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Despite living in a nutritionally heterogeneous world, consumers maintain a

relatively strict elemental homeostasis. As a result, consumers often face an

elemental imbalance between what they ingest and what is required for their

growth, maintenance, and reproduction. Here, we attempt to unite concepts

from three complementary frameworks used to study these imbalances—

Ecological Stoichiometry Theory (EST), Dynamic Energy Budget (DEB) theory,

and Nutritional Geometry (NG)—within an agent-based modelling (ABM)

approach. Specifically, we developed a two-reserve DEB model within the ABM

that tracks elemental intake, storage, and release in individual consumers across

space and time, all while integrating energetic trade-offs and simulating

behavioral responses to stoichiometric mismatch. This approach provides a

platform to study the effects of stoichiometric imbalances on populations with

individuals that have heterogeneous traits, and on feedbacks between consumer

populations and environmental nutrient cycling. We demonstrate the utility of

this approach through a case study of snowshoe hares (Lepus americanus)

balancing carbon and nitrogen intake in a nitrogen-limited landscape. Our

case study demonstrates how heterogeneity in resource stoichiometry, and

the ability for consumers to respond to such heterogeneity under nutrient

limitation, can have variable effects on population dynamics and consumer

nutrient cycling. Ultimately, our ABM is able to capture how stoichiometric

mismatches faced at the individual level can drive emergent ecological

outcomes through the collective impacts on the population. While the
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intricacy of our model ensures ample room for further improvements and

expansions, we hope this user-friendly tool will enable practitioners of EST,

DEB, and NG to test new hypotheses, guide experimental and field research, and

advance theoretical development.
KEYWORDS

elemental homeostasis, stoichiometric imbalance, ecological stoichiometry, dynamic
energy budget (DEB), agent-based model (ABM), theoretical ecology
1 Introduction

In order to survive, grow, and reproduce, animals must

constantly balance their intake and utilization of energy and

nutrients (Sterner and Elser, 2002; Frost et al., 2005; Hessen et al.,

2013). However, the availability of these resources is rarely static in

space and time (Raubenheimer and Simpson, 1999; Illius and

O’Connor, 2000), and consumer resource requirements can

fluctuate depending on their life stage and physiological state

(Pilati and Vanni, 2007). Consequently, individual consumers,

especially herbivores, frequently encounter imbalances between

their resource needs and resource availability, often with

cascading effects on the structure and function of ecosystems

(Muller et al., 2001; Sterner and Elser, 2002). For example,

resource imbalances can substantially alter consumer behavior

(Jochum et al., 2017; Rizzuto et al., 2021; Duvall et al., 2023),

nutrient release (Schindler and Eby, 1997; Vanni et al., 2002;

Atkinson et al., 2017; Sitters et al., 2017; Moody et al., 2018),

population dynamics (Moe et al., 2005; Cherif and Loreau, 2007),

and trophic interactions (Hall et al., 2007; Hillebrand et al., 2009;

Peace et al., 2013; Filipiak, 2016; Welti et al., 2017), driving

subsequent feedbacks on resource availability through consumer-

mediated functions, such as nutrient cycling (Luhring et al., 2017;

Elser et al., 2022).

Several prominent frameworks have been used to describe how

resource imbalances shape and constrain consumer physiology and

ecology. Ecological Stoichiometry Theory (EST), for example,

examines the balance of elements in ecological interactions

(Sterner and Elser, 2002). EST uses ratios of elements, such as

carbon (C) and nitrogen (N), to describe how elemental imbalances

directly impact both consumer physiology (e.g., the Threshold

Elemental Ratio [TER] at which an element limits consumer

growth; Frost et al., 2006) and environmental processes (e.g.,

consumer-driven nutrient cycling; Sterner et al., 1992; Elser et al.,

2008, 1998). In contrast, Dynamic Energy Budget (DEB) theory

examines the balance of energy (and how mass converts to energy)

in ecological interactions, and quantitatively predicts how these

interactions constrain life history trajectories (e.g., individual

maintenance, growth, reproduction) (Kooijman, 2000). DEB

models are particularly useful for modeling dynamic resource

conditions due to their embedded “memory” of feeding history
02
through nutrient and energy storage (“reserves”) (Sousa et al.,

2010). Finally, Nutritional Geometry (NG) is a framework that

examines how individual consumers achieve nutritional

homeostasis by balancing multiple dietary components,

traditionally macro-nutrients (e.g., carbohydrates, proteins;

(Raubenheimer and Simpson, 1999). NG helps decipher trade-offs

between various feeding strategies (e.g., compensatory feeding, diet-

switching and encompasses energetic and nutritional penalties

(Raubenheimer and Simpson, 2003).

While these individual frameworks have significantly advanced

our understanding of consumer-resource interactions in ecology,

their distinct focuses and approaches present unique trade-offs,

highlighting their potential complementarity. Indeed, several

studies have emphasized the value of integrating concepts of EST

(reflecting ecological significance of elemental ratios in biomass),

DEB (reflecting energy and mass balances of metabolic processes),

and NG (reflecting individual behavior changes under nutrient or

energy limitation) (Anderson et al., 2020). However, an explicit

integration of all three frameworks for ecological modelling and

scenario testing remains limited (Sperfeld et al., 2017). A key

challenge in achieving this integration lies in effectively

accounting for multiple currencies (energy, nutrients) and

dynamic individual responses (metabolic, behavioral) across space

and time, while balancing model complexity—particularly when

capturing the interactions of these processes across different

ecological scales. Indeed, nutritional challenges and trade-offs

occur at the individual-level, yet they induce strong feedbacks

between individual- and population-level dynamics. These

feedbacks may lead to unintuitive outcomes due to heterogeneity

of individual-level and environmental traits across space and time

(Malishev and Civitello, 2019). As ecologists aim to better

understand the holistic consequences of stoichiometric

imbalances caused by environmental changes such as climate

change and other anthropological disturbances, it is important

that we develop approaches that allow us to explore these

feedbacks in simulations that incorporate ecological relevant

heterogeneity (Grimm and Berger, 2016).

In this paper, we provide a quantitative link among

complementary concepts from EST, DEB, and NG using an agent-

based modelling (ABM) approach, as originally proposed by Sperfeld

et al. (2017). ABMs are mechanistic models that aim to predict how
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individual-level processes accumulate into emergent dynamics at

higher levels of organization, especially in environments with strong

feedback between an individual, its population, and its environment

over space and time (McLane et al., 2011; Grimm and Railsback, 2015).

ABMs notably differ from traditional mechanistic models (e.g., systems

of ordinary differential equations) by incorporating individual-level

heterogeneity with ease. Instead of assigning individuals to aggregate

compartments defined by shared trait values (e.g., in an SIR model),

ABMs allow each individual to possess unique trait values, enabling a

more granular representation of population structure. Additionally,

ABMs allow integration of empirical observations of individuals

directly into the model (e.g., maximum ingestion rates) and then

investigate the emergent consequences of these observations at the

population-level. Because ABMs can easily impose heterogeneity

among individual-level traits (e.g., size) and environmental traits

(e.g., aggregated resources), they are useful tool for testing

hypotheses of what processes may disproportionately drive ecological

outcomes (Grimm and Railsback, 2015). We drew ABM model

concepts from the three aforementioned frameworks: an individual

consumer DEB model we developed (two-reserve with growth and

reproduction; see Appendix A in Supplementary Material), a common

elemental currency between consumers and the environment (C:N

molar ratios), and integration of consumer behavior in response to

nutritional demands (diet switching). In short, this approach allows for

the simultaneous (1) integration of trade-offs between allocation of

energy and nutrients, (2) quantification of dynamic feedbacks between

consumers and their environments that determine population and

nutrient cycling dynamics, (3) consideration of spatial heterogeneity in

resource quality and variability in consumer traits, (4) examination of

ecological outcomes representing the dynamic sum of all individuals in

a population.

Our ABM model focuses on the ingestion of resources with

variable nutritional quality, represented by the resources’ C:N
Frontiers in Ecology and Evolution 03
ratios. We selected these two elements because they reflect

prominent trade-offs between energy (C-rich carbohydrates) and

nutrition (N-rich proteins). We incorporate mechanisms for

consumers to perform diet switching/selective feeding, based on

sensing their internal nutrient storage. Furthermore, consumers

modify the spatial and temporal nutrient availability within their

environment through the explicit mass-balance calculations of

excretion, egestion, and death on the landscape (Figure 1).

Finally, we demonstrate the utility of our model using a simple

case study of snowshoe hares (Lepus americanus) balancing C and

N intake in a N-limited landscape. We aimed to make the individual

DEB model flexible for future users to address various ecological

scenarios, including different elemental mismatches (e.g., C:N:P or

C:Na), specific consumer species (through collected empirical data

or the DEB Add-My-Pet Portal), or different environmental

conditions (empirically collected or theoretically implemented).

To this end, we also provide potential applications and

modifications, resources and databases for parameters, and

details for the derivation of the DEB equations used (Appendix A

in Supplementary Material), with the hope of increasing

model accessibility.
2 Key frameworks for understanding
consumer-resource interactions

EST, DEB, and NG each offer distinct approaches to study

consumer-resource interactions, yet differ in their motivations,

perspectives, and key questions (Sperfeld et al., 2016, 2017;

Kearney, 2021). In the following sections, we provide a brief

summary of each framework to contextualize their usage in our

model, especially for readers not familiar with all three.
FIGURE 1

A nitrogen cycle involving plant and consumer interactions. Nitrogen is absorbed by plants from the soil, depicted as “Plant uptake.” A rabbit
represents the consumer, which ingests plants; the process is labeled “Consumer Ingestion.” Arrows indicate nitrogen transfer, with the last going
back to the environment through "Consumption, Egestion, Excretion, and Carcass Deposition." The interconnected arrows visually demonstrate the
flow of nitrogen between soil, plants, and consumers. Source: Created in BioRender.com.
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2.1 Ecological stoichiometry theory

Ecological Stoichiometry Theory (EST) explores the

connections between an organism’s elemental composition and

their life history traits, interactions with other organisms, and

impacts on ecosystem functioning (Urabe et al., 1997; Sterner and

Elser, 2002; Anderson et al., 2005; Frost et al., 2005). Using elements

as a currency for metabolic and ecological processes of interest is

particularly useful when connecting mechanisms between

organisms and/or ecological scales, such as the relationship

between animal egestion and fertilized primary production. The

ability to quantify how macroelements, such as N, flow throughout

an ecosystem is an informative tool for describing consumer-driven

nutrient cycling (Elser and Urabe, 1999, 1999; Sterner and Elser,

2002; Grover, 2004; Moody et al., 2018) and how feedbacks between

consumers and their environment impact ecological and

biogeochemical processes (Sitters et al., 2017; Filipiak and

Filipiak, 2020; Elser et al., 2022; Koeve et al., 2024).

EST can also be used to predict the fitness consequences of

elemental imbalance between an organism’s demands and what is

available in their environment (i.e., stoichiometric mismatch)

(Sterner and Elser, 2002). These consequences can occur in

different ways. First, element deficiency (i.e., nutrient limitation)

can suppress organism performance (e.g. growth rate, reproduction,

etc.) relative to more elementally balanced diets (Sterner et al.,

1992). Second, consumers face costs when dealing with an

overabundance of some elements in digesting, egesting, excreting,

and/or storing unneeded nutrients, which has been shown to induce

trade-offs in organismal performance (Boersma and Elser, 2006).

The effects of stoichiometric imbalances on individual performance,

population dynamics, and whole ecosystems can often be isolated

experimentally, but it can be difficult to interpret observational data

where there are often multiple, interacting limiting nutrients. Here,

EST can explicitly describe the dynamic shifts in elemental

limitations through the concept of TERs. TERs are the resource

elemental ratio at which an organism’s growth shifts from

limitation by one element to another (Frost et al., 2006), allowing

for a combination of elemental ratios to describe a “stoichiometric

niche” of resources (González et al., 2017). If a consumer cannot

meet these thresholds, it must adapt or face fitness consequences.

The strategies for adapting to, and quantitative consequences of,

elemental imbalances both lend powerful and complementary

modeling concepts when used in conjunction with both NG and

DEB frameworks (Sperfeld et al., 2017).
2.2 Dynamic energy budget theory

DEB theory is a mechanistic representation of an individual

organism’s metabolism that directly links resource quantity and

quality to its life-history traits by connecting resource composition

to physiological processes (Kooijman, 2000). DEB models track

how assimilated resources are stored in organisms (i.e., reserves)

and then mobilized to pay metabolic costs for maintenance (i.e.,

overhead costs of maintaining current biomass), growth, and
Frontiers in Ecology and Evolution 04
reproduction. Reserves provide a temporal buffer for consumers

to sustain their metabolic function during resource fluctuations,

effectively modeling individual-level nutrient hysteresis (Nisbet

et al., 2000; Sousa et al., 2010). DEB theory also models concepts

described by EST and NG, such as nutritional constraints on growth

and reproduction (Muller et al., 2001, 2004; Kuijper et al., 2004) and

consequences of resource switching (Kooijman, 2000). DEB models

have already been integrated into ABMs to scale individual-level

energetics to population dynamics (Martin et al., 2013), model

zoonotic infection control scenarios (Malishev and Civitello, 2019),

develop predictions for population management under climate

change conditions (Yang et al., 2022), and better understand

animal life history trajectories (Goedegebuure et al., 2018). For

those unfamiliar with the intricacies of DEB, this section aims to

present relevant assumptions, mechanisms, and modules available

for DEB models that would be relevant to an ABM integrated with

EST and NG concepts.

Two assumptions for DEB theory underlie its connection to

biochemical composition of organisms: strong and weak

homeostasis (Kooijman, 2000; Nisbet et al., 2000). Strong

homeostasis dictates that metabolic pools within the organism do

not change chemical composition (i.e., somatic structure, reserve

pools, etc.). Weak homeostasis dictates that under constant resource

density environments, the composition of the consumer as a whole

remains static, implying that as resource quantity or quality varies,

the reserve density (amount of reserve relative to the somatic

structure, mE = ME
MV

) drives the overall chemical composition of

the consumer. For example, an individual facing extended

nutrient-poor conditions will have depleted reserves, and thus its

reserve density will be much lower than an organism fed abundant,

high-quality food (whose reserves will be at capacity). The

difference in composition between reserves and structure

determines the range of whole-body composition of an organism

(i.e., heterotrophic consumers have a stricter compositional range

than primary producers that can separately uptake inorganic

nutrients) (Sousa et al., 2010). These theoretical tenets of DEB

provide a complementary approach to EST’s description of the

elemental homeostatic flexibility in producers and consumers.

DEB models can also use multiple reserves to represent different

generalized pools of biochemical compounds (e.g., C-rich and N-rich

reserves) (Kooijman, 2000). To convert fluxes from reserves of

different stoichiometries into biomass products of different

stoichiometries (i.e., somatic tissue), DEB theory uses “Synthesizing

Units” (SUs) (Kooijman, 1998). SUs are mathematically analogous to

enzyme kinetics and scaled functional responses: substrates arrive at

the SU (i.e., reserve-C and reserve-N), and are “bound” to the SU,

which converts them to a new product at a certain rate. In the process

of this product formation, the SU will also produce “waste”, which is

critical in using DEB to consider consumer impacts on nutrient

cycles, as this is what comprises nutrient release to the environment.

Importantly, this is yet another point of connection between DEB

models and EST. SUs in DEB models have been used to explore the

effects of N-limitation on copepod reproduction (Kuijper, 2004),

phosphorus limitation onDaphnia growth (Muller et al., 2001), C, N,

and phosphorus limitation in marine cyanobacteria (Grossowicz
frontiersin.org
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et al., 2017), and multi-trophic nutrient limitation in chemostats

(Kuijper et al., 2004).

Historically, both EST and DEB practitioners have created

models that highlight how each framework individually can create

stoichiometric-explicit models that predict life-history trajectories

of consumers under various resource qualities (Sterner, 1997; Frost

and Elser, 2002; Andersen et al., 2004; Kuijper et al., 2004; Logan

et al., 2004; Anderson et al., 2005; Peace et al., 2013). We want to

stress, however, that the use of both frameworks simultaneously can

develop more realistic model representations of elemental flows,

which are critical when models cross different mechanistic,

temporal, and spatial scales, akin to real ecological systems. For

example, the use of reserves in DEB models provides an internally

consistent mathematical tracking of true nutrient limitation—a

consumer has a buffer to withstand eating low-quality food for

periods of time before it begins to experience fitness consequences

(Kooijman, 2000). Thus, DEB models are ideal for understanding

the effects of temporally variable resource quantity and quality.

Additionally, DEB models more adequately model the individual-

level trade-off between how assimilated nutrients eventually are

utilized for growth, reproduction, or excreta, which can map onto

different life history strategies (such as emergency reproduction,

Kooijman, 2000). Alternatively, DEB models in and of themselves

cannot adequately model or interpret the feedback of elements

between consumers and their environment. EST is more well-suited

to explain the ecological significance of consumer-driven nutrient

cycling and can capitalize on the consistent currency of elemental

ratios to scale from individuals to populations and biogeochemical

cycles (Schindler and Eby, 1997; Hessen et al., 2004; Van De Waal

et al., 2010; Moody et al., 2018; Elser et al., 2022; Rizzuto et al.,

2024). Finally, DEB models have already been explicitly connected

to NG (Kearney et al., 2010; Kearney, 2012), and many DEB models

are able to predict movement and organismal performance

outcomes that are relevant to many NG concepts (Arnall

et al., 2019).
2.3 Nutritional geometry

NG was developed as a framework for understanding how

animals manage nutritional intake when faced with resources that

are imbalanced in their macronutrients (e.g., carbohydrates,

proteins) (Simpson et al., 1997). Additionally, NG can help

understand driving forces of consumer-resource interactions,

especially how these occur in spatially-explicit contexts. NG

conceptualizes nutrient imbalances within a two-dimensional

nutrient space. In this space, each animal has an intake target,

reflecting its nutritional needs for processes such as maintenance

and growth. As the animal consumes food, its position shifts within

the nutrient space, depending on the nutrients it ingests (Anderson

et al., 2020). In theory, an organism’s goal is to reach their intake

target whilst limiting excess or deficient intake of any particular

nutrient. Accordingly, NG can be used to make predictions

regarding what behavioral strategies an organism may employ

when faced with imbalanced diets. For example, populations of
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migratory Mormon crickets were found to cannibalize each other

when they were deficient in protein and salt, but when these

nutritional imbalances were relieved, cannibalism slowed

(Simpson et al., 2006). Further, these specific imbalances were

important drivers of the movement of these crickets through the

landscape (Simpson et al., 2006), highlighting the important

connections between individual nutrition and behavior.

While EST and NG are similar in that they both focus on

nutrients, they use different measurements that have trade-offs in

explaining ecological phenomena. NG directly examines

macromolecules and connects biochemical nutrition to ecological

dynamics (i.e., distinguishing between the carbon in lipids versus

proteins), whereas EST uses elements as a proxy for nutrition and is

thus able to directly compare data between different organisms and

environments. The complementary concepts and distinctions

between NG and EST have been further described elsewhere

(Sperfeld et al., 2016, 2017; Anderson et al., 2020). Ultimately,

NG’s focus on consumer feeding behaviors in response to resource

variability is a critical aspect of modeling consumer-interactions in

stoichiometrically imbalanced environments.
3 Consumer dynamic energy budget
model details

3.1 Model overview

In our ABM, an individual consumer’s feeding decisions can be

shaped by its elemental intake. Penalties for over- or under-

consuming individual elements are implicitly prescribed by DEB

and are dictated by an organism’s elemental reserves (i.e., C-rich and

N-rich reserve). Thus, the ABM can be used to explore the fitness

consequences of different feeding strategies—such as between diet-

switching and compensatory feeding—as predicted by NG. For

instance, under a selective feeding (diet-switching) strategy, a

consumer may struggle to grow or reproduce if resource quality

fluctuates among food choices (Anderson et al., 2020). Below, we

outline the relevant concepts and important model decisions

underlying the specification of the DEB model. All flux equations

can be found in Table 1, and a more complete specification of the

model can be found in the Supporting Material (Appendices A and

B), along with code for solving the equations in R (Appendix C).

Moles of C, C-mols, are used as the common internal currency for the

organism to streamline mass balances, as all internal state variables

contain some amount of C. Moles of N, N-mols, can be easily

calculated from the stoichiometric parameters.

Important DEB model decisions are listed briefly below.
1. There are two reserves: C-rich and N-rich. Both contain C,

but only the N-rich reserve contains N.

2. Consumers ingest a single resource, but the stoichiometric

concentration of C and N in the resource can vary. Thus,

assimilation of C and N are separate processes, not

dependent on the actual resource itself (all equally

digestible). While this assumption is not necessarily
frontiersin.org
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TABLE 1 Flux equations.

Flux Description Flux Expressions

Ingestion JFA = f  JXAM

� � MV

½MV �
� �2=3

C-rich Reserve assimilation JAEC = YECF JFA − JAEN

N-rich Reserve assimilation JAEN =
qFN
qFC

� �
qENC
qENN

 !
YENF JFA

Egestion, C-specific JWC
= (1 − YECF ) JFA

Egestion, N-specific
mol  N

t

� �
JWN

=
qFN
qFC

� �
(1 − YENF )JFA

Mobilization of C-rich reserve JECC = MEC
_n

MV

½MV �
� �−1=3

−_r

 !

Mobilization of N-rich reserve JENC = MEN
_n

MV

½MV �
� �−1=3

−_r

 !

Total Somatic Maintenance costs JS = (kMMV )(1 + ds )

C-rich reserve used to meet Somatic
Maintenance costs JECS =  kS 

q
S*
C

q
S*
tot

q
S*
C

q
S*
tot

=
kC JECC

(kC JECC + kS)

N-rich reserve used to meet Somatic
Maintenance costs JEN S =  kS rSN 

q
S*
N

q
S*
tot

q
S*
N

q
S*
tot

=
kN JENC kS

(kC JECC + kS)(kC JECC + kN JENC + rS
NkS)

Structure used to meet Somatic
Maintenance costs

(Total structure actually consumed): JVS =  kS rSV 
q
S*
V

q
S*
tot

(Flux of structure that is sent to SU, unused is immediately returned to structure): JVCS   =  

JS
q
S*
V

q
S*
tot

=
JVCSkS(kC JECC + rSNkS)

(kC JECC + kS)(kC JECC + kN JENC + rS
NkS)(kC JECC + kN JENC + JVCS + rSV kS)

Total Maturity Maintenance costs JD = kJMH

C-rich Reserve used to meet Maturity
Maintenance costs JECD =  kD 

q
D*
C

q
D*
tot

q
D*
C

q
D*
tot

=
(1 − kC)JECC

((1 − kC)JECC + kD)

N-rich reserve used to meet Maturity
Maintenance costs JEND =  kD rDN 

q
D*
N

q
D*
tot

q
D*
N

q
D*
tot

=
(1 − kN )JENC kD

((1 − kC)JECC + kD)((1 − kC)JECC + (1 − kN )JENC + rDNkD)

Structure used to meet Maturity
Maintenance costs

(Total structure actually consumed): JVD =  kD rDV 
q
D*
V

q
D*
tot

(Flux of structure that is sent to SU, unused is immediately returned to structure): JVCD   =  

JD
q
D*
V

q
D*
tot

=
JVCDkD((1 − kC)JECC + rDNkD)

((1 − kC)JECC + kD)((1 − kC)JECC + (1 − kN )JENC + rD
NkD)((1 − kC)JECC + (1 − kN )JENC + JVCD + rD

VkD)

Somatic Growth JGV =
JECG
YECV

� �−1

+
JENG
YENV

� �−1

−
JECG
YECV

+
JENG
YENV

� �−1� �−1

C-rich reserve rejected from Growth SU J−ECG = JECG − JGVYECV

N-rich reserve rejected from Growth SU J−ENG = JENG − JGVYENV

Maturity and Reproduction JRR =  
JECR
YECR

� �−1

+
JENR
YENR

� �−1

−
JECR
YECR

+
JENR
YENR

� �−1

C-rich reserve rejected from
reproduction SU

J−ECR = JECR − JRRYECR

N-rich reserve rejected from
Reproduction SU

J−ENR = JENR − JRRYENR

C-rich reserve rejected from SUs that is
recycled back to reserve

JGREC = kG
C J

−
ECG + k R

C J
−
ECR

(Continued)
F
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Fron
realistic, it is always possible to create multiple resources

with different assimilation dynamics in a different DEB

model, and our goal was to use elemental stoichiometry as a

common currency throughout the simulated ecosystem.

3. Four SUs are used to calculate somaticmaintenance,maturity

maintenance, somatic growth, and reproduction. Details are

found in Appendix A in Supplementary Material.

4. An organism’s somatic maintenance costs are increased

through movement, based on the distance walked and a

penalty parameter that multiplicatively increases

maintenance costs based on total movement (s).
5. Somatic maintenance and maturity maintenance must be

paid in order for the organism to stay alive. If what is

mobilized from reserves is insufficient to pay for costs, then

somatic structure will be broken down and used to meet costs

for either somatic or maturity maintenance (“shrinking and

regression”). Details in choice to break down structure for

maturity maintenance can be found in Appendix A.
tiers in
a. For simplicity, we assume that any unused mobilized

structure is immediately returned to structure (van

der Meer et al., 2022), and that there is 100%

efficiency in using structure.

b. Note: one should consider setting a limit on how

much somatic biomass can be broken down to meet

maintenance costs. In our ABM, we determined that

death would occur if an organism shrunk by 50% of

its maximally achieved structural mass as a

conservative estimate, based on previous DEB

ABMs (Martin et al., 2013), but this is likely far too

forgiving of a shrinkage penalty for mammals.
6. “Waste” refers to egestion, and “excretion” refers to any

other output of elements from the consumer into the

environment (e.g., carbon through respiration, N through

urine, etc.).
3.2 Mass balance differential equations

The mass balance equations are represented as a system of

ordinary differential equations (ODE) that model fluxes of nutrients

(Jxy , mol C/day) (Equations 1–9). A diagram of these fluxes through
Ecology and Evolution 07
the DEB state variables can be seen in Figure 2. Users altering

equations (or implementing other DEB models of interest) should

take care that these fluxes are “absolute” fluxes as referred to in DEB

theory, simply indicating that they are not scaled by consumer

biomass or volume.

 
dMV

dt
= JGV − JVS − JVD (1)

Somatic biomass increases due entirely to growth.

dMEC

dt
= JAEC + JGREC − JECC (2)

 
dMEN

dt
= JAEN + JGREN − JENC (3)

Reserve mass for both reserves (Equations 2, 3) increases

through assimilation (JAEi ) and recycling of reserves mobilized

but not utilized in the growth and reproduction processes (JGREi ).

Reserve mass is drained from the mobilization for growth and

reproductive processes (JEiC).

dMH

dt
= JRR       if    MH < MP

H  ;     0     if   otherwise (4)

dMR

dt
= JRR       if    MH ≥ MP

H    ;     0     if   otherwise (5)

The reproductive maturity level (MH) increases from the

development/reproduction flux JRR until it reaches the threshold

to adulthood (MP
H). Once it has reached this threshold, JRR builds

the reproductive buffer (MR), which will produce offspring when it

reaches the threshold for reproduction events (M0
R).

dXC

dt
= JECS + JECD + JENS + JEND + JGRXEC + JGRXEN +   JVS + JVD (6)

dXN

dt
= (

qVN
qVC

  )   JENS + JEND + JGRXEN +   (
qVN
qVC

  )   JVS + JVD (7)

Excretion of nutrients are released as a byproduct of the three

metabolic processes that use multiple fluxes of different

stoichiometries (somatic maintenance, growth, and development/

reproduction). C-excretion fluxes are quantified in C-mols, and N-

excretion fluxes are quantified in N-mols.
TABLE 1 Continued

Flux Description Flux Expressions

N-rich reserve rejected from SUs that is
recycled back to reserve

JGREN = kG
N J

−
ENG + k R

N J
−
ENR

C-rich reserve rejected from SUs that
is excreted

JGRXEC
= (1 − kG

C )J
−
ECG + (1 − k R

C )J
−
ECR

N-rich reserve rejected from SUs that
is excreted

JGRXEN
= (1 − kG

N )J
−
ENG + (1 − k R

N )J
−
ENR
All fluxes are in units of ( mol  C
t ) unless otherwise specified.
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dWC

dt
= JAWC

(8)

 
dWN

dt
= JAWN

(9)

Egestion (“waste”) consists of ingested but unassimilated

resources, and are also quantified in C-mols or N-mols, respectively.

All flux equations can be found in Table 1, a guide for terms and

units can be found in Table 2, and all derivation steps/model choices

can be found in detail within Appendix A in Supplementary Material.
4 Integrated agent-based model
details

4.1 Model overview

NetLogo software (Wilensky, 1999) enables users to create

spatially explicit ABMs and provides a user-friendly interactive

coding environment to specify agent (i.e., consumer) behavior and

metabolism, environmental conditions, with a well-established

community of example models and code to users new to the

program and ABMs as a whole. For longevity and new user ease,

we have thus created our model in NetLogo, v6.4.
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The ABM’s algorithms control the environment (patches) and

consumers (agents). Algorithms are temporally divided into those

that initialize the environment and consumers (“setup”

procedures), and those that run each timestep (“tick”) of the

model (“go” procedures), based on parameter specifications. For

utility, many parameters that control (or impose) environmental

and consumer mechanisms are displayed in the user interface.

Below, we outline the procedures for the environment and

consumers first in the initialization, then per timestep run in the

model, and indicate how each of the three frameworks is either used

to calculate values or contextualize assumptions for the procedures.

The NetLogo User Interface for this ABM contains three main

sections: the parameter selection (Figure 3A), the environment

(world) view (Figure 3B) and a set of plots and monitors that

update each time step (Figure 3C).
4.2 Model initialization

The current model environment loads as a landscape with 25 × 25

patches, where the borders of the environment continuously wrap. The

landscape is divided into patches that contain resources and those that

do not. Resource patches can be further divided into a user-determined

amount of high-quality clusters (e.g., heterogenous environment), or

homogenous resource quality. The setup constrains the average C:N
FIGURE 2

A diagrammatic overview of the Dynamic Energy Budget model presented in this paper. Resources with a quantified C:N stoichiometry are ingested
by the heterotrophic consumer, and are then assimilated into a C-rich and N-rich reserve. Unassimilated resources are egested back into the
environment. These reserves are mobilized to first pay somatic and developmental maintenance costs, then to grow and reproduce. Synthesizing
Units (SUs) are described by DEB theory and combine fluxes of mobilized C- and N- reserves into a product flux with a fixed stoichiometry.
Assimilated nutrients that did not yield maintenance costs, growth, or reproduction are excreted by the consumer.
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resource ratio over the whole world, within high-quality resource

clusters, and lower-quality non-clustered resource patches, with user-

determined target average, max, andmin C:N ratios.We created spatial

aggregation of resource patches and high-quality resource clusters by

generating temporary agents at random patches, whose random walks

determine which patches contain resources, and which resource

patches are part of a high-quality cluster. For example, to assign

high-quality resource clusters, the number of temporary agents

generated is equal to the user-selected number of resource clusters.

These agents take a total number of random walk steps that is equal to

the user-selected area of each cluster. As these agents walk randomly,

whichever patches they walk on get “converted” to the high-quality

resource clusters. After performing these tasks, the agents are removed

from the simulation. We also included a variable that incorporates

random variation in all resource patches. Finally, we calculate the total

C- and N-mol on each patch. For convenience, C-mol always is

equivalent to the resource quantity parameter and N-mol is

calculated from the C:N ratios of resources.

The total initial consumer population and proportion of adults vs

juveniles are selected in the user interface. Once assigned a life stage,

their initial DEB parameters are assigned, which the user specifies in

the code. Then, initial state variable values are selected based on life

stage, with user-specified variation or condition. Binary variables for

consumers were also created to track important events, such as death

(and cause of death), reproduction, and maturation.

4.3 Model run steps

A diagram summary of the ABM run procedures at each time

step can be found in Figure 4. Each timestep corresponds to a day,

based on the parameter units of DEB terms. Thus, we have

discretized the ODE within the ABM to calculate per day and

implement these calculations at every timestep.
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All consumer procedures are the first to run at each timestep.

Within the consumer procedures, first, all timestep-specific parameters

are reset. Next, consumers move, based on sensing how full their N-

rich reserve is (scaled reserve density). If the reserve is below a user-

specified threshold (“mismatch_threshold”), then the consumer seeks

out the best quality patch within a user-specified radius (“sight”) of

patches and moves towards this target patch at a user-specified walk

distance (“distance-consumer-walks”). Otherwise, the consumers will

walk either in a correlated random walk (Renshaw and Henderson,

1981) or a Brownian walk (Kac, 1947) motion, based on user selection.

Once at a patch, consumers’ ingestion potential is calculated based on a

Holling Type II Functional Response. To avoid a patch having a

negative number of resources due to multiple consumers’ ingestion, we

implemented a rule that when multiple consumers are on a patch and

there are not enough resources for all of them, consumers eat in turn,

from largest to smallest, until no resources remain. After moving, an

individual consumer’s DEB sub-model will compute the change in

their state variables at that time step. Tominimize NetLogo code clutter

and utilize more advanced numerical solving algorithms, we used the

SimpleR Extension for NetLogo (Hovet et al., 2022) to send parameters

and state variables to an R script which calculates the change in state

variables using the DEB sub-model, then sends the results back to

NetLogo. Within our R script, we used the rootSolve package (Soetaert

and Herman, 2009) and the `multiroot()` function, which performs

Newton-Raphson methods to numerically solve variables (see

Appendix A in Supplementary Material for more details on which

variables need numerical solving methods). The roots solved in these

equations are stored for each individual consumer at each time point,

so that they can be used as the initial guesses in the next timestep,

improving stability and solving efficiency. Following these root-solving

calculations, consumer variables and relevant parameters are updated

in NetLogo (i.e., the ODE is implemented as discrete calculations each

timestep, essentially the Euler solving method). Based on the updated
FIGURE 3

Preview of user interface for Agent-Based Model in NetLogo. Users directly enter the parameters for consumers and the environment, such as their
stoichiometry, abundance, and spatial heterogeneity (A). Users can observe the simulated environment in real time as individual processes run and
interact with agents and patches (B). Also included on the user interface are basic data plots of consumers and the environment which update each
timestep (C).
frontiersin.org

https://doi.org/10.3389/fevo.2025.1505145
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Bradley et al. 10.3389/fevo.2025.1505145

Frontiers in Ecology and Evolution 10
consumer states, if an individual exceeded (triggered) their thresholds

for reproduction or death, those events occurred. Consumers can die

due to a background mortality rate (set in user interface), both reserves

reaching less than 1% capacity, or shrinking their biomass too

significantly (threshold set in user interface, but we used 40%

shrinkage per other DEB ABMs (Martin et al., 2013).

Next, environmental patches run their procedures. First, patches

update how many resources were consumed and how much N was

added to the soil pool by consumers. Then, patches will grow resources

at a set rate each timestep, so long as they have not reached carrying

capacity (rate and carrying capacity set in user interface). Resources

uptake N from the soil at a certain rate (set in the user interface). To

ensure that the C:N ratio of resources is maintained within the user-

specified minimum and maximum, resource growth is constrained so

that the resource C:N ratio cannot rise above the maximum and soil-N

uptake is constrained so that the resource C:N ratio cannot dip below

the minimum ratio. Then, the total C- and N- mols for resources and

soil are updated again. Importantly, all procedures are written so that

there is a world conservation of N, to better model where a known set

of N is distributed throughout the system. This also provides a method

for checking simulation experiments for numerical instability (N is not

conserved from beginning to end).

Finally, all miscellaneous procedures run, such as assigning

patch color based on the resource quality and updating plots, before

the next timestep begins.
5 Case study: N limitation in
snowshoe hares

5.1 Model overview and background

We modeled our case study around snowshoe hares (L.

americanus) in boreal forests of North America (Krebs, 2010).

We chose boreal forests since they are known to be N-poor
TABLE 2 Definition of terms.

Term Description Units

State Variables

F Resource mol  C

MV Structural biomass mol  C

MEi Reserve-i biomass mol  C

mEi Reserve density of reserve-i mol  C   (i − reserve)
mol  C   (structure)

L Structural length cm

V Structural volume cm3

MH Maturity level mol  C

MR Reproductive buffer level mol  C

Xi Excretion of element-i
mol   i(mol C or

mol N)

Parameters

JXAM

� �
Maximum surface-area specific ingestion rate mol  C

cm2   *   day

FH
Half-saturation constant for Holling-II

functional response
mol C

FMf g Maximum surface-area specific searching rate mol  C
cm2   *   day

½MV � Volume-specific structural biomass mol  C   (structure)
cm3

_r Specific growth rate day−1

Mb
H Maturity level at birth mol C

Mp
H Maturity level at puberty mol C

M0
R

Level of reproductive buffer needed to
produce one offspring

mol C

kM Somatic maintenance rate coefficient day−1

kJ Maturity maintenance rate coefficient day−1

Y1*2
Yield/conversion of var1 into var2 −

qVari
Molar ratio of element-i in state variable

(normalized to C)
mol i

ki
Fraction of reserve-i sent to somatic processes

(maintenance + growth)
−

kGR
i

Fraction of reserve-i rejected by growth SU
that is recycled back to reserve

−

s
Somatic maintenance cost penalty

for movement
−

d Distance consumer walks Patches

rSU
i

Preference parameter for using i-substrate in
meeting somatic maintenance costs
(compared to using C-reserve)

−

(Continued)
TABLE 2 Continued

Term Description Units

Flux-related Terms

J1*2
Absolute flux from SU/state variable 1 to SU/

state variable 2
mol   i
day

J−1*2 Absolute flux that is rejected from SU mol   i
day

Synthesizing Unit (SU) Related Terms

qSU
o

Density of SU binding sites that are empty/
available to bind substrate

−

qSU
i

Density of SU binding sites that are bound
with substrate-i

−
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environments (Sponseller et al., 2016; Högberg et al., 2017).

Resource N limitation is known to influence snowshoe hare

ecology, behavior, and physiology, and snowshoe hares are

capable of modifying resource availability through herbivory

(Rizzuto et al., 2021). Our model was designed to examine how

hare population dynamics and ecosystem N cycling are

influenced by variability in resource quality and hare feeding

behaviors. Accordingly, we ran four distinct model scenarios,

varying both environmental and consumer dynamics: (1)

homogeneous vs. heterogeneous C:N molar ratios across the

environment (see Sections 4.2 and 5.2) and (2) hare populations

with either random feeding or N-selective feeding under N

limitation (see Section 5.3).
5.2 Stoichiometric parameters

In all scenarios, the average resource C:N ratio initialized at

32, representing higher resource quality for relevant hare forage

species (Rizzuto et al., 2019). Additionally, the maximum and

minimum C:N resource ratios were arbitrarily selected to be 60

and 30, and the percent of world without any resources set to 30%.
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Under a heterogeneous resource conditions, the number of

clusters was set to 20. Consumer C:N somatic biomass was set

at 5, selected from a range of snowshoe hares at different ages

(Rizzuto et al., 2019). For calculation convenience, the

reproductive biomass C:N was set to be the same as the

somatic biomass.
5.3 Behavioral parameters

We ran simulations across a factorial cross of two

parameters: sigma (s), which controls the multiplicative

additional somatic maintenance costs of movement and also the

N-rich reserve density threshold level at which consumers

switch from a random correlated walk movement (random

feeding) to seeking high quality food under N limitation (selective

feeding, or, diet switching). For simplicity, we selected high values

for both parameters: maintenance penalties for movement of

60% (sigma = 0.6) and thresholds for selective movement of

70% full reserves (scaled reserve density = 0.7). Other ABM

parameters that were held constant are found in Appendix B in

Supplementary Material.
FIGURE 4

Overview of major procedures that occur each timestep in the Agent Based Model (ABM). The consumer completes its algorithm before the
resource/patch submodel does to optimize the consumer nutrient feedback to resource growth. First, the consumer moves to a new patch, then
ingests the resources on that patch. Then the DEB model calculates the change in consumer state variables for that timestep and determines
mortality. If the consumer has accumulated enough energy, it will reproduce. Finally, the consumer releases to the patch its nutrients accumulated
through excretion, egestion, and corpses. The ABM then updates the consumer and environmental variables, and executes a simple patch sub-
model, where resources grow and their quality is calculated, depending on how much nutrients were deposited by consumers. The environment
updates one last time before the next timestep begins.
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5.4 DEB model parameter selection

Primary parameters for the DEB model were taken from the

DEB Add-My-Pet Portal and used in a mass context with C-mols as

common currency (Appendix B in Supplementary Material). While

parameters for specifically L. americanus were not available in the

database, we selected parameters from another cold-adapted species

within the genus, the mountain hare (L. timidus). From these

primary parameters, we calculated any other secondary DEB

parameters using the energy-mass relationships described in

Table 2 and “Notation and Symbols” section in Kooijman (2000).

To account for the fact that the primary parameters were

derived for a single-reserve DEB model, we split the total

maximum reserve density between the maximum reserve density

of both our reserves: 40% of the total maximum reserve density was

arbitrarily chosen for the maximum C-rich reserve, while the rest

was used for the N-rich reserve. Additionally, we lowered certain

parameters to generate qualitatively realistic dynamics around

maturation and reproduction: maturation threshold for puberty,

the size of an individual at birth, and thus needed to lower the cost

of reproduction. We did this in part to ensure that we were more

closely matching reproduction yearly dynamics with field

observations of snowshoe hares (Snowshoe Hare Species Profile,

Alaska Department of Fish and Game, n.d.). We calculated the cost

of reproduction as the needed amount of C and N exactly to the size

of a newborn plus its precocial maturity level (which we kept the

same as the AMP Portal parameter) and reserves. For simplicity,

consumers were all born with these same traits and scaled reserve

density (0.9 for C-reserve and calculated ~0.86 for N-reserve).

Births occurred when an adult consumer’s reproduction buffer

reached the level of having a litter of 5. A full table of parameters

used is in Appendix B in Supplementary Material, and the code to

run the ABM is available in Appendix C in Supplementary Material.
5.5 Simulation experimental design

Within the model, N is cycled from resources to consumers

through ingestion, then to a soil pool through consumer release

(egestion and excretion), then back to the resources through uptake

(Figure 1). We aimed to have a closed N system, though it is not

necessarily realistic, so that we could ensure the model was

numerically stable and track how N is shifted in different biomass

throughout the simulation.

We used BehaviorSpace in NetLogo to perform these simulation

experiments. Each simulation ran for 1000 time steps (i.e., 1000

days), with 10 replicates per parameter set. Replicates were needed

to identify trends even among identical parameter sets, as

consumers’ movement and the initialization of resource

aggregation introduces stochasticity. Simulations ended early if no

consumers were alive. The selected outputs were collected at each

timestep from the simulations: total individuals as adults and

juveniles, total resource quantity, total soil N, total resource N,

and total consumer N, as well as the mean and variance of resource

C:N, resource quantity, consumer size, consumer scaled reserve
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densities, consumer reproduction and maturity. We removed 3

replicates from the full set of simulations, due to the simulation

becoming numerically unstable mid-run, potentially due to

hardware constraints.
5.6 Simulation results and discussion

Across all model simulations, hare populations exhibited rapid

population growth following model initialization, presumably

driven by initially high resource availability (Figure 5). However,

reproduction was slightly lower for hare populations that fed

randomly in the environment with homogeneous resource quality

(Figures 5A, B). Although adult hare numbers temporarily declined

after the initial reproductive surge, populations rebounded as

juvenile growth increased in all simulations (Figure 5C, D). While

population growth (adult count) was similar between scenarios with

homogenous and heterogenous resource quality, hare populations

that fed selectively on N-rich resource patches during periods of N-

limitation exhibited abundances ~2× higher than their randomly

feeding counterparts (Figures 5C, D).

While the heterogeneity of resource quality had only minor

effects on hare population dynamics, it had important influence on

N cycling and distribution by hare populations. Total resource

consumption was higher for selectively feeding populations which

exhibited greater abundances (Figures 5E, F) but was specifically

highest for selectively feeding populations in the homogenous

environment. Resource C:N ratios—reflecting resource quality—

rapidly increased following initial plant growth but returned to

baseline values following plant consumption during reproductive

surges. However, resource C:N ratios eventually increased from

starting values across simulations, reflecting an overall decline in

resource quality (Figures 5G, H). Interestingly, this was most

pronounced for selectively feeding populations, presumably due

to the fact that these hares were able to seek out and consume

N-rich resource patches.

Hare populations played an important role in generating

and maintaining heterogeneity in resource quality—represented by

the variance of N across the landscape (Figures 5I, J). Notably, hares

dramatically amplified N heterogeneity in the initially homogeneous

environment, and only marginally decreased N variance in the

starting heterogenous environment. These effects occurred

irrespective of feeding behaviors, suggesting a general importance

of N transport by hare populations. As hares traversed the

homogeneous environment, their waste and carcass deposition

generated new high-N patches, amplifying the contrast between N-

rich and N-poor areas. In contrast, within the heterogeneous

environment, hares redistributed N from initial hotspots—first

increasing heterogeneity by creating additional high-N patches but

ultimately reducing heterogeneity below initial levels as their

movement led to N deposition across the landscape (Figure 5I).

Ultimately, our model results suggest that the ability for hares to

seek out N-rich resources when faced with N limitation significantly

enhanced population fitness. While the initial heterogeneity of

resource quality had only modest effects on hare population
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FIGURE 5

Summary of ABM simulation results exploring the effects of resource (nitrogen) heterogeneity and consumer feeding behavior (random vs selective) on
population dynamics and nitrogen cycling. Each plotted line represents the mean value at each timestep from 10 replicate simulations and each ribbon
represents the mean ± standard error. Variation between replicates arises from the stochasticity in consumer movement and specific initial resource aggregation.
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dynamics, its interaction with hare behavior strongly influenced

patterns of N cycling. In general, hares reduced average resource

quality through N consumption and increased spatial heterogeneity

of resource quality. This case study thus also highlights the ability

for researchers to study importance of consumers in distributing

nutrients throughout the landscape.
6 Discussion and future directions

6.1 Model conclusions

We demonstrate how a multi-reserve DEBmodel within an ABM

framework can be used to simultaneously explore the dynamic

feedbacks among variable nutrient conditions, consumer traits, and

population structure. These processes occur while maintaining

physiological, spatial, and temporal specificity, akin to the

complexity of real ecological systems. By parameterizing the DEB

model using stoichiometric data and allowing for simulated

consumers to behaviorally respond to their internal state, this

approach provides a new integrative exploration of EST, NG, and

DEB concepts.While we recognize that the general model outputs are

highly dependent on the selection of parameter values (e.g., hare

structural shrinkage allowed, environment spatial structure) and

simplified ABM procedures (e.g., not allowing hares to remain in

one patch over multiple timesteps), our primary aim here is to

demonstrate how the model can help develop hypotheses about

how stoichiometric imbalance influences populations and

ecosystems. Furthermore, we believe it is most helpful to provide a

basic set of procedures and broad parameter manipulation abilities so

that other researchers can tune the model for different systems.

The results from our case study demonstrate the functionality of

the model yet only touch the surface of the model’s utility to

examine a broad range of questions across DEB, EST, and NG based

on real world scenarios. Many novel anthropogenic changes to

ecosystems, such as climate change, may affect consumer nutrition,

energetics, and behaviors simultaneously (Van De Waal et al., 2010;

Toseland et al., 2013; Diehl et al., 2022). Additionally, consumers

have concomitant impacts on ecosystem functioning, indicating the

importance of studying the impacts of anthropogenic change on

zoogeochemistry (Abraham et al., 2023). Theoretical models offer

valuable opportunities for understanding these challenges by

generating testable hypotheses and making novel predictions.

Such models are particularly useful when empirical data is

difficult to obtain due to time, spatial scale, or logistical

constraints. In cases where resources are limited, models can also

help identify which variables are most critical to measure.

Additionally, theoretical models allow for the exploration of

complex feedback mechanisms that may be challenging to detect

through experimental or observational approaches.
6.2 Key future model opportunities

Despite the intricacy and utility of our model, there remain many

limitations that also highlight key areas of future integration. First, our
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model currently only reflects a two-trophic system, with one

consumer population and a generalized primary producer

community. Expanding the model to include predators and a more

diverse consumer community would allow for a deeper understanding

of how biodiversity and trophic complexity alter and are influenced by

stoichiometric imbalances. For example, predator-prey interactions

have been shown to substantially affect consumer population

dynamics, movement and behavior, energetics, and nutrient cycling

within ecosystems (Denno and Fagan, 2003; Schmidt et al., 2012; Kohl

et al., 2015; Herzog et al., 2023). On the other hand, predator risk

affects the physiology of prey which may result in higher metabolic

rates as well as habitat shifts to fulfill their nutrient demands

(Guariento et al., 2018). For example, grasshoppers under high

predation risk increase requirements for energy from carbohydrates

affecting the C of their food source as well as their C:N release by

excretion (Schmitz et al., 2010). Additionally, while the model is

already capable of measuring how consumers influence spatial

availability of nutrients, it could be further developed to include

specific spatial statistics (e.g., spatial autocorrelation, such as

Morran’s I), an open-nutrient exchange landscape (e.g., nitrogen

fixation, as opposed to the closed-nitrogen environment currently

in the model), or environmental responses and feedbacks (e.g.,

primary productivity).

Second, our model currently only incorporates C:N ratios,

reflecting prominent trade-offs between C-rich carbohydrates

(energy) and N-rich proteins (nutrition). However, both the ABM

and DEB sub-model are capable of modelling other elemental

ratios, such as C:P, N:P, or micronutrients (i.e., Na, vitamins). For

example, the reciprocal relationship between ribosome allocation

and protein synthesis concurrently increases demands for P to

maintain demands for growth (Hessen, 2008). Additionally, other

micronutrients, such as Na, Ca, K, and Mg are gaining increasing

attention for their contribution to ecophysiology and ecosystem

functioning (Kaspari and Powers, 2016; Duvall et al., 2023). The

immense amounts of elemental stoichiometry data including

emerging data repositories, such as the STOICH database

(STOICH Database Home, n.d), may be used to examine how a

plethora of ecological outcomes differ under various simulated

stoichiometric imbalance scenarios.

Third, our model can be used to examine theoretical outcomes

under different behavioral scenarios and nutritional trade-offs,

informed by NG approaches. Although our case study focused on

consumer diet-switching responses, we developed the model so that

a user can select between diet-switching and compensatory

ingestion strategies. For example, shrimps can change their diet in

low-P streams from C-rich detritus to P-rich insects and periphyton

(Snyder et al., 2015), and many large vertebrates will constantly

select for N, P, and Na-rich plants and other materials under

nutrient stress (Duvall et al., 2023; Monk et al., 2024),. However,

a consumer may also elevate their feeding rates and compensate for

the insufficient food quality by higher food quantity (Jensen et al.,

2012; Suzuki-Ohno et al., 2012; Flores et al., 2014; Anderson et al.,

2020). In our ABM, users could compare the outcomes of

compensatory feeding versus diet-switching behavior. For

example, while diet switching may induce increased metabolic
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demands associated with food processing or increased movement,

compensatory feeding may induce metabolic consequences

associated with excess nutrient intake and processing. Adding

these additional behavioral strategies can be used to examine

which strategies are, in theory, more evolutionarily advantageous,

and how these advantages may differ under various stoichiometric

imbalance scenarios, especially those that play out in spatially

heterogeneous landscapes (e.g., high vs low spatial heterogeneity

of nutrients (Smith and Moore, 2003), high vs low N digestibility

(Weiser et al., 1997).
6.3 Model caveats and lessons learned
during design

Ecological systems are highly complex. Efforts to understand the

intricacy of ecological interactions have ranged from generalized

frameworks to complex ecological models. There are inherent

trade-offs in each approach: general frameworks provide an

intuitive way of describing nature, whereas complex models can

attempt to provide realistic predictions that elucidate the importance

of specific variables and mechanisms in ecological interactions (Sun

et al., 2016). We recognize that our model lies on the latter end of this

spectrum. Indeed, a general frustration with both ABMs and DEB

models is their complexity and the number of parameters and

individual-level processes included, creating compounding

uncertainty in model outcomes (An et al., 2021). Regardless, the

aim of this integrative model is to more accurately account for

multiple processes when assessing the scaling effects of elemental

imbalance—an outcome achievable only through increased model

complexity. Since we aimed to make our model as user-friendly as

possible to pull together researchers from different disciplines, we

have tried to provide detailed descriptions of how we arrived at

theoretical decisions, placed many important ABM parameters in the

NetLogo User Interface, and designed the ABM and DEB sub-model

to be mostly modular, such that researchers would be able to use the

DEB model without needing to also use the ABM. Future research

should compare our model outcomes with simpler models of DEB,

EST, and NG to ascertain whether individual frameworks alone fail to

produce the outcomes of the ABM as hypothesized.

The quality of model outcomes is also determined by the

respective quality of empirical data needed for parameterization,

particularly when trying to replicate real ecological systems. It is

important that one must know enough about the biology of the

organism to generate reasonable relationships between the

parameters of two focal nutrients, or instead, have a tractable

model system to collect enough of these parameters experimentally

(e.g., Daphnia). DEB parameters can be estimated from empirical

data (van der Meer, 2006), but are also available in a large database,

Add-My-Pet portal (Marques et al., 2018). Users can install packages

for downloading entries in the portal and work with their data

through Matlab, R, and other programs. While many basic

parameters can be extracted from the DEB Add-My-Pet portal for
Frontiers in Ecology and Evolution 15
DEB models, it is still likely that one of the above strategies for

parameter selection will need to be employed. Additionally, as more

reserves, structures, and/or ontogenetic stages are added to the DEB

model, the parameters increase, so parsimony in model design is

needed for tractable calculations. Beyond consumer parameters, it

can also be difficult to acquire sufficient environmental data for

modeling abiotic and biotic nutrient cycling processes. For example, a

challenge we faced in setting up our case study was determining the

rates of nitrogen incorporation into soils and uptake by plants, for

which data is lacking and can be highly context-dependent.

Furthermore, users will need to appropriately tune the spatial and

temporal scale of the model to match their respective system, as this

will have important impacts on individual-level processes and their

emergent effects as populations and communities. For example, in

our case study, we use ‘days’ as a time unit based on the specific DEB

parameters we chose, yet the ideal timescale will depend on focal

systems, organisms, and questions.
6.4 Concluding remarks

In our model, consumers actively shape their environment by

altering the distribution of elements and resources through space

and time. A key advantage of the agent-based modeling (ABM)

approach is its ability to simultaneously quantify the interactions

between consumers and their environment. Variations in resource

quantity and quality driven by organisms can significantly influence

broader ecosystem functions, such as primary productivity, plant

community composition, and biodiversity. These changes can

create greater variability in the resources encountered at the

individual level, generating long-term feedbacks that affect

consumer populations.

Measuring the impacts of consumers on environmental

heterogeneity is often challenging or even impossible in the real

world at proper scale. For example, predicting consumer impacts on

nutrient cycling must account for discernment between different

nutrient release pathways (e.g., excrement, egestion, carcass

deposition) including their variable rates and quantities. These

measurements are largely unobtainable using field or observation

methods, and thus, the ABM approach can provide a step towards a

more realistic and holistic perspective on how consumers

contribute to the heterogeneity of their environments, with

bottom-up effects on ecosystem structure and function (e.g.,

primary productivity, habitat, biodiversity).

Ultimately, the integrative approach of our model presents new

opportunities to explore concepts from EST, NG, and DEB, as well

as other frameworks. The future directions we present here are only

a selection of possibilities and opportunities. Continuation of model

development by other users will ensure that modules are refined for

specific landscapes (e.g., aquatic habitats), and how the wealth of

stoichiometric, nutritional, and ecological data collected by our

community can be combined to inform understanding and future

study designs.
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