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Rafting has been proposed as an effective mechanism for species without free-

living pelagic larvae to achieve long-distance dispersal, theoretically preventing

population differentiation over wide distributional ranges. Moreover, rafting has

been advocated as a main dispersal mechanism for marine invertebrates with

sub-Antarctic distributions, because of abundant buoyant kelps, driven by the

Antarctic Circumpolar Current. Nonetheless, little attention has been given to the

role of rafting to establish regular gene flow across the sub-Antarctic, and the

geographic and temporal scales at which it occurs. Aiming to unravel thesemajor

questions about the extent of genetic connectivity across the Southern Ocean

(SO), we studied the pulmonate limpet Siphonaria lateralis, a benthic species with

encapsulated larvae, found on the rocky intertidal of sub-Antarctic islands and

southern South America. Since S. lateralis is closely associated with D. antarctica,

dispersal by rafting is plausible, as revealed by the absence of phylogeographic

structure across the sub-Antarctic. We sampled 116 individuals from eight

localities across the SO, and used 5,515 SNPs obtained through Genotyping-

by-Sequencing, to determine contemporary genetic diversity, structure, and

gene flow at two spatial scales; global, across the SO, and regional, within

Kerguelen. Results identified substantial genetic structure, differentiating

Patagonia, Falklands/Malvinas Islands, South Georgia and the Kerguelen

archipelago, and low levels of contemporary gene flow. The most notable

genetic differentiation was found between Patagonia/Falklands and South

Georgia/Kerguelen. Structure was also significant between Patagonia and the
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Falkland/Malvinas Islands. Conversely, South Georgia and Kerguelen exhibited

closer genetic affinity, and indications of recent but limited gene flow. Moreover,

historical gene flow estimates between the four populations were low. At

regional scale, noteworthy genetic structure persisted, and gene flow was

insufficient to prevent genetic differentiation within Kerguelen. Consequently,

rafting’s potential may be overestimated as a contemporary mechanism

promoting gene flow across the SO, as these events may be sporadic,

irregular, and unpredictable for marine invertebrates lacking a larval dispersal

stage, since contemporary dispersal events don’t seem to facilitate high gene

flow at both scales. Accordingly, other oceanographic factors or processes may

hinder the establishment of species associated with macroalgae, and as

consequence, contemporary genetic connectivity in the sub-Antarctic.
KEYWORDS

long distance dispersal, sub-Antarctic, rafting, Antarctic Circumpolar Current, benthic
protected development, Genotyping-by-Sequencing, gene flow
1 Introduction

Dispersal is a key trait for species from ecological and

evolutionary perspectives, as movement plays a role in population

dynamics, the extent of a species’ geographic range, the degree of

gene flow, and the potential for local adaptation (Slatkin, 1985;

Palumbi, 1994; Cowen and Sponaugle, 2009; Manel et al., 2023). In

marine ecosystems, fish and invertebrates have complex life cycles

where at least one stage may be mobile and promotes a species’

dispersal, either by active or passive movement, as dictated by life

histories (Gaines et al., 2007). Because some of these earlier stages

are often small sized, it’s difficult to directly measure dispersal

(Weersing and Toonen, 2009). However, genetic data has been used

to study the exchange of individuals and their genes between

populations, by estimating a direct consequence of effective

dispersal: population connectivity (henceforth ‘connectivity’),

defined as the degree to which gene flow affects a species’

evolutionary processes (Lowe and Allendorf, 2010).

For most benthic invertebrate species with complex life cycles,

connectivity is usually associated with pelagic larval stages, which,

aided by interactions with oceanic currents and processes, can travel

and settle up to tens to thousands of kilometers away from their

spawning populations (Cowen and Sponaugle, 2009; White et al.,

2019). While numerous larval traits influence dispersal and

connectivity (Blanco et al., 2019), pelagic larval duration (PLD) is

key, as the longer larvae spend in the water column, the higher the

chances to traverse longer distances, increasing dispersal potential,

gene flow and limiting genetic structure (i.e. FST) (Waples, 1987;

Haye et al., 2014; Pinsky et al., 2017; Álvarez-Noriega et al., 2020;

Hernawan et al., 2021). On the contrary, restricted or null dispersal,

low gene flow and marked genetic structure is to be expected from

species with short PLD (i.e. lecithotrophic larvae) or without pelagic

larval stages (i.e. brooders or direct developers). While this paradigm
02
is widely accepted, there are plenty of exceptions to both these

assumptions, as some species with high dispersal potential display

unexpectedly high levels of genetic structure (Selkoe et al., 2016;

Larsson et al., 2017; Gaeta et al., 2020), and on the other end of the

spectrum, species with low or null dispersal potential report low

genetic structure spanning great geographic distances (Selkoe et al.,

2016; Fleming et al., 2018; Gélin et al., 2018; Bertola et al., 2020).

These ‘exceptions’ further illustrate that dispersal in the marine

ecosystem is complex and multidimensional and is subjected to

intrinsic and extrinsic mechanisms and processes that influence its

extent and consequences. As such, while larvae are undoubtedly

important and PLD can guarantee a minimum dispersal distance,

these traits may be a poor predictor of gene flow (D’Aloia et al., 2015;

Hilário et al., 2015; Esser et al., 2023), because other factors such as

ecology, physiology, oceanography or habitat selectivity limit

dispersal and/or settlement rates (Waters et al., 2013; Sjöqvist et al.,

2015; Pascual et al., 2017; Gaeta et al., 2020). Moreover, regardless of

development mode, other life stages can play an important role in a

species dispersal, such as adult migrations (Frisk et al., 2014), or other

mechanisms or processes of natural or anthropogenic origin that may

facilitate dispersal (Carlton et al., 2017).

One of such mechanisms is rafting, defined as marine dispersal

mediated by buoyant elements of organic or inorganic origin, often

described for organisms that live in close association with

macroalgae (Highsmith, 1985; Thiel and Gutow, 2005; Winston,

2012). Numerous studies provide global evidence supporting the

hypothesis that direct developers and brooders can disperse

through rafting (Haye et al., 2012, Haye et al, 2014; Trickey et al.,

2016; Bertola et al., 2020), arguing that this mechanism may be as

relevant for dispersal and connectivity as having a pelagic larvae

dispersal phase (Carlton et al., 2017; Simkanin et al., 2019; Pfaller

et al., 2019). The Southern Ocean (SO) is a vast mass of open ocean

encircling Antarctica and tens of relatively small islands, and
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influencing a portion of the Australian and South American

continents (Koubbi et al., 2014; Chapman et al., 2020). Within

this area, the past two decades of phylogenetic and phylogeographic

research have pointed out that rafting may be the leading hypothesis

to explain the current distribution and high levels of genetic

connectivity that some sub-Antarctic benthic species display

(Nikula et al., 2010; Cumming et al., 2014; Moon et al., 2017;

González-Wevar et al., 2018; Waters et al., 2018b; Fraser et al.,

2020a; Güller et al., 2020; Macaya et al., 2020), as buoyant

macroalgae may help achieve long-distance dispersal (LDD), a

highly relevant evolutionary and ecological process (Jokiel, 1990;

Gillespie et al., 2012; Waters et al., 2018a; Macaya et al., 2020). This

hypothesis is not only supported by genetic data, as even

considering the extension of the SO, as many coastal and benthic

taxa are shared within the sub-Antarctic biogeographical region

(Griffiths et al., 2009; De Broyer et al, 2014; Koubbi et al., 2014).

Since most of these land masses are of heterogeneous origins and

ages (continental or volcanic, ranging from ~95Ma to ~500Ka) and

are geographically isolated (Quilty, 2007; Hodgson et al., 2014), the

most plausible mechanism by which these shared taxa could have

colonized their coasts is via transoceanic LDD, largely associated to

kelp rafts of Durvillaea antarctica and Macrocystis pyrifera (Waters

et al., 2018a; Fraser et al., 2020a). These macroalgae not only

dominate near-shore, hard-substrate ecosystems, but are

frequently observed floating in open waters, and around 20

million of viable rafts have been estimated to be adriftin the

Southern Ocean (Smith, 2002; Stevens et al., 2002). Moreover,

phylogeographic studies illustrate common haplotypes between

sub-Antarctic islands and southern South America (Patagonia

and Falklands/Malvinas Islands), suggesting that D. antarctica

(Fraser et al., 2009, Fraser et al, 2010; Bussolini and Waters,

2015) and M. pyrifera (Macaya and Zuccarello, 2010; Assis et al.,

2023) have great ability to disperse across the Southern Ocean.

Coupled with the fact that live, viable benthic invertebrates have

been registered on beached rafts (Fraser et al., 2010; Layton et al.,

2022), it is to be expected that species associated with rafting

macroalgae are able to withstand floating adrift, settle into new

populations, and achieve contemporary gene flow unrelated to their

developmental mode, hinted by the scarce studies with SNPs (Single

Nucleotide Polymorphisms) in the Southern Ocean (Leiva et al.,

2019; Zbawicka et al., 2019; Lau et al., 2023).

However, knowledge of this mechanism is still lacking, and less

attention has been given to the frequency of these events and its

consequences on contemporary patterns of connectivity (Gillespie

et al., 2012; Waters et al., 2018a). Are rafting events rare enough that

there’s only sporadic gene flow, to be able to sustain a species’

integrity? Or are they frequent enough to establish a regular,

contemporary gene flow amongst isolated, distant coasts? To

address this issue, we studied the pulmonate false limpet

Siphonaria lateralis (Gastropoda: Heterobranchia) as a model to

re-evaluate connectivity and rafting in the Southern Ocean. Despite

its benthic protected development with encapsulated larvae in egg

masses (Zabala et al., 2020), this species is widely distributed across

the rocky intertidal of Patagonia, Falkland/Malvinas Islands, South

Georgia, Kerguelen and Macquarie (Dayrat et al., 2014; Güller et al.,
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2015; González-Wevar et al., 2018), a paradoxical distribution for a

species with low dispersal potential. Nevertheless, as discussed

above, such extended distribution is not considered rare for

species that live in close association with D. antarctica, and

rafting has been proposed as the main mechanism explaining

such a broad distribution of S. lateralis (Morton and Miller, 1973;

Simpson, 1976; González-Wevar et al., 2018). Moreover,

phylogeographic studies with mtDNA and nucDNA markers

evidenced shallow genetic differentiation across the sub-Antarctic

region (>8,000 Km) suggesting that dispersal through rafting may

preserve the genetic integrity of the species over large geographic

distances (González-Wevar et al., 2018). However, recent studies

aiming to explore connectivity with multilocus genetic markers

such as SNPs (Single Nucleotide Polymorphisms) have

demonstrated that, even in light of absent or low phylogeographic

structure, marine species exhibit significant genetic subdivision and

restricted gene flow across populations (Pazmiño et al., 2017; Teske

et al., 2018; Green et al., 2022). Moreover, while D. antarctica across

the Southern Ocean consists of a single broader, sub-Antarctic

clade, this macroalgae is sub-structured and there is substantial

differentiation between islands according to SNP data (Fraser et al.,

2018), that nevertheless seem to be sporadically connected, as

supported by distributional modeling and beached kelp rafts,

which provide evidence of LDD events across the Southern Ocean

(Fraser et al., 2018; Fraser et al, 2022). Considering this information,

we expect that associated species such as S. lateralis will display

moderate levels of genetic structure and low levels of recent

gene flow, enough to maintain contemporary connectivity.

Furthermore, our objective is twofold. Firstly, to evaluate whether

the long-debated mechanism of rafting maintains substantial

contemporary levels of connectivity throughout the distribution

range of S. lateralis. Secondly, to ascertain whether this mechanism

is effective at a regional scale, facilitating connectivity among

disjoint yet geographically proximate coastal populations,

particularly within the Kerguelen Islands. Clarifying these two

aspects will help towards drawing robust conclusions about the

extent and implications of rafting on the Southern Ocean, and its

effects on evolutionary history, biogeographic patterns, and

eventual conservation strategies.
2 Materials and methods

2.1 Sampling, sequencing and SNP filtering

Between the years 2013 and 2017, 190 adult Siphonaria

lateralis individuals were sampled from eight locations,

spanning most of the species’ range (Figure 1). Specimens were

stored in 96% ethanol for posterior genomic DNA extraction with

Qiagen ’s DNeasy Blood & Tissue™ Kit, following the

manufacturer’s instructions, and DNA concentration was

assessed with Qubit™ 3.0 fluorometer (Lifetechnologies).

Samples were sent to the Biotechnology Center of the University

of Wisconsin, USA. Sequencing and construction of genomic

libraries was done by Genotyping by Sequencing (GBS) using
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Illumina NovaSeq 6000 platform, following a Reduced

Representation Sequencing (RRS) approach, which is a reliable

and affordable method to study population structure of non-

model species without a reference genome, and produce a large

number of Single Nucleotide Polymorphisms (SNPs) (Rovelli

et al., 2019; Kunvar et al., 2021). Under this approach, library

preparation used two restriction enzymes to reduce the

complexity of the genome (NsiI-MspI), and barcode adaptors

for each individual. Single end reads were visualized in FastQC for

quality checks. To generate our SNP dataset, our data was

prepared and analyzed following the UNEAK pipeline

(Universal Network-Enabled Analysis Kit) implemented in

TASSEL v.5, which is useful for de novo locus identification for

non-model organisms (Lu et al., 2013). With the UNEAK pipeline,

the dataset was demultiplexed, barcodes were removed and reads

were trimmed from ~100 bp to 64 bp. Identical tags were aligned

with an error tolerance rate of 0.03, to minimize considering real

tags as sequencing errors, and we kept only biallelic loci. Following

this, we assembled two SNPs datasets according to our research

objectives, one global, encompassing S. lateralis individuals

sampled across different Southern Ocean sub-Antarctic

provinces, and a regional dataset, considering three populations

from Kerguelen Islands. We used a 80%mnC (minimum call rate),

5% MAF (minimum allele frequency) to filter the SNPs from each

dataset (global and regional), and we allowed a maximum of 40%

missing data per individual in TASSEL v.5. Then, we excluded

those SNPs that failed the Hardy-Weinberg equilibrium (HWE)

test implemented in Arlequin v3.5 (Excoffier and Lischer, 2010) at
Frontiers in Ecology and Evolution 04
p < 0.05, and we used a False Discovery Rate (FDR) correction to

avoid false positives (incorrectly considering as a SNP as out of

HWE), in at least 60% of each of the dataset populations. Since the

interest of the study was to focus on neutral evolutionary

processes, we identified potential outlier SNPs with BAYESCAN

2.1 (Foll and Gaggiotti, 2008). For this, 500,000 MCMC iterations

were run with a 10% burnin’, a thinning interval of 10, and a prior

odd of 1,000 (100 for the regional dataset), to minimize potential

false positives, according to the large number of SNPs to test.

Subsequently, we removed all SNPs after FDR q-value correction

that had strong or very strong evidence to be under selection

according to Jeffrey’s criterion, to obtain a global and a regional

neutral SNPs dataset for downstream analyses.
2.2 Genetic diversity

Analyses were performed for the global and regional datasets to

evaluate the differences in genetic diversity at both spatial scales. For

each population, expected heterozygosity (He), observed

heterozygosity (Ho), average number of alleles per locus (allelic

richness, A), the proportion of polymorphic loci (%Po), and the

inbreeding coefficient (FIS) were computed in GENETIX (Belkhir

et al., 2004). Additionally, genetic diversity parameters were

estimated for the four major geographic areas within the global

dataset, and private alleles for each area, and within Kerguelen

populations, were quantified in HP-RARE 1.0 (Kalinowski,

2005).Within Kerguelen populations, we estimated the effective
FIGURE 1

Map of the 8 sampled populations of Siphonaria lateralis (A), with inset maps of South America (B) and Kerguelen Islands (C) sampling sites. Label
box provides regional grouping information (PAT = Patagonia, KER = Kerguelen).
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population size (Ne) based on the linkage disequilibrium (LD)

method using NeEstimator v2.1 (Do et al., 2014), and jackknife

95% confidence intervals (CIs) (Waples and Do, 2008).
2.3 Population structure

We used multiple approaches to assess population genetic

structure at global and regional scale. First, pairwise population

FST and their significance was estimated using a test of 10,000

permutations in Genodive v 3.0 (Meirmans, 2020). Corresponding

FST p-values of multiple testing were adjusted through FDR

(Narum, 2006). Secondly, we performed three individual-based

population assignment tests to estimate genetic structure; 1) IBS

analysis, which clusters together unrelated individuals based on

similarities between genotypes at each locus, implemented in the R

package SNPRelate (Zheng et al., 2012), 2) Principal Component

Analysis (PCA), to determine the percentage of variation in allele

frequencies explained by the major axes, implemented in adegenet

(Jombart, 2008), and 3), STRUCTURE (Pritchard et al., 2000), a

bayesian clustering method that assigns individuals to populations

based on allele frequencies. Our aim with STRUCTURE was to

discover the main genetic groups across the species’ distribution

across the Southern Ocean, and secondly, to determine substructure

within each main group. Due to the large number of SNPs in our

datasets, we used StrAuto, a Python script that reduces analysis time

by allowing for parallel computing of STRUCTURE runs (Chhatre

and Emerson, 2017). Number of estimated ancestral populations

(K) varied from one to six. Ten replicate runs were performed for

each estimated K under the admixture model, with 600,000 MCMC,

a 10% burnin’. The most probable K value was inferred based on the

DK method (Evanno et al., 2005), utilizing Structure Harvester

online (Earl and vonHoldt, 2012). Post processing of STRUCTURE

results and cluster graphs were drawn in CLUMPAK (Kopelman

et al., 2015). Finally, we implemented an Analysis of Molecular

Variance (AMOVA) in Arlequin (Excoffier and Lischer, 2010) to

evaluate three grouping scenarios/hypothesis of a priori

partitioning, to determine which grouping hypothesis maximized

the difference between groups.
2.4 Gene flow

Twomethods were used to estimate migration rates between the

four major geographical areas, and at regional scale; 1) a multilocus

approach based on the number of rare alleles, assuming that

populations are under migration–drift equilibrium, to estimate

the historical effective number of migrants (Nm) (Barton and

Slatkin, 1986) in GENEPOP v.4.5 (Rousset, 2008), and 2)

BayesAss V3, a bayesian approach that uses individual

information to estimate recent migration events, asymmetric

patterns of gene flow and directionality. At the same time, this

analysis allows to identify first, second or third generation migrants

between populations (Wilson and Rannala, 2003).A total of

100,000,000 MCMC iterations were run with a 25% burnin’,
Frontiers in Ecology and Evolution 05
sampling every 1,000 chains, to ensure chain independency, and

convergence was confirmed in Tracer (Rambaut et al., 2018).
3 Results

3.1 Global and regional datasets

Raw data for each plate consisted of 260,135,231 and

263,506,046 reads, with 249,396,409 and 253,244,524 high-quality

reads respectively. Using the UNEAK pipeline, 69,412 candidate

SNP sites were detected across 140 individuals of Siphonaria

lateralis from eight sampled populations. Out of the 140

individuals, only 116 had sufficient information to be included in

the dataset after the bioinformatic filters, resulting in 6,277 SNPs. A

total of 351 loci were removed due to being out of HWE in 60% or

more of the populations after FDR correction, and another 411 loci

were removed after Bayescan analysis identified these loci as

outliers, with strong evidence of being under diversifying

selection. The final global dataset was made up of 5,515 SNPs

putatively neutral loci, for downstream diversity, structure, and

gene flow analyses.

For the regional dataset, after implementing bioinformatic

filters on 69,412 candidate SNPs from 53 individuals collected at

Kerguelen Islands, 52 individuals showed sufficient data across a

total of 1,646 SNPs. However, after HWE and FDR filters, we kept

1,298 SNPs, where a further 34 loci were removed for showing

significant signals of being under selection. Accordingly, our

putatively neutral working dataset consisted of 1,264 SNPs for

diversity, structure and gene flow analyses on a smaller

regional scale.
3.2 Population genetics across the
Southern Ocean

3.2.1 Genetic diversity
All genetic diversity statistics were similar and low in each of the

eight sampled populations of S. lateralis, except from Falklands/

Malvinas Islands (for values and population codes hereinafter used,

Table 1). Proportion of polymorphic loci ranged from 2.99% to

69.23%, where Falklands/Malvinas had the highest polymorphic

loci, and contrarily, populations from South America (PH and PD)

exhibited the lowest levels of genetic diversity. Observed

heterozygosity (Ho) ranged from 0.0153 (FPN) to 0.2148 (FK),

yet most values ranged from 0.0153 to 0.0288 (PAF), except from

the FK population, which showed the highest Ho by more than an

order of magnitude compared to all other populations. Expected

heterozygosity (He) ranged from 0.0131 (PH) to 0.2406 (FK), and

was slightly lower than Ho in half the populations (Table 1, values

indicated in bold letters), and slightly higher than Ho in the other

half. Allelic richness (A) ranged from 1.0299 (PH) to 1.6923 (FK),

and was similar between all populations except for FK. Finally, FIS
ranged from -0.25854 (PH) to 0.39936 (SG), with negative values

found only in continental sites (CH, PH, PD) and PAF.
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Grouping all populations by geographical area (Patagonia =

PAT, Falklands/Malvinas = FK, South Georgia = SG, and Kerguelen

= KER, Supplementary Table 1) illustrates similar diversity patterns,

as FK remains the most diverse across all statistics. Polymorphism

ranged from 14.84% (PAT) to 69.23% (FK), where at least 818 of the

5,515 loci were polymorphic. The He index ranged between 0.0193

(PAT) to 0.2350 (FK), and Ho ranged from 0.197 (SG) to 0.2148

(FK), where He was lower than Ho only in PAT. FIS ranged from

-0.02749 (PAT) to 0.39936 (SG), with PAT being the only negative

value and SG more than doubled the value of other areas. The

number of alleles per area ranged from 6334 (PAT) to 9333 (FK),

with 1% (SG) to 36% (FK) of them being private. The number of

private alleles from FK were three times higher than those recorded

in other areas.

3.2.2 Population structure
All pairwise FST comparisons were significant amongst the eight

sampled populations, with high and extremely high values across

the studied distribution of Siphonaria lateralis (Table 2). The lowest

FST value between sampled populations was found between CH-PH

(FST = 0.236), the closest populations. In a general pattern,

populations within the same geographical areas (within Patagonia

and within Kerguelen islands) exhibited the lowest levels of
Frontiers in Ecology and Evolution 06
differentiation amongst themselves (FST < 0.3). The highest FST
value was found between FPN-PC (FST = 0.962), some of the most

distant populations (8,000 Km). In fact, the highest comparisons

(FST > 0.9) were found comparing Kerguelen populations (FPN, PC,

PAF) with Patagonia populations (CH, PH, PD), and South Georgia

with Patagonia populations. Genetic differentiation was slightly

lower between South Georgia and Falkland/Malvinas (FST =

0.752), which are separated by approximately 1,500-2,200 Km of

open ocean. South Georgia and Kerguelen populations displayed

lower levels of genetic differentiation (FST = 0.579 - 0.604), despite

being geographically more distant (>6,500 Km). Falklands/

Malvinas Islands, on the other hand, was moderately-highly

differentiated with all sampled populations (FST = 0.655 - 0.752).

Individual-based analyses of global genetic structure suggest the

existence of at least three, if not four genetic groups. Based on the

number of shared alleles between individuals, the IBS analysis

(Supplementary Figure 1) recognized four groups, two clearly

defined and separate, and two relatively closer, similar to the PCA

(Figure 2). The first two Principal Components explain most of the

genetic variance (>70%): the first axis clearly differentiates FK from

all other populations, and the second axis segregates CH, PH, PD

(PAT) from a FPN, PC, PAF and SG (KER + SG) (Figure 2A).

When considering a third axis, while it explains little of the genetic

variance (3.41%), the PCA was able to distinguish South Georgia as

a slightly differentiated group compared to Kerguelen Islands

(Figure 2B). STRUCTURE’s bayesian clustering and Evanno’s DK
indicate that two genetic clusters make up the first hierarchical level

of genetic structure (Figure 3B, Supplementary Figure 2),

highlighting the stark divergence between southern South

America (CH, PH, PD and FK) and sub-Antarctic Islands (SG,

FPN, PC and PAF). While further exploration into K = 3

distinguishes Falklands/Malvinas from the rest of South America

(Figure 3C), matching results from the first two principal

components of the PCA and the IBS, the second hierarchical level

of genetic structure is accounted for when observing K = 4, which

reveals significant substructure within the 2 main genetic clusters,

southern South America and sub-Antarctic islands, providing a

visual representation of what pairwise FST and PC3 suggest (Table 2,

Figure 2B): South Georgia is a genetically distinct group, that,

however, has a significant presence of a genetic component from
TABLE 2 Pairwise FST values (below diagonal) for all Southern Ocean
populations, and their statistical significance (above diagonal).

CH PH PD FK SG FPN PC PAF

CH – 0.04 0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PH 0.236 – 0.03* <0.001 <0.001 0.001 0.001 0.001

PD 0.265 0.112 – <0.001 <0.001 <0.001 <0.001 <0.001

FK 0.706 0.655 0.666 – <0.001 <0.001 <0.001 <0.001

SG 0.933 0.927 0.928 0.752 – <0.001 <0.001 <0.001

FPN 0.961 0.962 0.961 0.731 0.588 – <0.001 <0.001

PC 0.958 0.959 0.958 0.739 0.604 0.286 – <0.001

PAF 0.946 0.943 0.943 0.748 0.579 0.243 0.293 –
Cell shading delimit sampled geographical areas.
TABLE 1 Genetic diversity of Siphonaria lateralis across the Southern Ocean.

Population Coordinates Code N %Po Ho He A FIS

Chabunco 53°01’12.7S, 70°49’26.2W CH 9 10.01 0.0217 0.0177 1.1001 -0.23809

Fuerte Bulnes 53°36’51.1S, 70°55’37.2W PH 3 2.99* 0.0157 0.0131 1.0299 -0.25854

Puerto Deseado 47°45’06.9S, 65°51’53.1W PD 4 5.33* 0.0215 0.0182 1.0533 -0.21810

Falklands/Malvinas 51°42’00.8S, 57°46’55.7W FK 22 69.23 0.2148 0.2406 1.6923 0.10981

South Georgia 54°17’01.4S, 36°29’18.5W SG 25 20.96 0.0197 0.0325 1.2096 0.39936

Fjord des Portes Noires 49°29’32.4S, 69°11’12.4E FPN 16 10.61 0.0153 0.0162 1.1061 0.05779

Port Couvreux 49°16’49.6S, 69°41’31.1E PC 17 11.66 0.0166 0.0180 1.1166 0.07914

Port-aux-Français 49°21’12.2’’S, 70°13’0.1’’E PAF 20 21.12 0.0288 0.0262 1.2112 -0.10142
fr
Table shows sampling populations, coordinates, codes (population abbreviation), sampling size (N), proportion of polymorphic loci (%Po), observed heterozygosity (Ho), expected heterozygosity
(He), allelic richness (A), and inbreeding coefficient (FIS).
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Kerguelen, which may correspond to third-generation

migrants (Figure 3D).

Additionally, to further clarify the global genetic structure, we

performed an AMOVA analysis considering the three alternative

grouping hypotheses provided by the genetic structuring analyses as

follows: H1 = two groups South America - Sub-Antarctic Islands

(SA-IS), H2 = three groups Patagonia - Falklands/Malvinas - sub-

Antarctic Islands (PAT-FK-IS), and H3 = four groups Patagonia -
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Falklands/Malvinas - South Georgia - Kerguelen (PAT-FK-SG-

KER) (Supplementary Table 3). H1 was discarded, given that

variation among groups (Va = 57.56, FCT = 0.5755) was

comparatively lower than for the other two hypotheses. While

FCT was slightly higher for H2 than H3 (0.81269 versus 0.80529),

we took into consideration the significant substructure within sub-

Antarctic islands, illustrated by the percentage of variance among

populations within groups in H2 (Vb = 4.69) and pairwise FST with
FIGURE 3

Southern Ocean map with the four major geographical areas (A), and Bayesian clustering inferred with STRUCTURE for K = 2 (B), K = 3 (C), and K =
4 its respective recent migration rates inferred by BA3 for K=4 (D). Colors represent geographical areas and are shaded to distinguish sampled
populations. Solid arrows represent self-recruitment, dashed arrows represent migration towards other populations.
FIGURE 2

Global PCA scatterplot of the first 2 principal components (A), and second and third principal components (B), with percentage of explained variance
by axis. Colors represent the sampling population of each individual, additional labels represent major geographical areas (C), to reference the map
(PAT = Patagonia (CH, PH, PD), SG = South Georgia, FK = Falklands/Malvinas, and KER = Kerguelen (FPN, PC, PAF)).
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K = 4 (KER-PAT FST = 0.572, p-value <0.001, Supplementary

Table 2). Therefore, we computed how much variation was truly

just because of grouping choice, controlling for variation amongst

populations within groups (Va/Va+Vb), which supported the four

groups hypothesis over other grouping hypotheses (H3 = 98.33%

versus H2 = 94.84%), considering South Georgia as a fourth group

on its own.

3.2.3 Gene flow estimates
Two approaches were used to estimate gene flow between the

four genetic groups, across >8,500 Km in the Southern Ocean

(Figure 3A). Historical gene flow inferred by GENEPOP was low

(Nm<1), and ranged from 0.0135 (between Patagonia and Kerguelen)

to 0.305 (between South Georgia and Kerguelen) (Table 3). However,

migration between South Georgia and Kerguelen Islands, albeit still

low, was an order of magnitude higher than between the other genetic

groups. On the other hand, recent migration rates between groups, as

indicated by the BA3 results (Figure 3D), illustrate two scenarios;

pairwise population migration rates range from 0.58% to 1.68%,

whereas the highest rates consist on self-recruitment, ranging from

95% to 98.2%, meaning that >95% of individuals were genetically

assigned to their population of origin. However, pairwise population

migration rates were not symmetrical; inferred gene flow from

Patagonia, Falklands/Malvinas and South Georgia towards

Kerguelen is an order of magnitude lower than inferred gene flow

from Kerguelen to the other three areas (i.e. KER towards PAT =

1.68%, PAT towards KER = 0.58%). Finally, BA3 did not identify

migrants of first, second, or third generations, with all individuals

being assigned as ~100% belonging to their population of origin,

unlike the five individuals visually identified as possible third-

generation migrants in STRUCTURE (Figure 3D).
3.3 Regional population genetics

3.3.1 Kerguelen genetic diversity
For the regional scale, which encompasses the Kerguelen

Archipelago, genetic diversity was similar across populations, yet

slightly higher in PAF across all statistics (Table 4). Proportion of

polymorphic loci ranged from 75.16% to 91.07%, expected

heterozygosity (He) ranged from 0.271 to 0.345, and observed

heterozygosity (Ho) ranged from 0.280 to 0.449, where He was

lower than Ho for FPN and PAF. Allelic richness (A) within

populations ranged from 1.75518 to 1.9107. FIS ranged from

-0.278 to 0.055, negative only within PAF, suggesting a slight

excess of heterozygotes and departure from HWE. Effective
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population size (Ne) was higher in PAF (224.4), and lowest in

FPN (91.8). As for private alleles, FPN had the lowest value with 13

alleles, followed by PC with 64, and the highest value was observed

in PAF with 155 alleles, representing between 1% and ~12% of the

1,264 loci in the regional dataset.

3.3.2 Kerguelen structure and gene flow
The pairwise FST analyzes all resulted in significance (p < 0.05),

with values ranging from 0.124 to 0.154 (Supplementary Table 4). The

presence of three genetic groups corresponding to the sampled

locations observed is suggested by IBS (Supplementary Figure 3), and

the PCA, where the first two principal components (PC1 and PC2)

explain >40% of the genetic variance results (Figure 4A). Likewise,

STRUCTURE analyses determined an optimal K = 3, with three

genetic groups clearly defined, each corresponding to the different

sampled locations across Kerguelen, with only a slight signal of mixed

genetic component of other groups, and without visual evidence offirst,

second or third generation migrants (Figure 4C).

Both historical and contemporary gene flow between these three

groups is very low. According to GENEPOP, historical Nm between

groups ranges from 0.06 to 0.077, the lowest genetic exchange being

between PC and PAF (Supplementary Table 5). At contemporary

scale, migration rates between the described populations ranged

from 1.44% to 1.86%, were migration from FPN towards PAF

(1.44%) was slightly lower than from PC to PAF (1.46%), providing

evidence of low regional migration rates among the analyzed

populations, which are mostly sustained by self-recruitment

(>96%) (Figure 4B). Furthermore, BA3 did not provide any

evidence for first, second, or third generation migrants.
4 Discussion

Through the analysis of genomic data (SNPs), we found that

distant populations of Siphonaria lateralis distributed across the

Southern Ocean are not sufficiently connected to prevent significant

genetic differentiation. Buoyant kelp such as Durvillaea antarctica have

probably played a crucial role in favoring transoceanic, long distance

dispersal by rafting, and genetic homogeneity, of various coastal marine

invertebrates, which largely match this macroalgae distribution (Fraser

et al., 2010; Nikula et al., 2010; González-Wevar et al., 2018; Halanych

and Mahon, 2018; Fraser et al., 2020a). This has allowed the

colonization and re-colonization of sub-Antarctic coasts by different

species (Leese et al., 2010; Nikula et al., 2010; Cumming et al., 2014;

González-Wevar et al., 2018). Nonetheless, this dispersal mechanism

would not necessarily prevent population differentiation. In light of our

estimations of genetic structure and gene flow among populations at

different geographical scales across the SO, based on more than 5,000

SNPs, we found that contemporary rafting does not promote sufficient

ongoing gene flow in the pulmonate limpet S. lateralis, a species with

benthic protected development, to homogenize distant populations.

Furthermore, our results serve as evidence that connectivity is a process

more complex than just accounting for dispersal potential, as Moon

et al. (2017) argue, in which local dynamics, past and contemporary

climate and physical barriers to dispersal, among other factors, may

determine the extent of connectivity.
TABLE 3 Global pairwise estimates of the effective number of migrants
(Nm) as determined with GENEPOP.

PAT FK SG

PAT –

FK 0.0297 –

SG 0.0209 0.0258 –

KER 0.0135 0.0162 0.305
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The eight sampled populations represent four major

geographical areas; Patagonia, Falkland/Malvinas Islands, South

Georgia, and Kerguelen. Genetic diversity was remarkably low

across populations and geographical areas, in comparison to

other genomic (SNPs) studies on gastropods across the world (i.e.

Ho = 0.35-0.06) (Cortez et al., 2021; Maes et al., 2022; Morrissey

et al., 2022; Quintero-Galvis et al., 2023). Moreover, values were

low, regardless of whether populations were under-sampled or well-

sampled. Falkland/Malvinas Islands was the only exception to this

pattern, displaying genetic diversity values more than an order of

magnitude higher than the rest of the populations, but falling in line

with diversity from other gastropods. At global scale, patterns of low

genetic diversity most likely reflect a founder takes all effect (Waters

et al., 2013), where LDD rafting allow few founder alleles to colonize

new populations, and genetic diversity remains low after

demographic growth due to density dependent processes, with

new alleles having little success in arriving and establishing in

high-density populations. During Quaternary glaciations, the

majority of the Pacific coast of southern South America was

covered by the Patagonian Ice Sheet (Rabassa et al., 2005, Rabassa

et al, 2011), extinguishing most of the benthic taxa (Clarke and
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Crame, 2010; Post et al., 2014), yet some taxa survived in pockets of

glacial refugia (Montecinos et al., 2012; Trovant et al., 2015). On the

contrary, the Atlantic coastline receded and exposed the continental

shelf (Glasser and Jansson, 2008), causing local extinctions and/or

range contractions, with refugium at lower latitudes for cold-

temperate taxa. Moreover, SO islands had different glaciation

scenarios; Falklands/Malvinas Islands had little to no ice during

the Last Glacial Maximum (LGM), while South Georgia and

Kerguelen Islands had terrestrial and marine glaciers (Fraser

et al., 2009; Hodgson et al., 2014). While these scenarios offer

different paths for recolonization events, phylogeographic patterns

of S. lateralis support the hypothesis of two independent glacial

refugia for the species (González-Wevar et al., 2018). One in

Falklands/Malvinas, refugium illustrated by other benthic taxa

(Leese et al., 2010; González-Wevar et al., 2012), which has

thrived in isolation to this day, as illustrated by the rich genetic

diversity found in our results (heterozygosity, polymorphism and

number of private alleles). And a second refugium, in southern

South America, with a reduced genetic diversity that recolonized

both Patagonian coasts and distant populations across the SO such

as South Georgia and Kerguelen Islands, which are less diverse in
FIGURE 4

Genetic structure within Kerguelen Islands: PCA scatterplot showing the first 2 principal components and percentage of explained variance by axis
(A), BA3 recent migration rates between sampled populations (B), and Bayesian clustering inferred with STRUCTURE (C). Colors represent the
sampling population of each individual. Solid arrows represent self-recruitment, dashed arrows represent migration towards other populations.
TABLE 4 Genetic diversity within Kerguelen Islands.

N %Po Ho He A FIS Ne (95% CI) Private
alleles

% of
private
alleles

FPN 15 75.16 0.296 0.271 1.7518 0.055 91.8 (12.9 - ∞) 13 1.03

PC 17 79.50 0.280 0.285 1.7950 0.055 130.2 (36.5 - ∞) 64 5.06

PAF 20 91.07 0.449 0.345 1.9107 -0.278 223.4 (65.0 - ∞) 155 12.26
Table shows population codes, sampling size (N), proportion of polymorphic loci (%Po), observed heterozygosity (Ho), expected heterozygosity (He), allelic richness (A), inbreeding coefficient
(FIS), effective population size (Ne) with 95% confidence intervals (CI), number of private alleles and percentage of private alleles.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1441397
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Millán-Medina et al. 10.3389/fevo.2024.1441397
comparison to Falklands/Malvinas Islands, that have evolved

separately with little to no allele surfing from other populations.

According to what we expected, we found significant genetic

structure in S. lateralis across the SO. Results indicated that a

substantial differentiation coincided with areas North and South of

the Antarctic Convergence, an oceanographic feature that

according to recent genomic studies, both represents a genetic

barrier for gene flow on some species (Moore et al., 2018) or has

no influence whatsoever (Galaska et al., 2017). However, we found

strong evidence of four genetic clusters, matching the four major

geographical areas sampled; Patagonia, Falklands/Malvinas Islands,

South Georgia, and Kerguelen. The highest differentiation occurred

between the two most distant populations, Patagonia and

Kerguelen, however, Patagonia and South Georgia were also

markedly differentiated, which is interesting to note, because it

may hint at a deeper or older differentiation between these sub-

Antarctic islands and the continent. On the other hand, the marked

differentiation of Falklands/Malvinas Islands from the rest of the SO

is most likely due to a historical differentiation (Quaternary

glaciations) from the rest of southern South America, also

evidenced in other studies that evaluate the phylogeographic

structure of marine invertebrates without free-living larvae, which

display significant phylogeographic structure between Falklands/

Malvinas Islands and Patagonia (Leese et al., 2008; González-Wevar

et al., 2018; González-Wevar et al., 2021). However, there are some

exceptions, as some benthic brooders lack genetic structure between

both populations (Cumming et al., 2014; Segovia et al., 2022), and

few benthic broadcasters display significant differentiation

(González-Wevar et al., 2021). Therefore, in addition to historical

patterns, other factors must be sustaining and/or promoting this

differentiation, as either environmental discontinuities arising from

oceanographic characteristics, or species traits that could limit

dispersal and act as gene flow barriers (Gillespie and Roderick,

2014; Moon et al., 2017), as seen in studies compending the

notothenioid fish Harpafiger, which has reduced phylogeographic

structure between Falklands/Malvinas Islands and Patagonia, yet its

population discrimination analyses using SNPs clearly differentiate

both populations (Segovia et al., 2022).

On the other hand, similar to what was found with traditional

markers, multilocus markers exhibit significant, but lesser genetic

structuring between South Georgia and Kerguelen. Our data

provide scarce evidence of historical long-distance dispersal

(LDD) on S. lateralis across sub-Antarctic islands approximately

7,000 Km apart, potentially via rafting, as previously hypothesized

by González-Wevar et al. (2018). Despite noteworthy estimated

historical migration rates between South Georgia and Kerguelen, in

comparison to other pairwise estimates, these values are low (Nm <

1) and insufficient to prevent polymorphism loss and population

differentiation (Wright, 1931; Vucetich and Waite, 2000).

Moreover, self-recruitment dominates S. lateralis population

dynamics, where 95% of individuals remain in their population of

origin, and <2% migrate to other populations, insufficient gene flow

to prevent genetic structuring across the SO. Interestingly, estimated

contemporary migration rates, albeit marginal, evidence double the

gene flow from Kerguelen to South Georgia, spanning ~16,000 Km,

than from South Georgia towards Kerguelen, the shortest route, by
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~10,000 Km less. This is plausible because the Antarctic Circumpolar

Current flows eastward, connecting all SO land masses and remote

islands by oceanic circulation and drifting macroalgae (Leese et al.,

2010; Hunt et al., 2016), and simulated trajectories by Fraser et al.

(2018) illustrate multiple pathways within ecologically viable

timeframes for D. antarctica and the lifespan of associated

hitchhiking invertebrates to reach Antarctica and sub-Antarctic

islands (Fraser et al., 2010; López et al., 2017). However, as Moon

et al. (2017) argue, and even in light of documented rafting events,

these events may be insufficient to sustain levels of contemporary

gene flow capable of preventing population structuring, as illustrated

by D. antarctica, which displays significant genetic structure across

the SO (Fraser et al., 2018; Fraser et al, 2022). Moreover, the current

location and movement of the Antarctic Polar Front (APF) may limit

dispersal between South Georgia and Kerguelen through different

abiotic factors, such as temperature, which may affect survivorship or

development and is a significant driver of genetic structure

(Boulanger et al., 2022; Mendes et al., 2022), as rafting also

depends on species traits and physiological tolerances (Simkanin

et al., 2019). Therefore, while LDD through rafting remains a relevant

dispersal mechanism at evolutionary timescales, our SNP data offer

little support to the hypothesis that it promotes high levels of gene

flow to sustain significant levels of contemporary connectivity, and

population genetic structure may arise, as illustrated by our results.

Finally, at a regional scale within Kerguelen, genetic diversity

was higher in PAF. Genetic structuring analyses within Kerguelen

Islands reveal three similarly differentiated groups. Additionally,

contemporary gene flow analyses failed to detect recent dispersal

events by first, second or third generation migrants between the

studied locations, with historical genetic flow being marginal at best.

Few studies have evaluated contemporary genetic structure and

gene flow within Kerguelen Islands, and yet both brooders and

broadcasters exhibit marked genetic structure between North,

South and East (Ledoux et al., 2012; Fraïsse et al., 2021). This is

an even more interesting finding than the genetic structure of S.

lateralis across the sub-Antarctic region, as rafting events across

hundreds to thousands of kilometers have proven to be historically

relevant, yet may be unpredictable and irregular at present day

(Moon et al., 2017). But if macroalgae such as D. antarctica and M.

pyrifera are as abundant as they are within Kerguelen Islands (Féral

et al., 2021), surely, rafting at regional scale could be more frequent

and/or less stochastic that at larger scales, as gene flow would offset

genetic structuring. Studies within and around New Zealand

provide evidence of sporadic rafting of direct developers

across >500 Km (Fraser et al., 2020b; Donald et al., 2020).

However, local upwelling processes, environmental discontinuities

or habitat specificity are some of the potential drivers of genetic

divergence regardless of developmental mode, leading to significant

genetic fragmentation over short geographical distances (Johansson

et al., 2008; Ayre et al., 2009; Gonzalez et al., 2016; Donald et al.,

2020). Within Kerguelen, the intertidal zone has abundant and sub-

divided kelp forests forming defined patches of habitat, all of which

are differently exposed to the diverse influences of both open sea

and land water (rivers and melting glaciers) (Koubbi et al., 2016).

On the other hand, the Kerguelen coast is heterogeneous, as it has

both jagged and linear coastlines, and exposed or sheltered bays,
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which in turn determine the spatial distribution of benthic species

(Poulin and Féral, 1995; Améziane et al., 2011). Therefore, this

oceanographic and environmental patchiness, even under the

assumption that S. lateralis disperses by rafting within Kerguelen,

could lead to the levels of genetic structure found in our study. On

the other hand, currents around the Kerguelen Islands either

transport waters coastward, eastward or northward of the

Kerguelen Plateau (Park et al., 2008; Zhou et al., 2014), providing

little means for kelp rafts to move within Kerguelen, which could

explain the low levels of gene flow and high estimates of self-

recruitment among sampled populations of S. lateralis .

Furthermore, Fraïsse et al. (2021) tested for the role of habitat

heterogeneity in explaining the North-South differentiation of

Mytilus in Kerguelen, and found that the presence of Macrocystis

kelps, substrate type and coastal slope had a low but significant role

in genetic differentiation.

Therefore, considering the observed patterns at global and

regional scale, multilocus markers such as SNPs provide further

tools to comprehend the extent and reach of dispersal and

connectivity paradigms in the SO. Rafting has been an important

Quaternary dispersal mechanism for benthic fauna, which provided

the means to colonize/recolonize the sub-Antarctic region, yet its

present relevance in promoting high levels of gene flow is disputed

by our data, which, albeit limited to a single species, demonstrates

that rafting sustains low levels of gene flow, evidenced in significant

contemporary genetic structure across SO populations.

Nevertheless, further research is needed to clarify contemporary

dispersal patterns across the SO, which need to consider studying

SNPs or whole genome sequencing in other species with different

dispersal potential as study models, as well as environmental/

oceanographical characteristics as potential barriers to present-

day dispersal and genetic connectivity in the SO, where seascape

genomic studies could help clarify these patterns.
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