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Introduction: This study was undertaken to explore the applicability of portable

X-ray fluorescence (pXRF) technology in combating the illegal wildlife trade,

specifically focusing on Australia’s Tiliqua species. The research aimed to develop

models that could effectively identify species, distinguish between captive-bred

and wild individuals, and predict geographic provenance. The hypothesis was

that pXRF could achieve high accuracy in species identification and

classifications, thereby providing a useful tool for wildlife enforcement efforts.

Methods: The study was conducted using pXRF technology to analyze a range of

Tiliqua specimens, including shingleback (T. rugosa) and common blue-tongue

(T. scinoides) lizards. Specimens were collected and analyzed in various states—

live, dead, and as animal parts. Species specific XGBoost models were developed

and tested for accuracy in identifying species and distinguishing between captive

and wild individuals. Geographic provenance models were also created, utilizing

predictor variables such as soil nutrient groups and hydrological basins to

evaluate model performance.

Results: The study found that species-specific models could identify shingleback

and common blue-tongue lizards with an accuracy of 70%. Additionally, the

models distinguished captive-bred from wild individuals with up to 81% accuracy

for blue-tongue lizards and 83% for shinglebacks. Geographic provenance

models demonstrated variable performance, achieving up to 83% accuracy but

indicating the need for further refinement and more intensive sampling to

improve model resolution.

Discussion: The results imply that pXRF technology has significant potential as a

tool for wildlife enforcement, providing valuable information for species

identification and the classification of individuals as captive or wild. This finding

is consistent with prior research highlighting the utility of elemental profiling in

wildlife conservation. The study also identifies a critical knowledge gap regarding

the impact of captivity duration on elemental profiles, suggesting that future
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research should focus on refining geographic models and understanding the

dynamics of elemental changes over time in captive versus wild specimens.

Overall, the integration of pXRF into wildlife enforcement protocols represents a

cost-effective and rapid approach to combatting illegal wildlife trade.
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Introduction

The illegal wildlife trade (IWT) poses a significant threat to

wildlife globally, contributing to biodiversity loss (Fernandes-

Ferreira et al., 2011; Bush et al., 2014), spread of disease (Karesh

et al., 2005; Bezerra-Santos et al., 2021), movement of animals

beyond their natural ranges (Garcı ́a-Dıáz et al., 2016), and

extinction (Mandimbihasina et al., 2018). The IWT includes the

sale of plants and animals, and their parts for a range of markets

including traditional foods and medicines (Lee et al., 2020), textiles

(Tapper and Reynolds, 1996), and pets (Siriwat and Nijman, 2018).

The IWT is amongst the largest criminal activities in the world,

valued at up to USD 20 billion per year in illegal wildlife products

(Tow et al., 2021; INTERPOL, 2023).

The selling of animals for pets is one component of the IWT

that involves live animals as opposed to animal products, e.g. furs,

horns, medicines. The illegal live animal trade includes a range of

associated concerns, including significant animal welfare issues

(Baker et al., 2013), challenges in rehoming and post-seizure care

(Bernstein and Wolf, 2005), accurate species identification (Tlusty

et al., 2023) and opportunities for repatriation (Destro et al., 2019).

Knowing where an animal has come from, its geographic

provenance, has been identified as one of three key dimensions of

the IWT (Roberts and Hinsley, 2020). When a species has a high

level of endemism, particularly at the national level, knowledge of

geographic provenance allows for the appropriate application of

legislation that governs the wild populations (Roberts and Hinsley,

2020). Knowledge of geographic provenance also assists in the

repatriation of seized animals (Gaur et al., 2005), directs targeted

education and conservation actions (Kahler and Gore, 2012; Farine,

2020), and targeted enforcement (Patel et al., 2015).

The determination of geographic provenance can be achieved

using a range of methods including DNA (Ogden and Linacre,

2015; Summerell et al., 2019), species identification for highly

endemic species, stable isotopes (Hobson, 1999; Brandis et al.,

2018), and x-ray fluorescence (Buddhachat et al., 2016b; Brandis

et al., 2023). Previous geographic provenance research used keratin

tissue samples, e.g., quills, feathers, scales, and scutes, to

demonstrate that elemental data (e.g., Fe. Pb, Ca, Mg, K etc),

including stable isotopes (13C and 15N) (Hobson and Wassenaar,

2008) contained in the keratin reflects the geographic location and

environment in which the animal grew that tissue (Buddhachat
02
et al., 2016a; Nganvongpanit et al., 2016; Brandis et al., 2021). These

findings have significant application to the illegal wildlife trade

where animals are frequently taken from the wild and either

laundered i.e., presented as captive-bred (Lyons and Natusch,

2011) or traded on the black market (Zimmerman, 2003).

Australia is predominantly an exporter of animals for the IWT

(Bezerra-Santos et al., 2021; Toomes et al., 2023). This is driven by the

demand for Australian endemic reptiles and birds (Hill et al., 2023;

Chekunov et al., 2024) for the exotic pet trade (Alacs and Georges,

2008; Bezerra-Santos et al., 2021; Linacre, 2021), as ~89% of

Australian reptiles are found no-where else in the world, making

them highly desirable (Chekunov et al., 2024). There is also a large

domestic market for wildlife, a study by Toomes et al. (2023) found

over 100,000 live animals advertised for sale within a 15-month period

(Dec. 2019-March 2020) including both endemic and non-endemic

species. In many cases it is challenging to distinguish between legally

bred animals and poached wild animals (Brandis et al., 2018). While

the captive breeding of many species is legal (under license) (Heinrich

et al., 2021), some species are illegally taken from the wild.

This project aimed to develop i) species classification models, ii)

captive-wild classification models, and iii) geographic provenance

models for the highly traded Tiliqua species, including the

shingleback (T. rugosa) and blue-tongue lizards (T. scincoides).

These species are highly sought after in the pet trade due to their

unique appearances and endemism to Australia. We aimed to

provide these models and methods to enforcement agencies

allowing them to scientifically judge the provenance of specimens

passing through airports and postal systems.
Methods

Study species

There are eight extant species of the Tiliqua genus. This study

focuses on four species common in Australia, T. rugosa, T. scinoides,

(including T. scinoides intermedia), T. occipitalis and T. multifasciata.

Shingleback (T. rugosa) and blue-tongue lizards (T. scinoides, T.

occipitalis, T. multifasicata) are found primarily in Australia

(Figure 1) and parts of New Guinea. The shingleback lizard, also

known as the two-headed, bob-tailed, and sleepy lizard is endemic to

Australia and found across a diverse range of habitat types, including
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arid and semi-arid regions, woodlands, scrublands, and heathlands.

Shingleback lizards are easily recognizable due to their unique

appearance. Their bodies are characterized by large, overlapping

scales that resemble shingles, providing protection against predators

and environmental conditions. Shinglebacks are herbivorous

omnivores with a primarily plant-based diet. They consume a

variety of vegetation, including fruits, leaves, flowers, and fungi.

Shinglebacks form monogamous pairs that can be long lasting

(Bull et al., 1998). This aspect of their ecology can make captive

breeding challenging as pair bonds need to form prior to reproducing,

which may not necessarily occur (Heinrich et al., 2021). Shingleback

lizards exhibit relatively low reproductive rates compared to other

lizard species. They typically produce only one or two offspring per

year (Bull et al., 1998). While not currently listed as endangered, the

shingleback lizard faces threats due to habitat loss, road mortality, and

the illegal pet trade. They are amongst the most illegally traded reptile

species out of Australia. A study by Heinrich et al. (2021) identified

236 illegally traded shingleback lizards seized by authorities from

Western Australia between 2011-2019.

Blue-tongue lizards are a large skink (up to 60cm) with a

distinctive blue-tongue. There are five Australian species and two

sub-species, T. scincoides scincoides, eastern blue-tongued skink, and

T. scincoides intermedia, northern blue-tongued skink. Blue-tongue

lizard distributions overlap with that of shinglebacks and they are

frequently encountered in the same habitats (Figure 1). They are also

a target for the illegal pet trade due to their unusual blue-tongues

(Mancera et al., 2014). Toomes et al. (2023) reported 1076 T. scinoides

listed for sale over a 14-week period in 2019-2020. Unlike the

shingleback they have large litters and do not exhibit pair bond

behaviors (Shea 1992), making them easier to breed in captivity.
Animal sampling

To acquire data that was representative of both captive and wild

shinglebacks we sourced animals from a range of geographic locations

and organizations. Captive animals were sourced from zoos, wildlife
Frontiers in Ecology and Evolution 03
hospitals and private collections, while wild animals were located in

the wild at identified shingleback habitat (expert knowledge, (Atlas of

Living Australia, ). Animal location was recorded for each individual.

Animals with unknown location included animals presented for

veterinary care at wildlife hospitals and road-kill specimens

contributed by other organizations where origin was not recorded.

Species identification was based on lizard morphology.

Shingleback and blue-tongue lizards are very visually distinct and

could be confidently identified. Blue-tongue species identification

was undertaken by trained reptile experts based on morphology.

Animal condition, hereafter referred to as sample state, was

classified into three categories. ‘Natural’, this included alive and

recently deceased animals (e.g. roadkill), ‘thawed’, specimens that

had been frozen and thawed prior to scanning, and ‘dried’, roadkill

specimens that had naturally dried.
pXRF data acquisition

An Olympus Vanta M-Series portable x-ray fluorescence

(pXRF) device (4-watt X-ray tube with tungsten (W) anode, 8-

50keV, silicon drift detector), with three beam energies (10, 40, and

50keV) was used to scan all specimens. The Vanta pXRF provides

elemental concentrations as a percentage for 42 elements calculated

via Olympus’ on-board algorithm. The Vanta has an on-board

CalCheck tool to verify and maintain accuracy, this was used

periodically during sampling to ensure the device remained

calibrated. Extensive methods testing was undertaken to

determine the optimal scanning methods (Brandis et al., 2024).

Lizards were scanned at the base of the tail where it meets the

body, just below the back leg hip joints of the lizard (Figure 2a). This

scanning location was easy to consistently locate across all

individuals and provided a thick cross section of tissue for x-ray

attenuation. To ensure all x-rays were attenuated and there was no

scanning of surfaces underneath the lizard we placed the lizard on a

custom-made scanning stage with a silica cylinder block place

under the tail (Figure 2b) (Brandis et al., 2024).
FIGURE 1

Distribution maps of (A) western blue-tongue (T. occipitalis) and common/Eastern blue-tongue (T. scincoides including the overlapping ranges of T.
scincoides scincoides and T. scincoides intermedia), and (B) shingleback (T. rugosa) and Centralian blue-tongue (T. multifasciata). Data source: Atlas
of Living Australia.
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Scans were conducted for a total duration of 60 seconds, which

equates to 20 seconds per energy level beam. This is the minimum

scan time for each beam and has been chosen to limit radiation

exposure while maximizing data collection. This exposure time falls

below accepted radiation exposure limits for small animals and

produces less energy than a standard full body x-ray. Importantly,

as radiation exposure is cumulative, each live lizard was scanned

only once. A short scan time is also necessary as the lizard must be

detained and remain still for that time period.
Data ingestion

Data from the Vanta were exported as JSON files and processed

in R (R Core Team, 2023) using the jsonlite (Ooms et al., 2023)

package with relevant beam spectra data processed using the

xrftools (Dunnington, 2023) package. Spectra processing included

associating known characteristic fluorescence energies for elements

to the correct spectra energy range, and baseline measurement and

reduction applying a gaussian smoothing filter before shaping into

dataframes using the tidyverse (Wickham, 2023) package.

To ensure that elements analyzed were present in the samples

we checked for diagnostic peaks in the beam spectra data. We

excluded any elements that did not match their Ka1 and Kb2 peaks
Frontiers in Ecology and Evolution 04
(Thomson et al., 2009). This approach allowed us to remove all

non-biologically relevant elements. Elements below the limits of

detection were not included in analyses.
Statistical analyses

Species models
The beam spectra data were arranged in dataframes, which we

used to build predictive models using the XGBoost package (Chen

et al., 2021). The tree-based XGBoost classifier has the ability to

capture non-linear relationships and to handle collinearity between

predictors (Chen and Guestrin, 2016). To minimize risks in

overstating model performance as a result of imbalanced classes in

the training data (Roberts et al., 2021), where a model can simply

learn to always predict the most dominant class, we downsampled to

the least represented class of interest. Any factors within that class

were randomly represented. For example, when predicting species we

downsampled to the minimum number per species, with the

individuals kept or dropped to meet the minimum number being

randomly selected in the bigger groups. This first model was built to

discriminate between common blue-tongue lizards and shingleback

lizards. Only these two species were kept in the model as they had the

largest sample sizes (Table 1), downsampled to 78 samples each.
FIGURE 2

(a) Scanning a shingleback using an Olympus Vanta pXRF, and (a) shingleback lizard on custom made scanning platform with silicon cylinder shown
over which the tail is placed prior to scanning.
TABLE 1 Number of lizards scanned by species and location.

Species Scientific name State

NSW SA WA ACT Vic Unknown location*

Centralian blue-tongue T. multifasciata 1

Common/Eastern blue-tongue T. scincoides 61 5

Northern blue-tongue T. scincoides intermedia 1

Western blue-tongue T. occipitalis 1 3

Shingleback T. rugosa 65 77 86 4 4 18

Total 85 72 91 4 4 18
*Animals with unknown location were the result of being presented for veterinary care where their sample state was known but not their origin. Similarly, road-kill specimens contributed by
other organizations. The data from these animals was not used in the geographic provenance models.
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To further avoid overstating model performance through a

lucky training testing split, 100 train-test splits (80%-20%) were

run per modelling task, training a separate model each time and

pooling test set model performance metrics. We also partitioned the

training data to ensure we had equal numbers of representative

samples from each predictive class. This further ensures our final

results avoid bias and more accurately reflect a real-world result

(Roberts et al., 2021).

Model training for each iteration was halted after model

performance on the held-out watchlist dataset stopped improving

after 50 rounds in order to reduce model overfitting. Model

performance was evaluated using multi-class log-loss functions

and the multi-class softmax model objective. All models had a

learning rate of 0.3, and max tree depth of 6. Model probabilities for

captive or wild were then converted to a prediction by taking the

highest assigned probability as the final predicted class. To

determine model accuracy, we compared the actual classification

against the predicted class for the test set data, and report on the

average model accuracy and standard deviation across the 50 model

runs. Variable importance was calculated for each train-test

iteration and summarized to gauge the most important variables

in general. Receiver Operating Characteristic (ROC) curves were

produced for each model to evaluate model performance, exploring

true positive rates (sensitivity) against the false positive rate

(specificity), alongside the Area Under the Curve (AUC)

performance metric, where 1 is a perfect model, and 0.5 is no

better than random (Robin et al., 2011). We produced these metrics

for both binary and multiclass models, using a one-vs-all approach

(Robin et al., 2011). To further explore misclassifications in

multiclass models, we also generated confusion matrices to

examine the patterns of misclassification across different groups.

Captive-wild models
Using the methods outlined above, we next explored the ability

to discriminate between captive and wild lizards.

We built three models to explore the impact different variables

had on model performance to predict captive-wild status. Model 1

included all lizard species, Model 2 included an additional predictor

variable for species, while Model 3 included variables for sample

state and species, where sample state was a categorical variable

differentiating between natural samples (i.e. live or freshly dead),

thawed samples (dead, frozen and then thawed) and dried samples

(roadkill that had been dead a long time).

We also ran two models on shinglebacks only, the first using all

samples regardless of sample state, and the second excluding dried

samples as we know water content can affect the pXRF reading

(Brandis et al., 2024). Finally, we ran a captive-wild prediction

model for common blue tongues alone.

Geographic provenance models
Geographic provenance predictive models were built using

shingleback and common blue-tongue data (Table 1) (excluding

animals with unknown location). To test the spatial resolution at

which the geographic provenance models could reliably predict
Frontiers in Ecology and Evolution 05
location we tested the models using different geographic units.

These were; Australian states (with the Australian Capital Territory

and New South Wales combined to increase sample sizes; Figure 1;

Appendix 1) to represent jurisdictional and enforcement boundaries;

hydrological basin boundaries (Geoscience Australia, 1997) including

one model using four river basins and another including three river

basins (due to sample sizes; Appendix 1) to constrain the elemental

variation in the environment and so should act as an environmental

derived grouping; and K-means clustering as a way to find natural

groupings in the data. K-means is an algorithm that partitions a

dataset based on the similarity of points by iteratively assigning points

to the nearest centroids and updating those centroids until

convergence. This was performed in QGIS with both five and ten

distinct groups (reduced to eight due to sample size) (Appendix 1).

We also explored whether we could predict provenance according

to the soil nutrients type, management type, and soil type (Appendix 1)

(Australian Government Department of Agriculture, and Fisheries and

Forestry, 2022) in three separate models, as we hypothesized that soil

nutrients may influence diet and diet characteristics thereby

influencing elemental abundances (Underwood, 1977).

Captive-wild classification of seized animals
In July and August 2023, we scanned 33 lizards that had been

intercepted in the postal system by Australian enforcement agencies.

To demonstrate and test the applicability of this research we applied

our captive-wild models to inform enforcement agents. The predicted

captive-wild status was made for each lizard based on the mean of

results following 100 model runs. Lizards were classified as captive or

wild when the probability mean exceeded the mean ± SD of the

alternative classification (Appendix 2).
Results

We sampled a total of 317 lizards from a range of geographic

locations (Table 1) and wildlife organizations across Australia.

Eighty percent of species sampled were shinglebacks, while 20%

were blue-tongues. Thirty percent of shingleback lizards were

captive while 70%, were wild, and 57% eastern blue-tongues were

captive and 43% were wild.
pXRF data

We excluded 22 elements from our analyses due to their due to

absences in their Ka1 and/or Kb2 peaks. Elements kept were Al, As,

Ba, Br, Ca, Cd, Cl, Cu, Fe, Hg, I, K, Mg, Mn, Mo, Ni, P, Rb, S, Se, Sn,

Sr, Ti, Zn, and Zr.
Sample state

The state of our samples varied, with the majority being in their

natural state n=214, with smaller samples of dried n=58 and thawed

n=45 specimens (Table 2).
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Species models

Species (shingleback and common blue-tongue) predictive

models had a mean accuracy of 70.53% (n=156). Key

discriminatory elements between species were Cu, P, and As

(Appendix 3.1). Model AUC was 0.756, suggesting the model

performed moderately well (Appendix 4.1).
Captive-wild model results

All captive-wild models had mean accuracies >80% (Table 3).

Including species and sample state as predictors in the models

increased accuracy from ~80% to ~83% in the all species models,

indicating it was important to include these variables (Table 3).

Separating the species resulted in high accuracy models,

predicting between captive and wild blue-tongues at 81.80%

accuracy and shinglebacks at 83.49% (including species and

samples state as factors) (Table 3). The removal of dried

shingleback sample data from the model reduced mean accuracy

to ~80% (Table 3).

Key discriminatory elements were relatively consistent between

models that included shinglebacks, with Cl and Rb important in all

seven models containing shinglebacks. Key discriminatory elements in

the blue-tongue models included Rb, P, Mo, S and Z (Table 4;
Frontiers in Ecology and Evolution 06
Appendix 3.2). When exploring the confusion matrices for the

captive-wild models we consistently saw the highest misclassifications

where wild lizards were being classified as captive (Appendix 5.1).

The lowest AUC was for the shingleback only model with no

dried samples at 0.864, and the highest was the shingleback model

that included all samples at 0.894, meaning all captive- wild models

were high performing (Appendix 4.2).
Geographic provenance

Geographic provenance models were highly dependent on sample

size (Table 4). The best model explored the placement of 174 samples

across soil nutrient groups, (including species as a factor) with a mean

accuracy of ~85%, however the other soil factors we explored did not

produce high accuracies, noting these groups had low sample size

(n=10) (Table 4). The next best performing model included 3 basins

with a mean accuracy of ~77% (n=28). Adding a fourth basin lowered

the sample size to 10 per basin resulting in a reduction in mean

accuracy to ~52%. The most common misclassifications occurred

between the South-West Coast and the South Australian Gulf,

despite their physical distance (Appendix 1, Appendix 5.2).

Assigning geographic provenance per state was fairly accurate

at 74%, but this is with the ACT included inside NSW. Separating

the ACT would result in a very small sample size per state. The most

common misclassifications occurred between NSW and SA

(Appendix 5), which is unsurprising considering some collected

samples were right on the border of these two states (Appendix 1).

Using k-means to find natural groupings in the data achieved an

accuracy of ~65% when grouping to 5 groups each of 42 individuals.

The most common misclassifications occurred between groups 0

and 2, the eastern NSW cluster and the South Australian cluster

(Appendix 1, Appendix 5.2). Increasing to 8 groups greatly

decreased the accuracy (and sample size) (Table 4).
TABLE 3 Result of captive-wild model performance.

Model
inclusions

Discriminatory
factors

Mean
accuracy

N per
captive/
wild

All species Cl, Rb, P 81.48 134

All species with species
as a factor Cl, Rb, P 81.27 134

All species with species
and sample state
as factors Cl, Rb, P 81.54 134

All blue-tongue species
with species and
sample state as factors Mo, S, P 81.80 31

Eastern blue-tongue
only with sample state
as a factor Mo, Zr, P 82.41 31

Shingleback only with
sample state as a factor Cl, Rb, K 83.49 93

Shingleback only
excluding dried samples Cl, Rb, Ti 80.23 76
fr
TABLE 2 Summary of samples, including provenance, species, sample
state and number of samples.

Provenance Species
Sample
state

Number
of samples

Captive
Centralian
bluetongue lizard Natural 1

Captive
Eastern
bluetongue lizard Natural 31

Captive
Eastern
bluetongue lizard Thawed 4

Captive
Northern
bluetongue lizard Natural 1

Captive Shingleback Dried 9

Captive Shingleback Natural 64

Captive Shingleback Thawed 5

Captive
Western
bluetongue lizard Natural 4

Wild
Eastern
bluetongue lizard Dried 3

Wild
Eastern
bluetongue lizard Natural 11

Wild
Eastern
bluetongue lizard Thawed 17

Wild Shingleback Dried 46

Wild Shingleback Natural 102

Wild Shingleback Thawed 19
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Species was repeatedly an important predictor to contain in the

models, suggesting there are geographic provenance differences

amongst species (Appendix 3.1).

AUC values varied from 0.559 for the soil management groups

to 0.886 for the three basin model (Appendix 4.3).
Captive-wild classification of
seized animals

Both shingleback (n=23) and blue-tongue lizards were seized

(n=10) as part of confiscations bought into wildlife hospitals by

authorities between August and December 2023. Of the 23

shinglebacks, 8 were classified as captive, 6 wild and 9 were

undetermined (i.e. the probability mean did not exceed the

mean ± SD of the alternative classification of the 100 models

runs). Five blue-tongues were classified as captive, 1 wild, and 4

were undetermined (Appendix 2). We could therefore predict the

provenance of ~61% of the shinglebacks and 60% of the blue-

tongues with confidence.
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Discussion

This project has further demonstrated the applicability of pXRF

data to applications that can assist in combating the illegal wildlife

trade (Buddhachat et al., 2016b, 2017; Brandis et al., 2018, 2023).

We successfully developed a range of species-specific models to

assist in combating the illegal trade of Australia’s Tiliqua species.

Species models were able to identify species (shingleback (T.

rugosa) and common blue-tongues (T. scinoides)) with reasonable

(70%) accuracy. These findings are supported by those of

Buddhachat et al. (2016b) who also demonstrated high (94%)

species accuracy models for Asian and African elephants. Species

models are of particular importance when complete specimens are

not available and species identification cannot be done visually. This

is relevant to those species which are often traded as animal parts

e.g. pangolin scales, or derived products e.g. powders, meat (Xu

et al., 2016). With further validation this method may provide an

alternative to genetic testing (Mwale et al., 2017).

The downsampling method used in the species models to

minimize risks in overstating model performance as a result of

imbalanced classes in the training data (Roberts et al., 2021),

includes the potential for some data to be discarded. This method

may result in data loss from the majority class, in this case

shinglebacks. The results presented here are promising, but may be

improved with the use of alternative approaches including k-fold

cross validation where all observations are used in each iteration of

the model (Guo et al., 2019).In addition strategic data collection

should seek to reduce data imbalances, thereby reducing the potential

for information loss when downsampling. Noting however, the

challenges associated with sampling wild, free ranging animals.

We also developed models that were able to accurately

distinguish captive bred from wild Tiliqua species. All models

performed well (Table 3) with the highest performing models

being those that were species specific, blue-tongue models mean

accuracy of 82.41% and shingleback models 83.49%. These findings

are supported by previous studies developing captive-wild model

for short-beaked echidna (Tachyglossus aculeatus) (Brandis et al.,

2018), Palawan forest turtle (Siebenrockiella leytensis) and Palawan

cockatoo (Cacatua haematuropygia) (Brandis et al., 2023).

Interpretation of the confusion matrices (Appendix 5.1), show

that the highest misclassifications where wild lizards were being

classified as captive. The implication of this includes potential

underrepresenting of poaching.

Key discriminatory elements, particularly in the shingleback

models included chlorine (Cl). Chlorine is an abundant element in

the Earth’s crust and commonly associated with salts (Haynes et al.,

2014). Wild shingleback habitat and sampling areas corresponded

with areas of elevated soil salinity (Ivushkin et al., 2018) providing a

possible explanation for the importance of Cl to distinguish

between wild and captive animals. However, understanding the

drivers of specific elemental abundances in animals, which are

derived from its diet are complex and likely influenced by many

biotic and abiotic processes (McLeod et al., 2025).

Sample state (dried, thawed, natural) has been shown to impact

on the measurements of specific elements within lizards (specifically
TABLE 4 Results of geographic provenance model performance. See
Appendix 1 for maps of groupings.

Model
inclusions

Discriminatory
factors

Mean
accuracy

N per
provenance
group

3 States (NSW
+ACT, SA, WA),
species as
a factor Species, Cl, Rb 74.03 57

4 basins (MDB,
SA gulf, SE
Coast, SW
Coast), species as
a factor Species, Rb, Ca 52.64 10

3 basins (MDB,
SE Coast, SW
Coast), species as
a factor Species, I, Rb 77.32 28

K-means spatial
clustering groups
(5), species as
a factor Species, Cl, Rb 65.32 42

K-means spatial
clustering groups
(8), species as
a factor Species, Rb, P 56.93 30

Soil nutrient
groups (2),
species as
a factor Rb, P, I 85.11 174

Soil management
groups (15),
species as
a factor Species, Rb, P 56.93 12

Soil type (15),
species as
a factor P, Rb, Zr 37.49 12
frontiersin.org

https://doi.org/10.3389/fevo.2025.1526584
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Brandis et al. 10.3389/fevo.2025.1526584
Ca, Cu, LE, P, Rb, Sr and Zn) (Brandis et al., 2024), however model

testing found that inclusion of data from all sample types resulted in

marginally increased model performance (Table 3). Inclusion of data

from different sample states allows for a an increased sample size and

flexible model that can be applied to a range of traded animal

products, live, dead, and animal parts e.g. skins (Nijman et al., 2012).

Geographic provenance model results were variable reflecting

the predictor variables tested (Table 4). Soil nutrient groups and

hydrological basins were included in the highest performing models

85.11% and 77.32% respectively. Models that performed best were

those with few classification groups, e.g. the 3-basin model

performed better than the 4-basin model, similarly the 2-soil

group model performed better than the 15-group model

(Table 4). The reason for this is the lack of replicates within each

of the groupings used. Development of higher accuracy, finer spatial

scale models would require more intensive sampling within each of

the identified spatial groups. The ability to do this, and the spatial

resolution at which these models could work will be dependent

upon the species’ movement ecology i.e. does it move across the

landscape, e.g. birds, and the density at which it is distributed.

Uncommon and sparsely distributed species would necessitate large

scale geographic provenance models due to the ability to collect

sufficient data.

Despite the limited geographic scope of this study, it provides

additional evidence that these data types i.e. elemental profiles of

animal tissues, can be successfully used to identify geographic

provenance. This is supported by previous studies have used these

data to assign geographic provenance and movement patterns for

waterbirds (Brandis et al., 2021), and crocodiles (Markich et al.,

2002), geographic provenance for traded Philippine species

(Brandis et al., 2023), and seafood provenance (Gopi et al., 2019;

Malo et al., 2023). This range of research demonstrates the potential

of these methods to be applied more broadly while also

acknowledging the data requirements discussed above.

Species targeted by the illegal wildlife trade are often threatened

species with inherently reduced populations (Zimmerman, 2003;

Willcox et al., 2019) making it challenging to collect data from a

sufficient number of individuals to build robust models. For species

that have feathers, scales or shells that are removed from the animal,

either via natural process e.g. moult, or for trade e.g. pangolin scales,

it is possible to use these sample types to obtain the necessary data

without having the live animal. Noting that species identification

and source would initially need to be confirmed in order to build

predictive models. Alternative data sources that may represent the

elemental profile of the animal, including environmental surrogates

are a new area of research that aims to address this issue.

The application of our methods and models to the seized lizards

demonstrated the ability of this method to be part of the evidence

gathering procedure and provide additional information to the

prosecution process. While it may not necessarily meet the

standard of proof by legal definitions, it does for scientific

purposes, as shown by results presented here (Loevinger, 1992). It

provides additional information for enforcement agencies on which

to base decisions and take action. Noting that it is unlikely we can

ever confirm the origins of the seized animals to validate our
Frontiers in Ecology and Evolution 08
captive-wild classifications (their histories can never be known).

We can however use additional information such as the overall

health and appearance of the animal (presence of ticks, body

condition, deformities caused by malnutrition, and color

morphologies not found in the wild) to further support our

classifications (Lyons and Natusch, 2015).

While it is impossible to independently validate the source of

the seized animals in this test case, factors that impact on the

accuracy of the captive-wild determination will include any

associated with diet and the incorporation of elements into tissue.

These include i) how closely the captive diet resembles that of a wild

diet, ii) how diet varies with habitat of wild animals, and iii)

underlying environmental differences that are carried through the

food web e.g. soil elemental profiles (Hooda, 2010; Tack, 2010).

Captive-wild models built on data that incorporates these types of

variability for each state (captive or wild) will provide more robust

models with greater confidence in classification, however

classification accuracy maybe reduced. Independent validation,

where possible, should be sought to support the results of these

models to increase applicability to law enforcement.

A current critical knowledge gap in this area of research is the

length of time taken for a ‘wild’ animal to become ‘captive’ with

regards to its elemental profile. For example, if lizards have been

taken from the wild and kept in captivity for a period of weeks or

months, do they then resemble captive raised lizards? The variables

influencing the length of time will depend upon; 1) how well the

captive diet resembles a wild diet, and 2) the tissue sampled for any

particular species and 3) the turnover rate of keratin for a particular

species. Keratin tissues are chemically inert once grown and provide

a time capsule of diet (Wassenaar, 2008), while muscle is in constant

flux determined by diet. Species with keratin tissues such as

feathers, nails, horns, long hair will retain the ‘wild’ profile for

longer than other animals. With regards to the seized lizards

sampled as part of our study 30 had been kept at wildlife care

facilities for between 7 to 28 days post seizure prior to pXRF

scanning. Casual analysis of the data shows that all shingleback

lizards kept for 28 days classified as captive. While the chance of

being classified as wild increased with fewer days between seizure

and scanning. However, this does not account for the period of time

in which the poacher may have kept the animal prior to trading it.

Addressing the period of time it takes for a ‘wild’ animal to

become ‘captive’ with regards to its elemental profile is complex. It

is likely to be species specific and will vary between tissue types and

growth rate. It may also vary with animal age and active growth

periods. However, the most challenging part is the need to

repeatedly sample the same individual animal over time to

measure change. The impact of repeated x-ray exposure on

reptiles of this size is unclear and raises ethical considerations.

Other considerations when using the pXRF for studies of biological

samples include addressing sample property assumptions including

sample state and type, thickness, location of scan on the animal, and

duration of scanning (Brandis et al., 2024). These were accounted

for in our sampling methods as detailed in the Methods section.

Validation of the results presented in this study will be

fundamental for the transfer of methods from research to forensic
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science (Ogden and Linacre, 2015). Two components of this

method that would benefit from independent result validation are

species identification and geographic provenance. Both of which are

critically important when prosecuting illegal actions requiring a

high burden of proof. Further development of species identification

models and confidence in the results would benefit from the use of

independent species validation, e.g. DNA (Cronin et al., 1991). This

is of particular importance for samples that consist of animal parts

or derivatives where no visual classification is possible. Similarly,

the geographic provenance models could be independently

validated using DNA (Ogden and Linacre, 2015) and/or stable

isotopes (Vander Zanden et al., 2018).

In conclusion, our study has demonstrated the potential of

pXRF technology as a tool to combat the illegal wildlife trade by

providing species identification, distinguishing between wild and

captive individuals and predicting geographic provenance with high

accuracy. The geographic provenance models, while showing

variability in performance, offer a promising direction for

identifying the origins of illegally traded wildlife, although further

refinement and intensive sampling will be necessary for higher

resolution applications. The ability of pXRF to contribute to the

evidence-gathering process in wildlife crime cases reinforces its

value, although there remain unknowns around the influence of

time spent in captivity on elemental profiles. Overall, this method is

a cost and time effective addition to the fight against the illegal

wildlife trade.
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