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Introduction

Fourteen morphologically diverse small American mesocarnivores form the family

Procyonidae, one of the sixteen comprising the mammalian order Carnivora (Helgen et al.,

2013). Procyonids fall within the suborder Caniformia, infraorder Arctoidea, superclass

Musteloidea; the latter also includes families Mephitidae (skunks and stink badgers),

Ailuridae (red pandas), and Mustelidae (badgers, martens, weasels, and otters) (Hassanin

et al., 2021; Wozencraft, 2005). The best-known procyonids are the charismatic food-

washing masked bandits, the raccoons (genus Procyon). Other procyonids, however,

include the solitary, monochromatic, arboreal olingos (genus Bassaricyon); the ringtail

and cacomistle, nocturnal, opportunistic omnivores with striking black-and-white ringed

tails (genus Bassariscus); the social, ground-dwelling coatis (genus Nasua) and mountain

coatis (genus Nasuella); and the arboreal kinkajou (genus Potos) (Hunter and Barrett,

2018). According to the IUCN Red List of Threatened Species, Procyon pygmaeus and
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Nasuella meridensis are Critically Endangered and Endangered,

respectively (Cuarón et al., 2016; Gonzalez-Maya and Arias-

Alzate, 2016), while Bassaricyon neblina and Nasuella olivacea are

categorized as Near Threatened (Gonzalez-Maya et al., 2016;

Helgen et al., 2020). The other 10 species of procyonids are

categorized as Least Concern, but except for the northern

raccoon, these species’ population sizes are trending downward,

raising concern for their long-term conservation.

During the last two decades, studies based on DNA sequences

have clarified the systematics of the Procyonidae, revealing a pattern

of evolutionary relationships at odds with expectations based on

morphological characters (Koepfli et al., 2007). DNA-based studies

consistently support a topology that groups Bassaricyon, Nasua,

andNasuella in one clade, Bassariscus and Procyon in another clade,

and Potos as a distinct basal lineage, although morphology would

suggest groupings of Bassaricyon + Potos and Nasua + Procyon

(Eizirik et al., 2010; Hassanin et al., 2021; Koepfli et al., 2007; Law

et al., 2018). The procyonids continue to undergo taxonomic

revision, including the discovery of the olinguito (Bassaricyon

neblina) in 2013, uncertainty about the species status of the coati

found on Cozumel Island, Mexico (Jaramillo and Ruiz-Garcıá,

2022; Valenzuela-Galván et al., 2023), and repeated calls to

synonymize the genera Nasua and Nasuella (Helgen et al., 2013;

Jaramillo and Ruiz-Garcıá, 2022; Nigenda-Morales et al., 2019;

Ruiz-Garcıá et al., 2021). Thus, more attention to evaluating

phylogenetic relationships within this complex clade is appropriate.

Phylogenetic relationships can be elucidated relatively quickly

using mitochondrial DNA, or mtDNA. mtDNA is haploid,

considerably smaller than nuclear genomes, and exhibits a high rate

of DNA substitution, making it a good benchmark for inferring

phylogenetic relationships among and within species (Moritz et al.,

1987). Though partial or complete sequences from individual

mitochondrial genes are sometimes used for phylogenetic inference,

whole mitochondrial genomes, or mitogenomes, are considered more

informative (Boore et al., 2005). Due to their high copy number in the

mitochondria of cells, mitogenomes can be assembled relatively easily

and inexpensively from low coverage (≤5x) high-throughput

sequencing data, an approach known as genome skimming (Hoban

et al., 2022; Trevisan et al., 2019). This approach is growing in

popularity for resolving systematic relationships (e.g., Quattrini et al.,

2024; Taite et al., 2023). To date, complete mitogenomes of only four

procyonid species have been deposited into NCBI’s GenBank database:

northern raccoon, Procyon lotor (AB297804, AB291073, CM027276,

MT410951); northern olingo, Bassaricyon gabbii (ON704723); South

American coati, Nasua nasua (HM106331); and kinkajou, Potos flavus

(MW257234). Complete mitogenomes of species such as white-nosed

coati (Nasua narica) and western mountain coati (Nasuella olivacea)

have, however, been reported in several studies but not deposited into

public sequence databases (Hassanin et al., 2021; Jaramillo and Ruiz-

Garcıá, 2022; Tsuchiya, 2017).

To address this paucity of publicly available procyonid

mitogenomes, we report new annotated mitochondrial genome

assemblies generated with genome skimming for the following

species: eastern lowland olingo (Bassaricyon alleni), ringtail

(Bassariscus astutus), white-nosed coati (Nasua narica), and crab-

eating raccoon (Procyon cancrivorus). We also assembled and
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annotated complete mitogenomes of the olinguito (Bassaricyon

neblina) and the little-known cacomistle (Bassariscus sumichrasti)

using short-read sequencing data generated by Hawkins et al.

(2016). These mitogenomes were used to develop an updated

phylogeny, which was supplemented by a broader phylogenetic

analysis of just the cytochrome b gene. Using the newly annotated

complete mitogenomes, we were also able to infer sequence

distances and codon usage bias in relation to previously available

mitogenomes of procyonid species.
Materials and methods

Frozen tissue samples used to generate the new mitogenomes

reported in this study were obtained from vouchered specimens

deposited at the Museum of Southwestern Biology, University of

New Mexico, New Mexico, USA (Nasua narica, Procyon

cancrivorus) and the Museum of Vertebrate Zoology, University of

California, Berkeley, California, USA (Bassaricyon alleni, Bassariscus

astutus). Details about the sampled specimens, including their

geographic origin, are found in Supplementary Table S1.

DNA extraction, library preparation, and sequencing were

conducted at Psomagen, Inc. (Rockville, MD). The Mag-Bind

Blood and Tissue Kit (Omega Bio-Tek Inc., Norcross, GA) was

used for genomic DNA extraction, after which concentration was

estimated with the Picogreen and Victor X2 fluorometry assay (Life

Technologies, Carlsbad, CA) and quality was checked with an Agilent

4200 Tapestation (Agilent Technologies, Santa Clara, CA) and 1%

agarose gel electrophoresis. A Covaris S220 ultrasonicator (Woburn,

MA) was used to shear genomic DNA; fragments of ~350bp were

enriched, and the TruSeq DNA PCR-free library kit (Illumina, San

Diego, CA) was used to prepare a genomic library for each sample.

Libraries were quality checked using an Agilent 4200 Tapestation and

a Lightcycler quantitative PCR assay (Roche Life Science, St. Louis,

MO). An Illumina NovaSeq 6000 instrument was used to paired-end

sequence (2 x 150 bp) each library to a depth of 5x.

The FASTQ files from Bassaricyon alleni, Nasua narica,

Procyon cancrivorus, Bassaricyon neblina (SRR2103277), and

Bassariscus sumichrasti (SRR2104917) were trimmed with

AdapterRemoval (Lindgreen, 2012) using default settings. The

mitogenomes were assembled with GetOrganelle v1.7.7.1 (Jin

et al., 2020) using the following parameter settings: 10 extending

rounds, the `animal_mt` reference database, SPAdes assembler

(Prjibelski et al., 2020), k-mer values 21, 45, 65, 85, and 105, and

automatic word size estimation. Bassaricyon neblina and

Bassariscus sumichrasti were assembled with seed sequence

Bassaricyon gabbii (ON704723) and Procyon lotor (AB291073),

respectively. Reads from Bassariscus astutus were cleaned

with fastp v0.22.0 `detect_adapter_for_pe -l 30 -q 20 –

overrepresentation_analysis` (Chen, 2023) and assembled with

GetOrganelle v1.7.7.1, using k-mer values 21, 55, 85, and 115 and

seed sequences Procyon lotor (NC_009126.1), Potos flavus

(NC_053977.1, CM027365.1), Bassaricyon gabbii (NC_066722.1),

and Nasua nasua (HM106331.1). All mitogenomes were annotated

with MITOS2 (Donath et al., 2019) using the RefSeq 89 Metazoa

database and genetic code 2.
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The six mitogenomes assembled were aligned with four

previously published procyonid mitogenomes downloaded from the

NCBI GenBank database: ON704723 (Bassaricyon gabbii), AB291073

(Procyon lotor), HM106331 (Nasua nasua), and MW257234 (Potos

flavus). For outgroups, we included one species from Mephitidae,

Mephitis mephitis (HM106332), one species from Ailuridae, Ailurus

fulgens (MK886830), and two species from Mustelidae, Mellivora

capensis (MW257239) and Lutra lutra (MW573979), for a total

alignment of 14 mitogenomes from distinct species. We aligned

these sequences using the MAFFT v7.450 plugin in Geneious

Prime 2023.1.1 with default settings: algorithm “Auto”, scoring

matrix PAM200 with k = 2, gap open penalty = 1.53, and offset

value = 0.123 (Katoh and Standley, 2013). The control region was

trimmed due to poor alignment within the tandem repeat regions,

resulting in a final alignment length of 15,541bp, which included

sequences of 13 protein-coding genes (PCGs), 2 rRNAs and 22

tRNAs. We constructed a maximum-likelihood phylogeny with the

RAxML version 8.2.11 (Stamatakis, 2014) plugin in Geneious Prime

2023.1.1 using the rapid hill-climbing algorithm, applying 1000

bootstrap replicates to evaluate node support. For both analyses, we

used the GTR+GAMMA nucleotide substitution model, as this is one

of the four applicable models in RAxML, and because our alignment

contains a relatively small number of taxa, such that the alpha

parameter of the gamma distribution sufficiently accounts for

among-site rate heterogeneity (Yang, 2006).

We also constructed a Bayesian phylogeny using the MrBayes

3.2.6 (Huelsenbeck and Ronquist, 2001) plugin in Geneious Prime

2024.0.7 with default settings (chain length = 107, subsampling

frequency = 103, heated chains = 4, heated chain temperature = 0.2,

burn-in length = 103), the GTR+GAMMA substitution model, and

designating Ailurus fulgens as the outgroup in the full

mitogenome alignment.

To incorporate a more complete taxon set, we generated an

additional phylogeny using only sequences of the cytochrome b

(CYTB) gene. We extracted these sequences from all the complete

mitogenomes used in our initial phylogeny except for A. fulgens and

M. mephitis, which were removed to prevent error from long branch

attraction. Additionally, we downloaded 25 CYTB sequences from

GenBank, representing all procyonid species in our complete

mitogenome phylogeny as well as Nasuella olivacea, Bassaricyon

medius, and Bassaricyon beddardi, which has now been synonymized

with Bassaricyon alleni (Helgen et al., 2013). Ultimately, our sample

set for this analysis included one sample each for two outgroup

species (M. capensis and L. lutra), B. neblina, B. neblina neblina, B.

beddardi, two samples each for B. astutus, B. sumichrasti, N. olivacea,

B. gabbii, B. alleni, and B. medius medius, three samples each for P.

cancrivorus, P. lotor, N. narica, and N. nasua, and four samples each

for P. flavus and B. medius orinomus, for a total of 37 sequences. We

aligned these sequences using the same methods as the complete

mitogenome and trimmed the resulting alignment to 1,140 bp. We

then used the same RAxML andMrBayes settings as described above

for the mitogenome alignment, including the GTR+GAMMA

substitution model, to generate maximum-likelihood and Bayesian

inference phylogenies from this alignment and evaluated node

support with 1000 bootstrap replicates (RAxML) and posterior

probabilities (MrBayes).
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We estimated the absolute number of pairwise differences (p-

distances) between procyonid taxa in the trimmed mitogenome

alignment with MEGA 11.0.10 (Tamura et al., 2021) using the

following settings: Variance Estimation Method: None,

Substitutions Type: Nucleotide, Model/Method: No. of differences,

Substitutions to Include: d: Transitions + Transversions, Rates

among Sites: Uniform Rates, Pattern among Lineages: Same

(Homogeneous), Gaps/Missing Data Treatment: Pairwise

deletion. We repeated the analysis with a Kimura two-parameter

model (Kimura, 1980), which accounts for different substitution

rates between transitions and transversions. Settings were identical

to those described above, except the Model/Method setting was

changed to “Kimura 2-parameter model.”

To test for differences in codon usage in the 13 PCGs, protein-

coding sequences from each procyonid mitogenome (except

Bassariscus sumichrasti, which was done by hand due to technical

difficulties) were concatenated with a homemade Python script,

which is available upon request. Each concatenated sequence was

analyzed with the Codon Usage calculator in the Sequence

Manipulation Suite (Stothard, 2000) under the vertebrate

mitochondrial genetic code.
Data description

We assembled and annotated full mitogenomes for six procyonid

species: Eastern lowland olingo (Bassaricyon alleni), olinguito

(Bassaricyon neblina), ringtail (Bassariscus astutus), cacomistle

(Bassariscus sumichrasti), white-nosed coati (Nasua narica), and

crab-eating raccoon (Procyon cancrivorus) (Figure 1). The coverage

and lengths of the mitogenomes varied between 627 – 6758.1x and

16,486 – 16,653 bp, respectively (Supplementary Table S1). These

lengths were consistent with those of previously published procyonid

mitogenomes, which range from 16,388 – 16,600 bp. Eachmitogenome

contained the standard set of vertebrate mitochondrial genes, with 13

protein-coding genes, 22 tRNAs, 2 rRNAs, two origins of replication,

and a control region, arranged in the order typical for therian

mammals (Kocher et al., 1989).

Maximum-likelihood and Bayesian inference phylogenetic

analysis of the 15,541 bp alignment yielded a tree in which

Bassaricyon and Nasua, the olingos and coatis, formed one clade,

while Bassariscus and Procyon, the ringtail, cacomistle, and

raccoons, formed a second clade (Figure 2A and Supplementary

Figure S1). The kinkajou (Potos flavus) was basal to these groupings.

All labeled nodes had a bootstrap and posterior probability support

of 100% and 1.0, respectively. This phylogeny is generally

concordant with the relationships inferred in previous studies

using partitioned supermatrices of mitochondrial and nuclear

DNA sequences (Koepfli et al., 2007; Eizirik et al., 2010; Helgen

et al., 2013; Law et al., 2018). The same groupings appear in the

maximum likelihood and Bayesian inference CYTB trees (Figure 2B

and Supplementary Figure S2), with two major exceptions. First, the

kinkajou clade is positioned as the sister lineage to the clade

containing the coatis and olingos (Nasua, Nasuella, and

Bassaricyon) rather than basal to the raccoon+ringtail+cacomistle

and coati+olingo clades. However, this deep node only had a 59%
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bootstrap and 0.89 posterior probability support, respectively.

Second, the two species of Bassariscus are paraphyletic, with the

cacomistle sister to the clade containing the two species of Procyon.

The node uniting B. sumichrasti with P. cancrivorus+P. lotor had a
Frontiers in Ecology and Evolution 04
bootstrap support of 42% and a posterior probability support of

0.51, suggesting this grouping is unstable.

The sole deviation from previous phylogenies in the complete

mitogenome tree is the placement of Bassaricyon neblina. In Helgen
FIGURE 1

The six newly generated mitogenomes: (A) Bassaricyon alleni; (B) Bassaricyon neblina; (C) Bassariscus sumichrasti; (D) Bassariscus astutus; (E) Nasua
narica; (F) Procyon cancrivorus. Black outer rings show the relative nucleotide position of each gene in the mitogenomes. Inner rings are colored
according to the annotated features: protein-coding genes (green), ribosomal RNAs (red), transfer RNAs (pink), control region (orange), light strand
and heavy strand origins of replication (blue). Arrowed bars indicate transcription on either the plus strand (clockwise arrows) or minus strand
(counterclockwise arrows). Source: (A) Photo 37986455 copyright MaoMorning Yip (https://www.inaturalist.org/photos/37986455), licensed under
CC BY-NC; (B) Olinguito (Bassaricyon neblina) copyright blackdogto (https://www.inaturalist.org/observations/92111781), licensed under CC BY-NC;
(C) Southern California Ringtail (Bassariscus astutus ssp. Octavus) copyright a-geoman (https://www.inaturalist.org/observations/149483825),
licensed under CC BY-NC; (D) Cacomistle (Bassariscus sumichrasti) copyright jensanford (https://www.inaturalist.org/observations/154347289),
licensed under CC BY-NC; (E) Photo 346763147 by Zygy (https://www.inaturalist.org/photos/346763147), public domain; (F) Crab-eating Raccoon
(Procyon cancrivorus) copyright atdahl (https://www.inaturalist.org/observations/196664383), licensed under CC BY-NC.
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et al. (2013), based on a combination of the complete cytochrome b

(CYTB) gene and a nuclear intron of the CHRNA1 gene, B. neblina

was placed basal to all other olingo species, while our phylogeny

places B. neblina sister to B. gabbii, with B. alleni basal to both.

Moreover, based on Kimura 2-Parameter distances among the

CYTB sequences, B. neblina showed a 9-11% sequence divergence

from other olingo taxa in Helgen et al., 2013. The sequence

divergence, however, between the B. neblina mitogenome

assembled in this study and the B. gabbii assembled by Winter

et al. (2023) is only 0.966%, while B. alleni’s p-distances from B.

neblina and B. gabbii are 7.44% and 7.37%, respectively.

Thus, our results strongly suggest that the mitogenome of B.

gabbii reported by Winter et al. (2023) instead likely represents B.

neblina. Our CYTB tree supports this assertion: this B. gabbii

(ON704723) groups with our assembled B. neblina sequence

(PQ424047) and with EF107709, another B. neblina CYTB sequence
Frontiers in Ecology and Evolution 05
(Figure 2B and Supplementary Figure SX). These three are basal to all

other olingos, including JX948744, a taxonomically verified B. gabbii

sequence that occupies its own branch, separate from ON704723. The

B. gabbii mitogenome from Winter et al. (2023) was derived from a

cell culture with no information about the origin or source of the

culture. This misidentification emphasizes the importance of reference

genome resources being tied to vouchered specimens that have been

taxonomically verified (Buckner et al., 2021).

In addition, the CYTB gene tree includes a sequence downloaded

from GenBank (KX756273) and identified as Bassaricyon beddardi in

Nascimento et al. (2017), which is nested among two B. alleni

sequences, including the one from which we assembled the complete

mitogenome (PP990717). However, Helgen et al. (2013) concluded that

B. beddardi should be regarded as a synonym of B. alleni, based on the

limited molecular and morphological differences between these taxa.

Therefore, according to our data, B. alleni is a monophyletic species.
FIGURE 2

Phylogenetic trees generated with RAxML. (A) tree based on whole mitogenome alignment (15,541 bp), with 10 procyonid species and 4 outgroups;
(B) tree based on cytochrome b gene (1140 bp), with 12 procyonid species and 2 outgroups. Note the placement of Bassaricyon gabbii (ON704723)
in a clade containing two sequences of Bassaricyon neblina obtained from vouchered museum specimens in the cytochrome b tree. Newly
generated mitogenomes (or CYTB genes from new mitogenomes) are indicated in bold.
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Intergeneric Kimura 2-Parameter distances between whole

mitogenomes averaged 18.5%, ranging from 12.9% (B. sumichrasti

versus P. cancrivorus) to 20.6% (N. narica versus P. flavus) – 1785 to

2708 base pairs different (Supplementary Table S3). Intrageneric

distances range from 7.37-13.6%, averaging 9.7%. The highest

intrageneric distance was observed between the two Nasua species

at 13.6% (1864 base pairs different), while the lowest was found

between Bassaricyon alleni and B. gabbii, at 7.37% (1064 base

pairs different).

The codon usage results show a significant bias in favor of

codons ending with pyrimidines (Supplementary Table S4), which

is common among mammalian mitogenomes (Jia and Higgs, 2008).

Although the preferred codon of a synonymous set is usually the

same across the family, the magnitude of this preference varies

considerably even within genera. For example, both Nasua narica

and Nasua nasua prefer TGC for cysteine, but N. nasua uses this

codon 75% of the time, while N. narica uses it only 58% of the time.

N. narica consistently shows the least extreme bias, while B. neblina

and B. gabbii frequently show the most extreme bias. These latter

two mitogenomes have a highly similar codon usage profile, with an

average difference of 0.6% between them. Bassaricyon spp. codon

bias is 7-8% different from any other genus, while the other genera,

regardless of phylogenetic distance, differ from each other by 4-6%.

B. sumichrasti codon bias seems more closely correlated with that of

P. cancrivorus than that of B. astutus: P. cancrivorus and B.

sumichrasti have on average 2.8% difference in codon usage, while

B. astutus and B. sumichrasti have on average 3.9% difference. These

results show that similarities or differences in codon use bias do not

correlate overall with species relatedness.

Our findings add context to prior knowledge of the evolutionary

history of Procyonidae in the Americas and reveal the contribution

of mitochondrial genomes in elucidating the relationships among

species in this family. For instance, prior work that relied on

morphological (teeth) and ecological (habitat type) data to

separate these species suggested phylogenies that grouped

Bassaricyon with Potos (both arboreal species that largely

consume fruit) and grouped Bassariscus with a subclade

containing both Nasua and Procyon (both omnivorous and

terrestrial species) (Baskin, 2004; Decker and Wozencraft, 1991).

These groupings are also reflective of coat patterns, as the latter

group often demonstrates distinctive facial and tail markings not

observed in the former (Koepfli et al., 2007). However, more recent

research that used both partial mitogenomes and segments of

nuclear genomes suggests that the phylogeny of the Procyonidae

more closely resembles the topology we present in Figure 2A

(Eizirik et al., 2010; Koepfli et al., 2007; Law et al., 2018) and does

not agree with expected relationships based on morphology. In fact,

the topologies based on DNA sequence data consistently suggest

that Potos was the first species to diverge whereas the

morphologically dissimilar taxa Bassaricyon + Nasua and

Bassariscus + Procyon each comprise separate clades. This result

indicates that classification via ecology and morphology should be

supplemented by genetic studies. This information not only

confirms evolutionary relationships but also helps detect

phylogenetic errors that may arise from poor selection of

morphological traits on which to base classifications.
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Our dataset more than doubles the mitogenome resources

available for the Procyonidae. Although two of the six mitogenomes

we assembled have been previously reported, this study is the first to

make this data publicly available. Our mitogenome analysis includes

all procyonid genera except Nasuella, the mountain coatis. Recent

papers, however, show that the genus Nasuella phylogenetically nests

within Nasua (Helgen et al., 2009; Jaramillo and Ruiz-Garcıá, 2022;

Nigenda-Morales et al., 2019; Ruiz-Garcıá et al., 2021), suggesting that

Nasuella should be synonymized with Nasua. Since ON704723

appears to come from an olinguito, five species without full

mitogenomes remain: the northern olingo (Bassaricyon gabbii), the

western lowland olingo (Bassaricyon medius), the eastern mountain

coati (Nasuella meridiensis), the western mountain coati (Nasuella

olivacea), and the critically endangered pygmy raccoon (Procyon

pygmaeus) (Cuarón et al., 2016). Although this dataset deepens our

understanding of this understudied family and provides additional

tools for taxonomy and conservation, creating a family-wide

mitogenome dataset would improve our understanding of

evolutionary innovations across procyonids.
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