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Paris, France, 6Wildlife Conservation Society - Global Conservation Technology Program, La
Paz, Bolivia, 7Wildlife Conservation Society - Argentina Program, Buenos Aires, Argentina,
8Wildlife Conservation Society - Cambodia Program, Phnom Penh, Cambodia, 9Panthera, New York,
NY, United States, 10Wildlife Protection Solutions, Golden, CO, United States, 11Conservation X Labs,
Washington, DC, United States
Introduction: Market-driven poaching and unsustainable wildlife harvest are

significant drivers of population decline for numerous plant and animal

species, including high-profile species like Asian and African elephants, wild

cats, sharks and rays, and pangolins. This publication reviews the emerging role

of conservation technology in combating this trade.

Technologies and applications: We showcase how innovative technological

tools are revolutionizing the detection and disruption of illegal and unsustainable

wildlife trade, with a focus on those available to frontline staff working to prevent

poaching and trafficking from source sites. We consider a diverse array of

deployed technologies ranging from open-source software platforms, AI, and

mobile apps to cutting-edge hardware, including camera traps, acoustic sensors,

and remote sensing tools.

Case studies: To demonstrate the complex threats posed by IUWT to wildlife and

the consequent need for tailored solutions, we present two case studies, one

terrestrial and one marine, showcasing the importance of appropriate suites of

technology tools for conservation implementation.

Discussion: Technology has potential to empower rangers, park staff, wildlife and

fisheries inspectors, customs officials, police, and conservation practitioners with

unprecedented capabilities to monitor threatened wildlife, detect illegal

activities, gather evidence, and support law enforcement interventions.
KEYWORDS

conservation technology, poaching, artificial intelligence, open-source software,
camera-traps, remote sensing, drones, acoustic sensors
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1 Introduction

The illegal and/or unsustainable wildlife trade (IUWT) is a

wicked problem in biodiversity conservation (Thomas-Walters

et al., 2020) because it has complex ecological and social impacts

ranging from decimation of wildlife populations, driving species to

the brink of extinction, disrupting ecosystems, and fueling organized

crime. IUWT is driven by a range of cultural and socioeconomic

factors in communities surrounding protected areas (Duffy et al.,

2016), burgeoning demand for wildlife and wildlife products, and

operates across multiple sometimes complex networks, often

spanning countries and continents. Traditional enforcement

methods, while essential, are often outmatched by the sophisticated

tactics of professional poachers and traffickers thus requiring new

tools and approaches (Moreto, 2015; Lemieux et al., 2022).

The integration of technology into conservation practice

(Marvin et al., 2016; Hahn et al., 2022) marks a paradigm shift in

the fight to secure wildlife populations against market-driven

poaching and unsustainable harvest. No longer solely reliant on

traditional methods like foot patrols and informant networks,

conservationists are harnessing the power of data and

connectivity to combat this complex challenge.
Fron
• Open-source software platforms provide a centralized hub

for integrating and visualizing real-time data from various

sources, enabling comprehensive situational awareness and

informed decision-making.

• Mobile apps empower rangers and communities in the field

with tools for data collection, communication, and

navigation, enhancing their effectiveness and safety.

• Handheld devices equipped with Global Navigation

Satellite System (GNSS) and satellite communication

capabilities enable real-time tracking of patrol teams and

wildlife, facilitating rapid response to poaching incidents.

• Remote sensing technologies, such as satellite imagery and

aerial surveillance, provide a bird’s-eye view of vast

landscapes, aiding in the detection of deforestation,

habitat encroachment, and illegal activities.

• Camera traps strategically placed in wildlife hotspots

capture photographic evidence of poaching, providing

crucial intelligence for law enforcement.

• Acoustic sensors detect gunshots, chainsaws, boat engines and

other suspicious sounds, providing conservation practitioners

and authorities with robust, verifiable data to assess current

strategies and adapt future approaches effectively.

• Tracking devices attached to animals allow for close

monitoring of their movements, aiding in the avoidance

of human-wildlife conflict and poaching.

• AI-powered systems process and interpret data from the

field creating actionable information for management.
Additionally, advancements in communications technologies

hold the potential to enable data from field-based sensors to alert

authorities to illegal activities in close to real-time allowing for

expedient adaptive management responses.
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Strategic implementation of these technologies can empower

conservation practitioners, revolutionize conservation operations,

enhance ranger safety, and ultimately drive significant

improvements in wildlife protection and conservation outcomes

(Cronin et al., 2021b):

Online platforms, mobile apps and devices help rangers and

other frontline staff to record, map and report poaching and other

illegal activities at the source. This is essential given the enormous

scale of the task; for example, at any one time an estimated 13

million snares are on the ground in protected areas in just three Asia

countries; Cambodia, Vietnam and Lao PDR (Belecky and Gray,

2020) putting immense pressure on limited resources available for

protection (Tilker et al., 2024). Camera traps, acoustic sensors, and

tracking devices help detect and deter poaching activities

(Kamminga et al., 2018). Mobile apps and data analysis tools

assist in monitoring local wildlife markets, shark and ray landing

sites, and identifying suspicious trade patterns. Remote sensing and

data analysis platforms aid customs officials in identifying high-risk

shipments and intercepting illegal wildlife products at international

borders. Online monitoring tools and forensic techniques help trace

the origin of wildlife products, disrupting the demand side of

the trade.

Here we focus on conservation technologies that are widely

available and relatively easy to train rangers, managers, and

conservation practitioners working to reduce the supply end of

the IUWT chain. DNA databases and other forensic tools for

monitoring trafficking, online trade and end use for illegal wildlife

require specialist training and expertise for effective use and are

discussed elsewhere (Ahlers et al., 2017; Fukushima et al., 2021;

Stringham et al., 2021).
2 Technologies and applications

When considering the range of IUWT tasks, conservation

planners and operations managers should decide what

technologies will be needed, what are the challenges in using

them, their availability, and who should be responsible for their

implementation and end use (Table 1). Seven core tasks undertaken

are 1) detection of poaching and human intrusions into and wildlife

transport from protected areas, 2) real-time monitoring of animals,

and surveillance of human activity, 3) recording observations of live

and dead animals, and human encounters, 4) real-time tracking of

subjects (field teams, animals, vessels) and alerts, 5) management of

IUWT data, historical analysis of poaching and local trade

networks, 6) management of IUWT data, real-time analysis for

law enforcement operations, and 7) sharing data and reporting.
2.1 Open-source platforms

Two platforms specifically designed for documenting, analyzing

and reporting on poaching and unsustainable wildlife harvest have

wide global use at the present time: The Spatial Monitoring and

Reporting Tool (SMART) and EarthRanger.
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SMART is an open source platform developed through a

partnership of 8 conservation NGOs: Frankfurt Zoological Society

(FZS), North Carolina Zoo, Panthera, Rewild, Wildlife

Conservation Society (WCS), Wildlife Protection Solutions

(WPS), World Wildlife Fund (WWF), Zoological Society of

London (ZSL), that was designed to enhance management

effectiveness and combat threats like IUWT across protected and

conserved areas globally (Cronin et al., 2021a). It was created in

response to the pressing need to equip rangers and managers with a

set of tools to standardize the collection, analysis and reporting of

field patrol, antipoaching and wildlife data (Cronin et al., 2021a).

EarthRanger is an open-source web application developed by

the Allen Institute for AI (Ai2) a non-profit research institute

headquartered in Seattle. EarthRanger is designed to provide a

comprehensive solution for ecological monitoring and wildlife

management (Wall et al., 2024). It was created in response to the

Great Elephant Census that showed a 29% drop in elephant

populations across Africa in 7 years (Chase et al., 2016).

SMART and EarthRanger are collectively deployed across

>1,500 sites globally with an increasing number of these sites

using both platforms. These platforms can be effectively applied

to manage poaching and unsustainable wildlife harvest through

several key functionalities.
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2.1.1 Data aggregation, visualization and analysis
Data from a range of sources, including reports of poaching

incidents, trap and snare locations, carcass encounters, community

reports of suspect human activity, and live wildlife sightings can be

simply collected in the field, compiled and visualized in a single

platform. SMART Reports and Ecoscope, an add-on tool for

EarthRanger, enable managers to analyze spatial and temporal

patterns and identify hotspots of illegal activities, helping to

inform targeted anti-poaching strategies and resource allocation.

Profiles, an add-on tool for SMART, additionally enables network

analysis to calculate relationships between entities involved in local

wildlife crime networks.

SMART provides a robust framework to efficiently capture and

manage data from a range of sources related to wildlife monitoring,

patrolling activities, and illegal activities within protected areas.

EarthRanger complements SMART by offering real-time data

visualization and advanced asset management tools. Particularly,

EarthRanger’s capacity to aggregate diverse data sources, including

SMART patrol observations, those from tracked subjects and devices

and environmental sensors, ensures that conservation managers have

a comprehensive view of their operational landscape. This integration

allows for better coordination of patrols and resource deployment,

helping rangers anticipate and mitigate threats effectively.
TABLE 1 IUWT management tasks and conservation technology applications.

IUWT Task Technology type and
platform/software/apps

User Challenge

1. Detection of poaching and
human intrusions into/wildlife
transport from protected areas

Camera-traps (offline), passive
acoustic monitoring (PAM), drones

Rangers,
communities

Narrow field of view; subject to false triggering; battery life,
durability, repairability in the field, subject to theft, weather events
(fires, floods); large amounts of data generated requiring processing;
SD cards require physical retrieval; ethical concerns with
photographing people; PAM systems are primarily limited to
detecting activities that generate sounds; technical training required.

2. Real-time monitoring of
animals, and surveillance of
human activity

Network enabled camera-traps,
passive acoustic monitoring (PAM),
drones, wpsWatch, ConservationAI,
Sentinel, Ecoassist

Rangers, managers,
Conservation
specialists

Connectivity subject to available network, environmental conditions;
potential for AI to contribute to the militarization of conservation;
precision or and biases within AI models, and high computational
costs of large models, environmental impact and high costs;
practitioners prioritize AI over traditional techniques; specialist
training required.

3. Recording observations of
live and dead animals,
human encounters

Cybertracker, SMART mobile,
EarthRanger mobile

Rangers,
communities

Ensuring community access to apps with local language versions;
requires access to network for data upload, need regular version
updates; technical training required.

4. Real-time tracking of
subjects (field teams, animals,
vessels) and alerts

EarthRanger mobile, GPS collars,
Garmin InReach, Skylight

Rangers,
communities, MPAs,
fisheries inspectors

High cost of GPS devices; subject to available network,
environmental conditions; specialist training required.

5. Management of IUWT
data, historical analysis of
poaching and local
trade networks

SMART Desktop, SMART Profiles Data managers,
Analysts,
Conservation
specialists

Platforms dependent on having quality data entry; Requires a
dedicated operations room and available field enforcement resources
for effective deployment; technical training (SMART desktop) or
specialist analyst training (Profiles) required.

6. Management of IUWT
data, real-time analysis for law
enforcement operations

SMART Connect > Gundi
> EarthRanger

Data managers,
Analysts,
Conservation
specialists

Requires a cloud service (EarthRanger) or local installation (SMART
Connect); technical training required.

7. Sharing data and reporting SMART reports, Ecoscope Park
managers, NGOs

Requires network to enable sharing of incoming data with the
manager; specialist training required.
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2.1.2 Enhanced patrol efficiency
Detecting and removing traps and snares can impose high

financial burden on park protection programs (Tilker et al.,

2024). SMART and EarthRanger can help optimize patrol routes

and schedules based on data about poaching threats and

wildlife movements.

Collaboration across jurisdictions - SMART and EarthRanger

facilitate coordination among multiple organizations and agencies

involved in wildlife protection. Additionally, data can be pushed or

pulled between EarthRanger deployment sites and shared among

SMART sites. By sharing data and insights, stakeholders can work

together more effectively to combat illegal wildlife trade across park

boundaries, jurisdictions, even different regions.

2.1.3 Community engagement
The platforms can support community-based conservation

efforts by providing local communities with tools, such as

SMART Collect (a community-focused feature of SMART

Mobile) and EarthRanger Mobile, to report illegal activities and

engage in monitoring efforts. Empowering communities to

participate in conservation can help reduce illegal wildlife trade

by fostering stewardship and awareness.

Long-term data storage, analysis and dissemination - SMART’s

long-term data archiving capabilities allow for the analysis of and

reporting on trends over time, which can be crucial for understanding

the dynamics of IUWT and the effectiveness of conservation

interventions. These historical data can inform future strategies and

policies aimed at combating wildlife trafficking. Data may be

disseminated using Ecoscope providing highly configurable

visualizations and representations of data (Wall et al., 2024).
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2.1.4 Real-time monitoring
EarthRanger provides for real-time tracking of wildlife

movements and behaviors (Wall et al., 2024). By integrating data

from GNSS collars and other tracking devices, conservationists can

monitor the locations of endangered species and identify potential

poaching threats. Geofencing creates virtual boundaries that trigger

automated alerts when animals, particularly those vulnerable to

poaching, enter high-risk zones. This early warning system can

identify emerging hotspots for human-wildlife conflict and allows

for timely interventions when animals are at risk of being targeted

for retribution, poaching and illegal trade.

2.1.5 Integrations
Some kinds of data collected in one platform may be visualized

in the other. For example, patrol observations collected in SMART

may be seen as events on the EarthRanger dashboard (Figure 1).

Conversely EarthRanger events can be visualized as independent

incidents and patrol waypoints in SMART. This is possible through

the creation of Gundi, a tool for use in importing data sources and

making them interchangeable in different platforms. Gundi is the

result of a collaboration between WCS, WPS and EarthRanger.

2.1.6 Add-ons
SMART Profiles is a plug-in to the SMART desktop application

which permits the analysis of relationships between entities

involved in local poaching and trade networks (vehicles,

registrations, houses, licenses, people). It is a standalone, offline

tool that can be used to create information on trade networks for

guiding law enforcement interventions. For example, using results

from 163 interviews of traders involved in trafficking tigers and
FIGURE 1

Integration of SMART patrol observations visualized in EarthRanger including illegal wildlife and logging events from Cambodia’s Northern Plains
(Wildlife Conservation Society Cambodia).
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SMART Profiles Uddin et al. (2023) identified 20 ports used to

import and export tigers, highlighting the regional importance of

Bangladesh for international tiger trade.

2.1.7 Limitations
The limitations of open-source platforms are first that their

usefulness depends on accurate data input from field personnel.

Errors in data entry, inconsistent reporting or hardware

malfunctions can compromise the quality of the information.

Second, a laptop or desktop computer, internet connection and

operations room are required. The cost of deploying and

maintaining these can be a significant barrier for resource-

constrained conservation agencies and organizations. Third, while

these tools improve real-time monitoring, eliciting a response to

illegal activity is challenging where ranger numbers and field

enforcement resources are limited. Fourth, EarthRanger and

SMART are primarily designed for site-based monitoring and

enforcement and may not adequately address other aspects of

illegal wildlife trade (complex networks of traffickers and buyers,

online wildlife sale and demand-side drivers of illegal wildlife

consumption). Finally, integrating data from diverse sources (e.g.

satellite imagery, acoustic monitoring, other sensors) requires an

Application Programming Interface (API) and can be complex and

time consuming.

Together, SMART and EarthRanger offer an integrated, holistic

approach to conservation management that optimizes resources,

enhances situational awareness, and supports strategic, data-driven

decisions. By leveraging the strengths of both platforms, and by

providing timely information and facilitating proactive action,

SMART and EarthRanger can play a vital role in enhancing the

effectiveness of efforts to combat illegal wildlife trade, ultimately

contributing to the protection of threatened species and the

preservation of biodiversity.
2.2 Mobile devices and apps

Mobile devices such as rugged smartphones and tablets are

adaptable for use in monitoring poaching and illegal transport of

wildlife through enhanced navigation, real-time tracking, and

improved communication.

GNSS-enabled mobile devices provide accurate navigation in

remote areas, crucial for patrolling and navigating protected areas.

Ruggedized devices and protective cases ensure durability and

multi-day battery life in challenging field conditions.

EarthRanger allows data integration from GNSS tracking

devices attached to wildlife or connected camera-traps to monitor

real-time movements of live animals (Adams et al., 2017) and

identify trafficking routes for poached carcasses. The health and

safety of remotely operating field teams can be tracked using

Garmin InReach data feeds to the EarthRanger platform.

Open-source apps can be tailored to the specific needs of IUWT

monitoring. For example, SMART Mobile (Cronin et al., 2021a)

and Cybertracker (Steventon, 2002) enable efficient spatial data

collection, including the mapping of significant wildlife
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observations and recording animal surveys. EarthRanger Mobile

additionally provides live tracking and communication by

field teams.

EarthRanger mobile and SMART mobile enable rangers and

community members to report incidents of poaching, illegal logging

and suspicious incidents.

Apps designed for species identification in trade such as

Wildlife Witness and Nature Intelligence System (Julia, 2016;

Tlusty et al., 2023) provide valuable information for field

enforcement officers combating IUWT. WildScan, an app created

by FREELAND Foundation, is a digital field guide for identifying

protected species and a reporting tool for frontline rangers to

document suspected illegal wildlife trade at the point of harvest

or initial transport. Furthermore, platforms like iNaturalist, a free,

global citizen science platform and social network dedicated to

connecting people with nature, EarthRanger Mobile and SMART

Collect can empower local communities to contribute to

monitoring efforts by recording and transmitting observations of

endangered species and suspected illegal activities. Observations

recorded in iNaturalist may be visualized in EarthRanger through

an integration between the platforms.

2.2.1 Limitations
Communities do not always have access to the tools thus

requiring support from NGOs, as well as training, and local

language options in the user interface. The apps need updating to

ensure compatibility with new hardware. The apps need to respond

to evolving needs of the community. If these limitations can be

overcome, these tools can help enhance the reach and

responsiveness of enforcement efforts.

In summary, mobile devices and apps are indispensable tools in

documenting poaching and other threats to wildlife at source sites.

Their versatility, affordability, and ease of use empower a wide range

of stakeholders, from rangers and researchers to local communities

and law enforcement agencies, to contribute to the protection of

wildlife and the disruption of illegal trade networks.
2.3 Aerial based technologies

2.3.1 Remote-sensing
Remote sensing technologies are revolutionizing conservation

efforts by providing a means to evaluate wildlife habitats and track

human-induced changes (Pimm et al., 2015; Marvin et al., 2016).

Satellite imagery, aerial surveillance, and open-data platforms like

Global Forest Watch (GFW), Fire Information for Resource

Management System (FIRMS), and Ororatech offer a “bird’s-eye

view” of vast landscapes, enabling real-time monitoring and

detection of threats (Tabor and Holland, 2021; Shea, 2022). These

technologies have an important role to play in detecting and

tracking forest loss and degradation, identifying drivers of

deforestation, including the creation of roads which poachers and

traders use to access a forest for its wildlife (Clements et al., 2014;

Hughes, 2018), supporting rapid response efforts, and monitoring

changes in land use and identifying areas at risk of habitat loss. They
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have potential as tools for verifying targets for Reduced Emissions

from Deforestation and forest Degradation (REDD+). Global Forest

Watch fire and deforestation (GLAD) alerts can easily be configured

for any area and may be visualized in the standalone platform or as

an integrated data source in EarthRanger via Gundi (a platform for

integrating external data sources).

2.3.1.1 Limitations

Even high-resolution satellite imagery may not be able to detect

small-scale activities such as poaching, especially in dense

vegetation. It can be difficult to differentiate between legitimate

human activities (e.g., farming, logging) and illegal poaching

activities. The presence of vehicles or trails does not necessarily

indicate poaching. There are temporal limitations as for example,

satellite imagery provides snapshots in time. Poaching can occur

between image captures, making it difficult to detect in real-time.

Cloud cover and other weather conditions can also limit the

availability of usable imagery. Remote sensing can detect the

“where” but not always the “why.” Understanding the complex

behavioral patterns of poachers requires on-the-ground

intelligence. Many poaching activities occur at night, when visual

satellite imagery is ineffective. While thermal imaging can help, it

also has limitations in terms of resolution and coverage.

Remote sensing technologies are powerful tools for

conservation, but they must be used in conjunction with other

methods, such as: on-the-ground patrols, intelligence gathering,

community engagement, and law enforcement, the use of

technologies such as camera traps, and acoustic monitoring (see

below). By combining these approaches, we can create a more

comprehensive and effective strategy for combating poaching and

the illegal wildlife trade.

2.3.2 Drones
Due to the vast areas that require monitoring for conservation,

unmanned aircraft systems (UAS) also known as conservation

drones have become a relatively common tool for conservationists

as they can rapidly cover relatively large areas (several square

kilometers) in one flight to collect data on animal locations,

poaching or logging, and can carry several different sensors for

such data collection.

Generally their usage focuses on three aspects of wildlife

conservation (Chabot and Bird, 2015; Wich and Koh, 2018). First,

mapping and monitoring land cover to determine the extent of

various land cover types and changes such as deforestation or

degradation in those. Second, to determine the distribution and

abundance of animal species (Corcoran et al., 2021). Third, to detect

the presence of poaching or other activities that might impact

animal species or the habitat they occur in such as fires. Obtaining

data on animal distribution and abundance can give valuable

insights into whether populations are stable or not which can be

linked to hunting or capture for wildlife trade if there are signs of

people (Hambrecht et al., 2019; Doull et al., 2021) or their activities

(e.g. fires) in drone images.

The most commonly used drones for the three use cases are

multirotor and fixed wing types that are pre-programmed to carry
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out flights along a set of waypoints or are flown manually by the

pilot (Wich and Koh, 2018).

For land cover mapping drones with a visual spectrum camera by

itself or in combination with a multispectral camera, and less

commonly a hyperspectral sensor would be used (Chabot and Bird,

2015; Wich and Koh, 2018). Due to the high resolution of the images

collected from drones small deforestation can be readily detected. To

detect animals a visual spectrum camera on its own or in

combination with a thermal infrared camera have been used for a

wide variety of animal species from small birds to large marine

mammals (Chabot and Bird, 2015; Wich and Koh, 2018). In addition

drones equipped with very high frequency (VHF) antennas or other

systems to localize collars or tags on animals have been used

(Desrochers et al., 2018). Detection of humans has largely been

done with thermal infrared cameras (Hambrecht et al., 2019; Doull

et al., 2021) as well as for the detection of fires even though visual

spectrum cameras have been used as well to detect the smoke.

An example of drones’ application in biodiversity is a study that

addressed the challenge of counting animals in spatially aggregated

populations using drone-derived orthomosaics, focusing on the

mass nesting of the endangered Giant Amazon River Turtles

(Podocnemis expanasa) on a river separating Bolivia from Brazil.

By developing a method that enhances the accuracy of surveys

during mass nesting events, researchers aimed to provide more

reliable data for conservation efforts.

The study used a novel approach combining drones and tagging

of individuals led by the University of Florida and Wildlife

Conservation Society, together with a capture-recapture model to

address the difficulties involved in counting turtle nesting

aggregations. This allowed variations in daily counts to be

highlighted and corrections for errors encountered to be

incorporated. This comprehensive approach improves the

accuracy of wildlife population estimation using drones and can

serve as an example for other ecological studies and conservation

efforts. But also, together with local communities, drones are

planned to monitor the illegal harvesting of eggs once the turtles

have finished nesting, making this tool essential for different

purposes. The advances highlight the importance and impact of

use of drones in conservation, envisioning the future role of

technology in research, and emphasizing the critical need for

accuracy in data collection for monitoring animal populations.
2.3.2.1 Limitations

There are, however, still challenges for drone usage. A major

challenge is the regulatory framework that often only allows flights

within visual line of sight (e.g. < 500 m in many countries) unless

detailed safety cases are developed for the civil aviation authorities. In

areas with low risk to people, property and animals some more

flexibility would facilitate the usage of drones. Limited flight duration

is often seen as a constraint as well but flight durations have been

increasing and given the civil aviation authorities’ regulations

increased flight duration might not always lead to increased

operational options. Drones generate large amounts of data for

which manual inspecting by human analysts is often slow and

costly. The need for machine learning to be further integrated for
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near-real time or slower analyses is paramount to increase drone

survey efficiency.
2.4 Ground-deployed technologies

2.4.1 Acoustic sensors
Conservation bioacoustics, the study of sounds for

understanding, managing, restoring, and protecting species and

ecosystems (Rice et al., 2023), is a rapidly growing field with

significant potential in wildlife crime prevention. A central tool

within this field is Passive Acoustic Monitoring (PAM), enabled by

autonomous recording units (ARUs). These devices capture

environmental soundscapes, including biological, geophysical and

anthropogenic sounds. ARUs have become increasingly accessible

due to advancements in technology and reductions in cost (Hill

et al., 2019), allowing for broader spatial and temporal monitoring

(Lahoz-Monfort and Magrath, 2021). ARUs can be deployed in

remote, vast areas non-invasively, with high temporal resolution,

including nighttime monitoring. Depending on conservation and

research goals, the devices can be configured to record continuously

or at scheduled intervals. A limitation is that high frequency

recordings for bats for example drains batteries fast and quickly

fills up SD cards requiring ARUs to be checked more frequently.

PAM systems generate massive datasets, capturing sounds from

a wide variety of species across multiple ecosystems, such as birds,

bats, cetaceans and other mammals, fish, and amphibians (Darras

et al., 2024), as well as from human activities such as logging and

firearm-based hunting (Astaras et al., 2017; Prince et al., 2019;

Dobbins et al., 2020; Sethi et al., 2020; Wrege et al., 2024). These

datasets offer valuable insights, but handling their large volume

poses challenges. The integration of artificial intelligence (AI) into

acoustic monitoring is addressing this issue. Advances in AI,

particularly in deep learning techniques have significantly

improved the capabilities of automated recognition systems

(Stowell, 2022). These technologies enable the detection of

gunshots and chainsaw sounds, which can indicate illegal

poaching and logging activities (Liu et al., 2019; Katsis et al., 2022).

PAM provides an efficient way to monitor gun hunting pressure

across large areas with high spatial and temporal resolution (Astaras

et al., 2017, Astaras et al., 2020; Wrege et al., 2017; Katsis et al.,

2022). In such applications, a grid of semi-autonomous sensors is

deployed across a landscape to record the soundscape over extended

periods. In some regions, even mobile smartphones have proven

effective for recording gunshots, offering a more accessible

alternative to ARUs for practitioners (Vu et al., 2024). The

recorded data is later analyzed to identify events of interest.

Dobbins et al. (2020) demonstrated the effectiveness of PAM by

comparing it to camera traps for monitoring gunshot hunting

activity in a tropical ecosystem. Acoustic sensors detected hunting

events significantly more frequently than camera traps, which have

a limited field of view (120° and 5-meter range). In contrast, ARUs

can detect sounds from all directions and at estimated distances of

up to about 1.2 km (Prince et al., 2019; Astaras et al., 2020, Astaras

et al., 2023; Dobbins et al., 2020; Pardo et al., 2022), giving them a
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considerable advantage for detecting poaching events and

conducting studies across large areas.

PAM systems are a valuable tool for adaptive management

strategies in areas prone to poaching and illegal deforestation

(Astaras et al., 2017, Astaras et al., 2020; Wrege et al., 2017;

Katsis et al., 2022; Pardo et al., 2022; Vu et al., 2024; Yoh et al.,

2024). These systems provide robust long-term datasets that help

conservation managers assess the effectiveness of current strategies

and refine future plans. This approach enables the identification of

temporal trends and spatial hotspots of illegal activities, which can

inform more efficient allocation of resources for patrolling and

monitoring. For instance, the international NGO Panthera has used

acoustical monitoring systems to support their anti-poaching

patrols in Guatemala and Honduras. Their acoustic monitoring

project enabled patrols to focus on specific areas and times when

illegal activity is most likely, improving the effectiveness of their

interventions (Alberts, 2021). While quantitative data on the overall

improvement in patrol effectiveness is not available, Panthera has

observed that the acoustic data provides actionable insights. For

example, acoustic monitoring revealed that poaching activity tends

to increase on dark nights when the moon is not out, as evidenced

by an increase in shotgun sounds. This information allows patrols

to adapt their schedules and focus efforts during high-risk times.

Rainforest Connection’s Guardian system exemplified how, in

some cases, PAM can be used for both adaptive management and

real-time interventions (Hatcher, 2021). The Guardian devices,

powered by solar panels and equipped with AI and machine

learning, use mobile networks or satellite connectivity to monitor

forest soundscapes and transmit audio data in real time to the

Rainforest Connection (RFCx) guardian cloud platform. When

connected via mobile networks, the devices continuously send

recordings for immediate analysis, detecting suspicious sounds

like chainsaws or trucks. With satellite connectivity, on-board

analysis detects these sounds and sends immediate alerts to

rangers in the field. The initial version of the system, which used

repurposed smartphones, successfully detected illegal logging in real

time in Sumatra, allowing authorities to intervene and stop the

activity (Gross, 2014). The system has since been expanded to

regions in Africa, Latin America, and Southeast Asia. Audiomoth is

another low-cost acoustic monitoring device that records ambient

sounds, enabling the detection of gunshots, snares, or animal

distress calls indicative of poaching events.

Although real-time monitoring in remote environments is still

in its infancy (Vu et al., 2024), it represents a critical area for future

development, as it could significantly improve the timeliness of

patrol interventions. As AI continues to evolve, the possibility of

automating this real-time response becomes more feasible (Sethi

et al., 2020). However, several challenges must be overcome to

realize the full potential of these technologies. One of the primary

limitations is bandwidth, particularly in remote areas where

connectivity is limited, which hinders real-time data transmission

(Vu et al., 2024). Moreover, the accuracy of AI-driven systems in

identifying sounds associated with poaching activities needs further

refinement to reduce false positives (Wrege et al., 2017; Katsis et al.,

2022; Vu et al., 2024). Unsupervised deep learning, a promising
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alternative that needs further research, can detect anomalous

sounds like gunshots and chainsaws by identifying deviations

from typical patterns in the soundscape (Sethi et al., 2020).

Another promising technology still in development is Wireless

Anti-Poaching for Elephants and Rhinos (WIPER), a collaboration

between researchers from Vanderbilt University and Colorado State

University (Kalmár et al., 2019, Wittemyer G., personal

communication, October 2024). WIPER detects gunshots by

capturing the ballistic shockwave generated by a bullet from up to

50 meters away. Integrated into existing GPS tracking collars,

WIPER is expected to send real-time alerts to authorities with the

precise location of the shot. Although the system doesn’t prevent

poaching, it could provide vital evidence for law enforcement and

potentially enable rangers to intercept poachers. Other technologies

aimed at localizing sound from illegal activities are also in

development but have not yet been fully implemented for

conservation purposes. One such example is the Time Difference

Of Arrival (TDOA) sound localization platform, which uses low-

cost Raspberry Pi units synchronized via GPS to pinpoint sounds

from different sources (Hendrikse, 2023). Though still evolving,

these innovations represent the growing potential for real-time

responses in conservation efforts.

In the marine environment, PAM systems have been employed

to detect illegal blast fishing (Braulik et al., 2017; Melo-Souza et al.,

2024), a destructive practice that devastated both marine life and

habitats (Slade and Kalangahe, 2015). Acoustic monitoring allows

for the identification of the distinct shockwave signature from

underwater explosions, easily distinguished from other sounds

(Woodman et al., 2003). In Tanzania, acoustic monitoring

provided a spatial assessment of blast fishing intensity along the

entire coastline. This study detected 281 blasts, revealing hotspots of

illegal activity, primarily near reefs and in shallow coastal waters.

The acoustic data enabled conservation managers to pinpoint areas

where enforcement should be focused for maximum impact.

Additionally, the monitoring identified the times of day when

blasting was most frequent, providing valuable information for

targeted enforcement operations (Braulik et al., 2017).

PAM and acoustic animal tracking (AT) have proven valuable

for detecting illegal fishing (Salloum et al., 2018; Tickler et al., 2019;

Villegas-Rıós et al., 2020; Alós et al., 2022). PAM can detect vessel

activities in restricted areas by capturing their acoustic signatures,

including motorized vessels that cannot be detected by satellite

monitoring. This can help authorities to redirect compliance and

surveillance efforts more effectively (Kline et al., 2020). AT is

increasingly used to collect spatial data on marine species (Matley

et al., 2022) using acoustic tags that emit ID-coded signals detected

by arrays or gates of acoustic receivers (Heupel et al., 2006).

According to Villegas-Rıós et al. (2020), specific detection

patterns can indicate fishing mortality. A study conducted in the

British Indian Ocean Territory found that a sudden spike in the loss

of acoustic tags from multiple reef sharks was strongly correlated

with the presence of illegal fishing vessels (Tickler et al., 2019). This

“fishing signature” in the telemetry data highlighted how acoustic

monitoring could help detect illegal activities in real or near real-

time, providing crucial evidence for enforcement. However, for
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effective detection of illegal activities using AT, the area intended to

be protected must be monitored via a dense receiver array that has

overlapping detection ranges, and the target species must exhibit

high site fidelity or home range within the monitored area (Tickler

et al., 2019; Villegas-Rıós et al., 2020).

2.4.1.1 Limitations

Not all forms of hunting can be detected with PAM. PAM

systems are primarily limited to detecting activities that generate

sounds, such as gunshots, chainsaws, vessel noise indicative of

illegal fishing. Silent hunting methods, such as trapping, snaring,

or poisoning, are less likely to be detected, highlighting the need for

a combination of complementary technologies to monitor a broader

range of threats effectively.

2.4.2 Camera traps
Camera traps have long been used for monitoring wildlife

populations (Burton et al., 2015) including species critically

threatened by IUWT (Khwaja et al., 2019; Petersen et al., 2020).

More recently camera traps have become recognized for their

potential to support anti-poaching efforts (Cress and Zommers,

2014; Moore et al., 2021). Remotely triggered cameras, strategically

placed in wildlife corridors and hotspots accessed by humans, detect

both animals and human activity, offering valuable insights into

temporal and spatial patterns of animal movement as well as illegal

activities such as poaching, logging, and encroachment.

Camera traps offer several advantages as security devices: 1)

they provide objective observations of illegal activities including

georeferenced images of both animals and human activity with

time and date stamps, thus supporting law enforcement efforts

with unbiased evidence that may be admissible in court, 2) they

can remotely monitor inaccessible areas, reducing the need for

costly ground patrols, 3) technological advancements have made

camera traps more affordable, efficient and accessible (Wearn and

Glover-Kapfer, 2019).

Several recent studies demonstrate the effectiveness of camera

traps in detecting and deterring wildlife crime. Illegal human activity

associated with tiger and tiger prey in the Bangladesh Sundarban

flooded forest was quantified by setting camera-traps at entrances to

creeks accessible to small boats (Hossain et al., 2016). Using camera-

traps to detect human incursions, poaching activity in parks in Brazil

was predicted to occur in places with concentrations of game species

abundance, near water resources near roads and forest edges

(Ferreguetti et al., 2018; de Matos Dias et al., 2020).

2.4.2.1 Limitations

The limitations of camera-traps for detecting poaching and

other security threats are first, that camera traps capture images

within a relatively narrow field of view. This means they may miss

activities that occur outside of their range. Deploying enough

cameras to cover vast landscapes or complex habitats can be

logistically challenging and expensive. Second, cameras can be

triggered by non-target objects, such as vegetation movement,

small animals, or even changes in light. This can result in a large

number of false positives, requiring significant time and effort to
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review and classify images. Conversely, if the trigger sensitivity is

too low, the camera may miss important events. Third, camera traps

generate massive amounts of data, particularly when deployed in

high-traffic areas. Reviewing and analyzing these images can be

time-consuming and labor-intensive. Managing and storing large

image datasets requires robust data management systems. Fourth,

camera traps are vulnerable to theft or damage by poachers, wildlife,

or environmental factors. Concealing cameras effectively can be

challenging, and their presence may be detected by those engaging

in illegal activities. Fifth, while camera traps can capture images of

humans, identifying individuals can be difficult, especially if they

are wearing masks or other disguises. Identifying specific wildlife

individuals can also be challenging, particularly for species with

subtle variations. Sixth, battery life and memory card capacity can

limit the duration of continuous monitoring. Gaps in monitoring

can occur when batteries need to be replaced or memory cards need

to be retrieved. Extreme weather conditions, such as heavy rain,

snow, or fog, can affect camera performance. Dense vegetation or

challenging terrain can limit camera placement and effectiveness.

Seventh, while some systems have the capability to issue real-time

alerts, many budget-friendly camera trap systems require physical

retrieval of the data stored on internal SD cards. This means that

poaching can occur, and not be known about for days, or weeks.

Finally, the use of camera traps raises ethical concerns regarding

privacy, particularly when deployed in areas frequented by humans

(Sharma et al., 2020). It is important to ensure that camera trap

deployments are conducted in a responsible and ethical manner,

respecting the privacy of individuals and communities.

By complementing camera trap data with data from acoustic

sensors (Dobbins et al., 2020), and AI-powered surveillance systems

(see below), conservationists can further enhance their ability to

detect, analyze, and respond to wildlife crime. This integrated

approach empowers rangers, communities and managers with

objective information, enabling more effective and targeted

interventions to protect endangered species and their habitats.

2.4.3 AI-powered surveillance systems
Artificial intelligence (AI) has emerged as a tool with great

potential for conservation including for applications related to

combating IUWT (Reynolds et al., 2024). By leveraging machine

learning, computer vision, and real-time data processing, either in

the field or in the cloud, these systems can open the door to rapid

detection and response of dangerous events and potential poaching

activities across vast, remote landscapes where traditional

surveillance methods might fall short.

Wildlife Protection Solutions (WPS) has developed wpsWatch,

a free-for-conservation, hardware agnostic web platform to help

protected area managers fight wildlife crime and promote human-

wildlife coexistence. wpsWatch uses AI to analyze imagery from

more than 3,500 connected camera traps and other surveillance

systems globally. Users are provided with secure alerts via SMS,

WhatsApp, email, and dashboards, and data also flows to protected

area management tools such as SMART, EarthRanger, Cmore (a

field data collection platform used by South African National

Parks), and others via Gundi. wpsWatch enables conservationists
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to maximize real-time knowledge of conserved areas by identifying

potential threats including humans and vehicle intrusions in real-

time. Such detections allow conservation practitioners to rapidly

develop “pattern of life” awareness as well as respond to emerging

threats immediately.

wpsWatch improves management efficiency by ensuring that

field staff receive instant notifications based on rules specified in the

platform’s alerting engine. In addition, a complete record of all

imagery is maintained for awareness of other details such as non-

target species observations, fire detection, environmental changes,

and other “bycatch” intelligence. wpsWatch also automatically

activates remotely deployed lights, alarms, audio equipment, scent

dispensers, and other electric wildlife deterrent devices to prevent

human-wildlife conflict. Finally, the platform monitors and reports

the overall health of the network to ensure that all deployed

technology is functioning properly. For operations that do not

have 24-hour monitoring capacity WPS also offers an optional

program wherein certified volunteers remotely assist by reviewing

anonymized camera feeds for additional assistance.

This technology, when paired with strong field presence and

well-defined operational procedures contributes to an integrated

approach combining real-time awareness with on-the-ground

action. Such systems enhance a protected area’s capacity to

effectively combat poaching and IUWT (Figure 2), monitor

wildlife health (Figure 3) and safeguard endangered species.

ConservationAI is an online platform that detects and classifies

animals, humans, and poaching-related objects using visual

spectrum and thermal infrared cameras (Fergus et al., 2024). The

platform can process historical camera trap image and video data as

well as data from cameras that are either connected to WIFI or a

mobile phone network. The latter provides users with the option to

get near-real time detections emailed to them within approximately

30 seconds or so after the camera trap has been triggered. It thus

provides a system for rapid interventions if needed. ConservationAI

also offers a desktop application that allows users to run the models

on their own computers without uploading the data to the online

platform. ConservationAI has a number of regional multi-species
FIGURE 2

Poachers who were eventually apprehended due to alerts from
wpsWatch. Credit Wildlife Protection Solutions.
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camera trap models that are regularly updated and expanded with

new species. The platform also has several drone models for optical

and thermal data and aims to expand drone models (Chalmers

et al., 2021).

AddaxAI is an offline tool that uses the open-source

MegaDetector model as well as other regional models to analyze

and classify images from camera-traps on a local computer.

Conservation X Labs’ Sentinel team has been building a device

to plug into regular camera traps to turn them smarter with AI

capabilities and communications. These units filter all images taken

on the cameras, highlighting species, people, and events of

particular interest, and send this information back to users over

cellular, satellite networks, or LoRa. LoRa is physical proprietary

radio communication technique, designed for long-range, low-

power communication, particularly for IoT applications. The

devices are designed to be robust for field use and act as the first
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data filtering step, as information is processed before it ever leaves

the field, cutting down significantly on the time it takes to retrieve

SD cards, manually sort recorded photos, and respond to field

events (Figure 4).

Trailguard AI is a camera-based alert system powered by

artificial intelligence. It is designed to identify specific wildlife

species, humans, and vehicles, instantly sending real-time image

alerts via GSM, long-range radio, or satellite networks.

Skylight extends the use of AI to support efforts to tackle illegal

fishing and other threats to marine biodiversity. Developed by Ai2,

the no-cost and real-time maritime monitoring and analysis

software empowers the visualization and analysis of vessel

behaviors. Using publicly available satellite data offered by NASA,

the European Space Agency (ESA), and others, along with data

from the Automatic Identification System (AIS), the software

provides its users with AI-powered vessel detections (Beukema

et al., 2023) and insights based on specific behaviors, such as at-

sea transshipment of goods, a key challenge to transparency in the

fight against illegal fishing and IWT.

Skylight’s AI has the ability to monitor activities in the most

isolated areas (see also 3.2 below). Skylight’s AI processes data

globally at scale, handling approximately 100 million AIS messages

as well as nearly two terabytes of satellite imagery daily. By

analyzing this volume of information, Skylight can detect over

290,000 vessels per week across all of its public satellite data

sources, revealing patterns and uncovering vessels potentially

evading detection. This is crucial, given maritime transport is a

popular way to smuggle illegal wildlife products.

With its AI-driven intelligence, Skylight flags suspicious

behaviors in real-time such as unauthorized entry into protected

areas, sudden changes in a vessel’s speed, or covert transshipments

with non-AIS transmitting vessels. These alerts enable authorities to

investigate potential IWT activity on the open sea, helping to

intercept smuggled wildlife products from entering the black market.
FIGURE 4

A Sentinel device connected to a Browning trail camera in Peru. Credit. Conservation X Labs.
FIGURE 3

An image of a leopard caught in a snare, prompting a veterinary
response. Credit Wildlife Protection Solutions.
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By design, AI-powered surveillance systems should generate

and send alerts in real-time as events occur and send that

information to the relevant authorities. These systems are not

made to replace human capacity to identify threats, but ensure

analysts are made aware of potential threats as soon as possible, and

ultimately decide if a response is required. AI-powered surveillance

systems can help law enforcement and local communities, who

struggle to get information from remote field locations in the first

place, have reliable and faster access to that information, so that

response times can be minimized.

Beyond providing these data through Skylight’s web platform,

Ai2 has open sourced the models and makes the data available via

API for other systems to integrate the data, helping extend the value

of Skylight to reach more enforcement, parks and fisheries agencies

in more than 75 countries.

Integrating these AI tools with existing platforms like

EarthRanger provides teams with comprehensive data on

poaching patterns from an array of input sensors, allowing for

predictive analytics to preempt future poaching incidents.

2.4.3.1 Limitations

The increasing integration of AI in conservation holds great

promise but also presents some risks that need careful

consideration. One major concern is the potential for AI to

contribute to the militarization of conservation, with automated

systems triggering enforcement without understanding local

contexts, potentially leading to conflict. Biases within AI models,

“AI pollution,” and the high computational costs of large models

pose further challenges (Reynolds et al., 2024). Moreover, the

environmental impact of AI infrastructure’s energy consumption

must be addressed. The dual-use nature of AI tools means they

could be exploited by malicious actors, such as poachers or wildlife

traders, for harmful purposes. There is potential for AI to

exacerbate existing inequalities. If AI-driven conservation

becomes the dominant approach, funding and resources may shift

towards wealthy institutions capable of implementing it, leaving

traditional, field-based conservation efforts underfunded. This

could undermine the diversity of voices and knowledge in

conservation, particularly those of local communities and

indigenous populations. Furthermore, there’s a risk of losing

essential conservation skills as practitioners prioritize AI over

traditional techniques. Maintaining expertise in species,

ecosystems, and communities is crucial for creating reliable AI

and ensuring that AI-driven recommendations are grounded in

reality. The reliance on data, raises concerns about “AI

colonialism,” where data extracted from the Global South is used

to train models in the Global North, leading to externally imposed

management decisions (Reynolds et al., 2024). This could

perpetuate colonial legacies and disregard local rights

and knowledge.

To mitigate these risks, it’s crucial to adopt ethical guidelines,

integrate diverse perspectives, ensure equitable access to resources,

and prioritize human-in-the-loop designs and democratic

decision-making.
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3 Case studies

In this section we present two case studies; one terrestrial and

one marine that illustrate the nature of complex sets of threats from

IUWT that impact wildlife, requiring the design of context specific

solutions to support conservation teams with appropriate

conservation technology tools.
3.1 Ensuring patrol effectiveness across the
Greater Kafue Ecosystem with SMART and
EarthRanger

Kafue National Park (22,400 km²), Africa’s third-largest

unfenced park, sits within Zambia’s Greater Kafue Ecosystem

(GKE) of 66,000 km², which includes nine Game Management

Areas. The GKE’s diverse landscapes—ranging from the Busanga

plains to expansive Miombo woodlands—host Zambia’s largest

cheetah population, over 200 lions, and 21 antelope species.

However, wildlife here has suffered from intense poaching and

habitat loss, severely impacting predator-prey dynamics, especially

for large herbivores and big cats.

In 2018, Zambia’s Department of National Parks and Wildlife

(DNPW) joined forces with conservation groups, including Game

Rangers International, Musekese Conservation, Panthera, Wildlife

Crime Prevention, and Mushingashi (joined by African Parks in

2021), to coordinate conservation activities in the GKE with a

strong focus on Kafue NP. This coalition brought increased funding

and resources, bolstering efforts across the landscape.

At the heart of this conservation initiative are the SMART and

EarthRanger platforms, which together strengthen patrol

management and conservation monitoring across the Greater

Kafue Ecosystem (GKE) (Figure 5) (UNEP-WCMC and IUCN,

2021). In the GKE, SMART was used to standardize the collection

and visualization of patrol data, monitor routes, and track sightings,

offering park managers transparent insights into antipoaching

effectiveness. By mid-2022, SMART had aggregated data from all

49 patrol teams across 11 hubs and six different organizations in the

GKE. This data informed monthly coordination meetings, enabling

adaptive management and boosting patrol productivity (Figure 6).

In 2021 alone, patrol teams covered 211,073 km and made 322

apprehensions through diverse methods, from foot patrols to aerial

surveillance. SMART’s design, especially with SMART Mobile,

enables each organization to retain control of its own data while

contributing to a unified, ecosystem-wide database. This shared

resource facilitates a landscape-wide adaptive management

approach, enhancing collaboration among organizations to

optimize conservation efforts across the Greater Kafue Ecosystem.

Complementing SMART, EarthRanger was implemented in

2021 to provide real-time monitoring of assets such as vehicles,

patrol teams, and collared wildlife. This platform integrates data

from patrols and wildlife monitoring, enabling what’s known as the

“Halo approach” to specifically protect wild cats in real-time.

EarthRanger’s centralized display allows law enforcement teams
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from different organizations to coordinate seamlessly, boosting

situational awareness and resource efficiency across Kafue NP.

Together, SMART and EarthRanger underpin a collaborative

approach that strengthens patrolling effectiveness, allowing

DNPW and partners to respond adaptively to the ever-evolving

challenges within the GKE.
3.2 Protecting the Conkouati-Douli marine
protected area with EarthRanger and
Skylight

Conkouati-Douli National Park (PNCD) in the Republic of

Congo is located along the Atlantic coastline. It encompasses

marine and terrestrial habitats, making it the second-largest
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protected area in the country. The Park covers 7,995 km², of

which 4,275 km² is designated for marine protection, which

makes up 12% of the country’s Exclusive Economic Zone (EEZ).

The PNCD borders the Mayumba MPA in Gabon, forming the

Mayumba-Conkouati Transfrontier Marine Protected Area, which

aims to protect shared marine resources and valuable habitats for

biodiversity resilience. Despite cooperative efforts to create the

Transfrontier MPA, illegal, unreported and unregulated (IUU)

fishing remains a persistent threat, particularly from industrial
FIGURE 5

Map of the Greater Kafue Ecosystem in Zambia showing the
Department of National Parks and Wildlife (DNPW) Smart Hubs
network including main Smart Base, Smart Hubs, Kafue National
Park and other protected areas within the KAZA Transfrontier
Conservation Area.
FIGURE 6

Infographic explaining the SMART adaptive management cycle used
by DNPW and Panthera for adaptive patrol operations. The cycle
includes five stages: Data Collection which includes Pre-briefing and
De-briefing, Data Entry, Analysis & Reporting, Feedback &
Evaluation, and Strategic Patrol Planning. The cycle begins when
patrol teams are briefed on the day of deployment and given
relevant targets to meet during their patrol duty. Patrol teams
collect and record data on threats and wildlife. Patrol teams report
on their patrol activities and data is vetted and entered in the SMART
database. Data is processed into highly visual tables, charts and
maps, showing patrol effort and encounters in spatial context.
Reports are created showing patrol efforts and results. Patrol
objectives and targets are created and evaluated using SMART data.
Finally plans are created using the updated data and
information reports.
FIGURE 7

Patrol vessel (black) approaching illegal fishing vessel (blue) inside the Conkouati-Douli National Park. Credit PNCD.
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demersal trawlers and the growing artisanal fishing fleet that targets

key species like sharks (Figure 7). IUU fishing undermines

conservation and protection efforts within the PNCD and the

larger Mayumba-Conkouati Transfrontier MPA, highlighting an

urgent need for strengthened surveillance initiatives, cost-effective

compliance measures and enhanced enforcement strategies.

In 2023, NGO Noé, the management partner of the PNCD,

acquired a high-tech nine-meter patrol vessel to aid in marine

compliance operations. However, detecting IUU fishing remained a

significant challenge. This was due to inconsistent reports from

local fishers, limited ability to differentiate between commercial and

fishing vessels from a distance, and the park’s remote location,

which makes direct monitoring from the PNCD headquarters

difficult. As a result, compliance efforts have primarily relied on

visible policing rather than intelligence-driven missions. To

improve IUU vessel detection and marine compliance mission

effectiveness, Noé started using Skylight, a maritime monitoring

and analysis tool using satellite data and AI algorithms to determine

vessel activity from the Allen Institute for AI (Ai2), integrated

with EarthRanger.

Skylight utilizes the Sentinel satellite array and Night Lights

(VIIRS) data to provide weekly data on vessel presence and activity

within a specified area. This data is analyzed to generate a threat

assessment with precise geospatial references to the borders of the

PNCD. The analysis includes filtering to identify “dark vessel”

detections (vessels not actively transmitting their Automatic

Identification System (AIS) signals). These dark vessels are

flagged as potential targets for IUU fishing. Based on data

clusters, specific zones within the PNCD are prioritized for

compliance missions, maximizing the likelihood of successful
Frontiers in Ecology and Evolution 13
intervention by focusing on high-risk zones. Integrating Skylight

data with EarthRanger allows alerts of vessels entering the PNCD to

be generated using a geofence setup in Skylight. For example,

Figure 8 shows four vessels registered in different countries

(China, Spain, United Kingdom and the Netherlands) detected by

Skylight entering the PNCD. These alert notifications allow for near

real-time data to advise operational requirements. Skylight

technology has significantly improved the ability to detect vessels

and analyze data related to IUU fishing activities within the PNCD.

The implementation of EarthRanger’s unified platform for real-

time monitoring, tracking, and communication has markedly
FIGURE 8

Visualization of marine traffic off the coast of the Republic of the Congo using Skylight showing tracklogs of detected vessels actively fishing inside
the Conkouati Marine Protected Area Extension (pink and yellow lines of HAIXIN30 and TORREDOLORO operating closer to the mainland)
compared with tracklogs of commercial vessels passing through (pink lines of COASTAL AURORA and SPIRIT OF SYDNEY operating further
from mainland).
FIGURE 9

An observer uses EarthRanger mobile to record an illegal fishing
vessel. Credit PNCD.
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enhanced operational safety, streamlined the systematic recording

of intervention data through the EarthRanger mobile application,

and improved the recording of marine observations during patrols.

Over an eight month period, using an integrated combination of

EarthRanger’s core functionalities with Skylight’s AI capabilities

and real-time satellite data analysis, the PNCD marine program

conducted 40 sea-going missions, of which Skylight data-informed

18. In total, 111 vessels were detected at sea, of which 60 were

intercepted. Of the 60 intercepted vessels, 55 were artisanal

pirogues, and five were industrial fishing trawlers. Analyzing

Skylight data, an additional nine industrial vessels were prevented

from crossing into the PNCD due to visible patrols based on vessel

grouping detections in high-risk zones. In addition, Skylight

identified two dark vessels in the PNCD, prompting a compliance

mission; the vessels were Congolese-flagged semi-industrial shark

fishing gillnetters operated by foreign captains.

The integration of Skylight and EarthRanger has improved all

operational aspects of the PNCD marine program. By developing

standard operating procedures based on these management tools,

the PNCD has enhanced mission safety and communication

(Figure 9). This integration has also led to better detection

capabilities, quicker compliance response times, and strengthened

data and evidence collection. By streamlining and strengthening

Monitoring, Control, and Surveillance (MCS) tools, the PNCD has

created an effective marine compliance strategy that is flexible to

changes in threats imposed by IUU fishing activity.
4 Discussion

Illegal and unsustainable wildlife trade is a complex and

multifaceted threat that is constantly changing with market-specific

demand for wildlife species and products and as availability fluctuates

due to changes in law enforcement effort and effectiveness across the

trade chain, and as species populations increase or decrease across

their ranges. As evidenced from the case studies presented here,

conservation operations aimed at protecting fish stocks, or wildlife in

source populations from entering the trade chain need to be carefully

tailored to address local and regionally specific threats, utilize the best

available local and scientific knowledge of wildlife behavior and

distribution, and be flexible to adapt to changing conditions. The

evolution of conservation technology has produced powerful support

tools in containing these threats with some important caveats;
Fron
1. What the technology can and cannot do needs to be clearly

understood by the user or it will not be used effectively;

2. Ensure the right technology is in the hands of the

right people;

3. Focus technology development on supporting rangers,

managers and other practitioners involved in IUWT work;

4. Build technology competence and capacity;

5. Foster community building and create opportunities

around technology;
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6. Engage the technology sector to innovate and design

technology to support IUWT work;

7. Technology adoption should be encouraged as a

complement to antipoaching and IUWT investigation

skills rather than as a replacement.
How these challenges may be addressed is described in detail by

(Cronin et al., 2021b). Future improvements to the platforms and

technologies described in this report could include the following;
1. Using enhanced AI and machine learning by incorporating

predictive analytics to forecast poaching hotspots and

trafficking routes (Xu et al., 2019). Automating data

analysis to identify patterns and anomalies that may

indicate illegal activity.

2. Improved sensor networks by expanding the use of acoustic

sensors and camera-traps to provide continuous

monitoring of wildlife populations and potential threats.

Developing more durable and energy-efficient sensors for

long-term deployment in remote areas.

3. Application of blockchain technology to track the legal

trade of wildlife products, making it easier to identify and

intercept illegal shipments.

4. Developing tools for automated monitoring of social media

platforms for the sale and trade of illegal wildlife products.

Using social media analytics to understand consumer

demand and identify key markets.

5. Developing systems that facilitate seamless data sharing

and strengthen collaboration between law enforcement

agencies in different countries.

6. Employing demand reduction strategies by integrating data

that can help to understand and counteract the motivations

for poaching and illegal trade. This could include indicators

derived from poaching encounters, social science data and

economic data.
By harnessing the power of data, connectivity, and innovation,

conservation technology can empower those on the front lines

(rangers, communities, managers, conservation specialists) to

protect wildlife, disrupt poaching networks, and safeguard

habitats for species that are subject to unsustainable levels of

harvest and trade (Speaker et al., 2022; Fergus et al., 2023). We

have shown here the transformative potential of technology in

combating the poaching and unsustainable harvest components of

illegal wildlife trade, offering a roadmap for a more effective and

sustainable future for wildlife conservation.
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