Light reflection arises at the interface between two optical media

with different refractive indices. The main focus in this perspective is

marine organismal transparency, which requires the organisms’

refractive index to be near seawater’s refractive index of 1.33. To

achieve optimal transparency, the organism’s media should have

uniform refractive indices across multiple scales (tissue, cell/

Extracelllar Matrix (ECM), and organelles) (Figure 1). For example,

the gelatinous body of transparent marine animals such as jellyfish

and leptocephalus contains a lot of water, which allows their

refractive index to remain transparent in seawater because it is not

very different from seawater’s reflective index 1.33 (Pfeiler et al., 2002;

Warrant and Locket, 2004). In the highly hydrated extracellular

gelatinous body matrix of leptocephalus, the body water content is

approximately 92% (Pfeiler and Govoni, 1993; Bishop et al., 2000).

However, during metamorphosis to the adult eel, approximately 80%

of the total body water content is lost (Pfeiler, 1984).
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1.3 Light scattering

Light scattering is divided into surface scattering (Bagge et al.,

2016) on the cell surface for incident light, and internal scattering

(Marina et al., 2012; Bagge et al., 2017) that occurs in the presence of

various organelles inside the cell. In multicellular organisms, surface

scattering occurs at the interface between cells, the cell membrane,

and the ECM (Figure 1).

In surface scattering, certain organisms have reduced or

eliminated this reflection through the array of sub-microscopic

projections (Miller and Autrum, 1979; Wilson and Hutley, 1982;

Kakiuchida et al., 2017). This structure does not scatter light but

rather mimics a material with a graded reflective index (Johnsen,

2003). In the hyperiid Cystisoma, the leg surfaces are covered with

tiny nanostructures, thus making the surface resemble long-pile

carpet, thus weakening and softening surface light scattering at the

interface (Bagge et al., 2016).

Many reports have suggested that transparent organisms

employ various strategies to mitigate light absorption and

scattering—these are crucial optical factors that facilitate their

transparency (Bagge, 2019). Many animals are opaque because

the density and refractive index of biological media vary at

different spatial scales, i.e., individual, tissue/organ, cell, and

organelle levels (Johnsen and Widder, 1999; Johnsen, 2014;

Tarique et al., 2023). At the cellular level, the cornea and lens in

the eye develop via degradation of organelles by autophagy

(Brennan et al., 2023). In the lens cells, organelles such as

mitochondria and the endoplasmic reticulum are degraded by a

lipid-degrading enzyme from the PLAAT family. Inhibiting this

process leads to lens transparency (Morishita et al., 2021).
TABLE 1 Inhibiting factors challenging organismal transparency.

Inhibiting factor Reasons why transparency
is inhibited

Structural Structural
Complexity

The presence of complex organs and tissues
that are not optically homogeneous can
hinder transparency. (cf. nanostructure in
1.3, 1.4)

Physiological Metabolic
Requirements

The need for blood cells and other opaque
structures to support metabolism. (1.1)

Cellular
Processes

The presence of cellular organelles and other
intracellular structures derived from various
cellular processes that scatter light. (cf.
organelle degradation by PLAAT in 1.3)

Environmental External
Conditions

Variations in osmotic pressure, pH, and
temperature that influence the efficiency of
transparency. (2.3)

Above factors influence on

Optical Light
Absorption

Pigmentation is necessary for UV protection
and camouflage, but it reduces transparency.
(cf. pigmentation in 1.1)

Light
Scattering

The surface and the internal structure of
biological tissues can reflect or scatter light
thus reducing transparency. (e.g. 1.2 and 1.3)
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It is necessary to devise ways to suppress light scattering at each

boundary region between cells, tissues, and organs as described in

Section 2.2. At this time, surface scattering on the cell surface is

treated as internal scattering at the higher tissue level. In other

words, what is treated as surface scattering at a lower level is

regarded as internal scattering at higher level (Figure 1A).
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1.4 Optical clearing agents

The presence of cellular organelles within the cells (Figure 1A)

is thus a factor contributing to tissue opacification. Crystallins have

a structure in which specific amino acid residues are arranged

regularly, which suppresses light scattering and enhances
FIGURE 1

Possible multi-scale factors that inhibit organismal transparency in ascidian eggs. (A) In a single cell (oocyte in this case), light scattering within the
cell is the surface scattering of the cell surface for incident light (black frame with yellow arrow), and the internal scattering in the presence of
various organelles inside the cell. Due to the absorption and the internal scattering, the transmitted light (red arrow) is attenuated (orange arrow)
when passing through the inside of the organism. (B) At the cell-cell boundary, surface scattering occurs due to the cell membrane and the ECM
between the cells. (C) Similar to cells, surface scattering occurs between tissues with different refractive indexes. (D) There are ways to attenuate the
surface scattering in some organisms by changing the surface ultra-structure (ex: nipple array). (E) Ascidian eggs have a variety of organismal
transparency ranging from 10% to 90%, which is comparable to window glass. Green bars indicate species belonging to the Ascidiidae family.
(F) Ascidiidae, generally characterized by high egg transparency, is believed to have diverged from Cionidae in ascidians approximately 270 million
years ago (marked with red circle). This figure was modified from Shito et al. (2020).
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transparency. The a-crystallin exhibits chaperone-like functions

and solubilizes denatured bg-crystallin (Rao et al., 1995). a-
Crystallin prevents the aggregation of denatured bg-crystallins by
solubilizing them. Aggregated proteins scatter light within the lens,

thus reducing transparency. a-Crystallin helps maintain a uniform

refractive index within the lens by solubilizing denatured bg-
crystallins and preventing their aggregation, which can reduce

light scattering and preserve lens transparency (Horwitz, 1992;

Rao et al., 1995). In other words, crystallin molecules in the eye

serve as natural endogenous optical clearing agents (OCA). Here,

we defined OCA as materials—such as chemical substances,

proteins, ECMs, or enzymes—that reduce light scattering and

improve optical transparency in biological structures.

Endogenous OCAs have been reported in other transparent

animal tissues as well, e.g., fish glycosaminoglycans and antifreeze

proteins (see review (Inyushin et al., 2019).
1.5 The inhibiting factors challenging
organismal transparency

Many animals are opaque due to the necessity of pigments for

UV protection, thus illustrating a delicate balance in their survival

(Hansson, 2000). However, as described previously, transparent

organisms have a remarkable ability to overcome multiple

inhibiting factors that challenge transparency. These factors

include structural, physiological, and environmental aspects and

cause optically reduces organismal transparency by light absorption

and/or light scattering (Table 1).

Despite understanding of the inhibiting factors against

organismal transparency, further research is needed to address

the following questions: How has transparency evolved in specific

lineages? How have organisms acquired transparency during

development? What are the specific molecular mechanisms that

enable transparency?

These answers require research in various fields and various

scientific methods. Here, we discuss new perspectives: evolutionary

genomics, developmental biology, and quantification and evaluation

methodologies of organismal transparency. These areas have not

received sufficient attention and should be studied further in the future.
2 Areas that should be enhanced to
understand organismal transparency

2.1 Evolutionary genomics

Formal phylogenetic analysis with a quantitative measurement

of transparency has only been performed in a few taxa such as

lepidopterans (Gomez et al., 2021) and ascidians (Shito et al., 2020),

but the results show that animal transparency is polyphyletic. In

lepidopterans, transparent or translucent wings were found across

31 families suggesting that transparency evolved multiple times

independently and is due to a massive diversity of structural

strategies (Gomez et al., 2021).
Frontiers in Ecology and Evolution 04
Variability in the transparency of ascidian eggs ranges from 10%

to 90% across different species (Figure 1E). Interestingly, species

within the Ascidiidae family have highly transparent eggs. One

hypothesis is that they evolved to enhance their transparency from

an opaque ancestor 270 mya (Figure 1F). This suggests the presence

of shared genetic changes within this family as shared derived traits

(SDTs). Focusing on such animal groups with transparency as a SDT

—rather than solely as individual convergent evolution cases—could

be an important taxa for elucidating the genetic mechanism of

acquiring transparency. Comparative genomics of the Ascidiidae

family and other relatives might elucidate the shared genetic

mutation among Ascidiidae for organismal transparency that

might identify the natural OCAs in transparent tissues of ascidians.
2.2 Developmental biology

The absence of pigments is a prerequisite for organismal

transparency as described in 1.1. There is currently no research

on how transparency is acquired during the developmental process.

We measured bio-transparency (Shito et al., 2020) of developing

oocytes according to the oogenesis period of Ciona robusta (also

called Ciona intestinalis type A) (Sakai et al., 2023). The results

showed that Ascidiella aspersa maintains transparency throughout

oogenesis stages I to III, while oocytes of Ciona robusta are initially

transparent but rapidly become opaque during stage II (Figure 2A)

(Satake et al., 2024). These results indicate that oocytes in ascidians

are originally transparent, and A. aspersamaintains its transparency

throughout oogenesis. Additionally, the transmittance spectrum of

A. aspersa oocyte is maintained during subsequent embryonic

development (Figure 2B). Therefore, oocyte transparency has a

significant impact on the transparency acquisition of embryos as

seen by the consistent transparency from the oogenesis

stages (Figure 2A).

Hence, we propose that exploring the mechanism of

maintaining oocyte transparency to later developmental stages

can help answer more general questions about why the organism

body is transparent. This phenomenon may result from the absence

or suppression of specific genes involved in pigment synthesis

within yolk granules as well as the presence of OCAs that

maintain the properties of cellular components responsible for

low light scattering. These findings suggest the need to

understand the temporal expression of such components via a

developmental biology approach.

We also found interesting phenomena about the transparency

of A. aspersa during the cleavage period. There are changes in the

transparency of the cell-cell boundary region. Transparency

requires a constant refractive index at the internal and external

boundaries. Immediately after cell division, the cell boundaries are

observable in both A. aspersa and C. robusta. However, only the

cell-cell boundary in A. aspersa becomes transparent after

subsequent compaction (Supplementary Video 1; Figures 2C, D).

The exact mechanism responsible for this optical property is not

known, but the finding suggests that the region of cell-cell boundary

(the cell membrane or ECM) in A. aspersa uses different properties
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FIGURE 2

Comparison of egg transparency between A. aspersa from the Ascidiidae family and opaque species of ascidians, C. robusta. (A) Quantitative
comparison of organismal transparency spectra from Stage I to Stage V during the oocyte maturation process in different ascidian species: A.
aspersa and C. robusta. Spectre data were obtained via a hyperspectral camera (custom model NH-KO, EBA JAPAN, Tokyo, Japan). (B) Quantitative
comparison of organismal transparency spectra between eggs and larvae in different ascidian species: A. aspersa and C. robusta. (C) Microscopic
images of four-cell stage embryos after compaction in C. robusta embryo. (D) Microscopic images of four-cell stage embryos after compaction in A.
aspersa embryo. Distinct boundaries are discernible in C. robusta at the newly formed cleavage planes in the 4-cell stage, but not in A. aspersa
embryo (arrows). (E) Schematic representation of opaque C. robusta and transparent A. aspersa embryos. In the cleavage period (two-cell stage),
there is no pigment accumulation in the cytoplasm after oogenesis. This suggests the possibility of the presence of some OCAs preventing the
internal scattering of transmitted light in A. aspersa. A. aspersa minimizes light scattering despite the presence of diverse ECM at cell-cell boundary
regions even in the multicellular stage. A. aspersa likely possesses special factors, e.g., regular ECM structures as well as the presence of OCA with
both hydrophilic and hydrophobic properties in the ECM.
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with that of C. robusta. The ECM is generally hydrophilic, and a

difference in the refractive index may occur at the boundary with

lipophilic cell membranes. Therefore, OCA with both hydrophilic

and lipophilic properties might exist in the transparent ECM of A.

aspersa. Another possibility is that the structural proteins present in

the ECM, such as collagen and keratin, are often transparent if these

proteins have a regular structure (Poole and Mostaço-Guidolin,

2021), which results in less light scattering. Studies into whether the

ultrastructure of ECM would be regular or not is one of the key

factors in the organismal transparency of A. aspersa (Figure 2E).

Transparency is physiologically affected (Table 1). We found

that actinomycin D transcription inhibitor did not change

transparency, but cycloheximide translation inhibitor significantly

decreased egg transparency (Shito et al., 2023). Considering the

differences between the two inhibitors, we propose that the

transparency does not require the expression of new genes but

rather relies on the function, metabolism, or enzymatic reactions of

already transcribed proteins (maternal proteins). This is consistent

with the importance of lipid metabolism in maintaining the optical

transparency of the vertebrate lens (Borchman and Yappert, 2010).
2.3 Quantification and evaluation methods
of organismal transparency

Advancements in measurement systems are crucial to

elucidating the mechanisms of organismal transparency. Recently,

Taboada et al. discovered that glass frogs enhance transparency by

redistributing 89% of their red blood cells to the liver during sleep as

tracked through photoacoustic imaging of glass frog erythrocyte

dynamics (Taboada et al., 2022). Concurrently, the reflective indices

of a salp were measured by an Abbe refractometer, and the values

were slightly greater than seawater (Kakiuchida et al., 2017).

Several other methods have been used to quantify the

organismal transparency. A spectrometer can calculate light

transmission in one or several spectra (Johnsen and Widder,

1999). Hyperspectral imaging can measure transmittance at

various wavelengths from the ultraviolet to the infrared with high

resolution (Velasco-Hogan et al., 2019; Shito et al., 2020, 2023). The

transmittance differs depending on each spectrum, and different

factors such as environmental changes like pH, temperature and

salinity, or bioactive substances should influence each spectrum.

For instance, higher acidity (lower pH) and temperature variations

can alter the protein structures within the organism potentially

leading to changes in light scattering and transparency (Surewicz

and Olesen, 1995).

There is a need for an evaluation system that can understand the

correspondence between these different factors and transmittance

for each spectrum. Combining a hyperspectral camera with

analytical methods like principal component analysis (PCA) can

evaluate the organismal transparency in a multi-dimensional way

(Shito et al., 2023). By compressing multidimensional spectral data,

information on organismal transparency can be mapped onto two-

or three-dimensional space, thus enabling evaluation with higher

resolution than before. With this evaluation system, one can clearly
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see that there are multiple states based on the differences in spectra

even though the transparency has the same value.

Raman microscopy is also a powerful tool that potentially can

link intrinsic molecular states and transparency over the entire

wavelength range (Nakamura et al., 2013). Raman microscopy uses

Raman scattering to analyze the molecular vibrations and rotations

of materials within a sample. The spectral features of corneal

collagen change due to heating and aging are detected using

Raman microscopy (Goheen et al., 1978).

Analysis based on these spectral data allows for precise and

detailed analysis of transparency by wavelength. For example, by

detecting specific wavelengths that are affected by various

environmental factors or inhibitors on transparency, we can

further understand the mechanism of organismal transparency.

Furthermore, such analysis may enable us to identify OCAs

present in transparent organisms.
2.4 Implications for biological and
medical studies

The fields of biology and medical research have shown that

transparency techniques are critical for high-resolution optical

imaging of tissues. Deep imaging is hindered by the opacity of

tissues, and thus techniques are being developed to make tissue

specimens almost transparent by matching the refractive indices of

fixed specimens and media to the refractive index of lipid layers or

by removing lipids (Hama et al., 2015; Zheng and Rinaman, 2016;

Murakami et al., 2018; Umezawa et al., 2019; Tian et al., 2021). This

allows for applications such as constructing a 3D atlas of the brain

by making tissues and organs transparent (Murakami et al., 2018)

or detecting micrometastases of cancer cells (Kingston et al., 2019).

However, these specimens are derived from deceased and

chemically fixed tissues. Alternatively, we can learn from

transparent organisms how they make in vivo tissues transparent.

Research that learns the molecular mechanisms of making or

maintaining transparency from living transparent organisms,

rather than focusing on fixed specimens, is a completely different

approach. Therefore, the study of organismal transparency can lead

to the development of new technologies for in vivo imaging of

living tissues.
3 Ideal model for unravelling the
mechanism of
organismal transparency

Tunicates are marine invertebrate chordates and are most closely

related to vertebrates. The salps, larvaceans, and some ascidian

species are known to be highly transparent. They are classified into

three classes: Ascidiacea, Thaliacea and Appendicularia. Some species

of Ascidiacea are used as model organisms for the study of

developmental biology. They have the following advantages as a

model for unravelling the mechanism of organismal transparency.
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3.1 Ease of comparative analysis
of transparency

As mentioned earlier, the transparency of the egg is a significant

factor that determines the subsequent transparency of the embryo.

Therefore, ascidians, which facilitate the measurement and comparison

of various egg transparencies (Figure 1F), provide an unparalleled

simplest experimental system for organismal transparency.

Compared to tissues, organs, or individuals that have different

and complex shapes across species, ascidian eggs are simply

spherical thus normalizing the effects of differences in thickness

and surface structure on transparency (Shito et al., 2020). This in

turn facilitates comparative analysis of organism transparency

between different species.

Furthermore, both eggs and ascidian cleavage patterns are

conserved across species (Dumollard et al., 2017), and thus

differences in transparency between internal scattering in the

cytoplasm and external scattering at cell boundaries can be easily

distinguished at homologous locations at the cellular level for

comparative analysis between species (Figure 2E).
3.2 The Ascidiidae family is an ideal
experimental resource

The Ascidiidae family showed high eggs transparency

(Ascidiella aspersa: 88.7% and Ascidia zara: 50.7% (Shito et al.,

2020)) including Phallusia mammillata, Phallusia nigra, and

Ascidia ahodori (Sardet et al., 2011; Yasuo and McDougall, 2018).

The Ascidiidae family is thought to have branched off from

ascidians, which have a wide variety of transparency (Figure 1F;

ranging from 10% to 90%) (Shito et al., 2020). The Ascidiidae family

provides an ideal resource for exploring common genetic alterations

within the family during the evolution of transparency (e.g., genetic

mutations that suppress pigmentation, the mutations in structural

proteins such as a-crystallin and water-rich proteoglycans, and

mutations in genes involved in the synthesis of ECM at cell-cell

boundaries that may suppress light scattering). Thus, a cohort of the

Ascidiidae family is an ideal experimental resource to identify the

genetic factors underlying the previously enigmatic evolution of

transparency in aquatic organisms.
3.3 Convenience of molecular
verification experiments

Family Ascidiidae has five genera (Ascidia, Ascidiella, Fimbrora,

Phallusia, Psammascidia) and is distributed worldwide in seas with

various temperatures. The ANISEED database has genome and

gene annotations of 11 ascidians containing two Ascidiid species

(Phallusia mammillata and Phallusia fumigata) (Dardaillon et al.,

2020). Phallusia mammillata is known for its transparent eggs and

is used in live imaging studies (Yasuo and McDougall, 2018).

Genome sequence of Ascidia mentula was recently published

(Bishop et al., 2023). Ascidiella aspersa is distributed worldwide
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and has well-defined developmental stages that facilitates gene

transfer experiments (Funakoshi et al., 2021). Genome sequencing

of A. apsersa from different habitats including in Japan and Europe

are underway. Ciona species are already used as model organisms

for developmental biology. The abundance of genome data

including those from Ascidiidae as well as opaque species (De

Thier et al., 2024) allow for genome-wide comparative analysis of

gene models and further validation experiments through functional

analysis of candidate genes. In this way, ascidians provide a useful

environment for elucidating the molecular mechanisms of

organismal transparency.
4 Conclusion

Organismal transparency needs to be analyzed by at least

separating internal and external scattering. Furthermore, by

incorporating the perspectives of development and evolution, we

have derived the view that maternal proteins during oogenesis in

internal scattering. There is also an unknown mechanism that

makes cell boundaries transparent during cleavage in external

scattering. Both are important for the organismal transparency of

early Ascidiidae embryos.

Future work should study maternally conserved proteins

through proteomics and should study the ultrastructure of cell

boundaries by electron microscopy or Raman microscopy. This in

turn will lead to the discovery of new OCAs that are evolutionarily

conserved among Ascidiidae.

Research into the mechanism of organismal transparency is

becoming increasingly important and gives rise to the

interdisciplinary field of “organismal transparency biology.” This

is a challenge, and the scientific community should tackle this

challenge together.
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