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Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS)

provides high-resolution, real-time tracking of volatile organic compounds

(VOCs), yet its analytical workflows for complex mixtures are often

underexplored. This study presents a flexible data analysis workflow tailored for

PTR-TOF-MS, designed to manage datasets with multiple replicates and

experimental factors efficiently. Using lavender plants (Lavandula angustifolia

Mill. var. diva) in a controlled greenhouse environment, we analyzed BVOC

emissions over a 24-hour cycle. The workflow integrates data importation and

optimization via the provoc R package, utilizing Multivariate Curve Resolution

(MCR) to decompose spectra into biologically meaningful components and

Redundancy Analysis (RDA) to assess component relevance. For this specific

model experiment, we determined that normalization using the RUVr method

and using and setting the MCR on a number of five components gave the most

accurate results. However, this configuration is optimized for the current dataset;

other experimental designs may require different normalization methods or

numbers of components to achieve optimal results. The workflow enables

effective differentiation of VOC emission patterns depending on experimental

factors as well as an effective normalization method selection. It provides a

systematic approach to PTR-TOF-MS data interpretation, adaptable to various

experimental designs and scientific questions, making it valuable for studying

complex VOC mixtures in chemical ecology and metabolomics. This method

supports long-term, non-destructive sampling while delivering precise

VOC profiling.
KEYWORDS

PTR-ToF-MS (proton transfer reaction time-of-flight mass spectrometry), chemical
ecology, data analysis workflow, Lavandula angustifolia, VOC emission
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1 Introduction

Biogenic volatile organic compounds (BVOCs) are defined as

organic atmospheric trace gases other than carbon dioxide and

monoxide, produced by living organisms (Kesselmeier and Staudt,

1999). They represent a high diversity of compounds including

isoprenoids, benzenoid, polyketides, fatty acid derivatives. In

terrestrial ecosystems, these BVOCs are produced and emitted in

the air by a variety of organisms but most of the global total

emission is produced by plants and more specifically foliage (Baghi

et al., 2012; Greenberg et al., 2012; Dudareva et al., 2013). These

fragrant chemicals are produced by plants various organs to interact

with their environment. These interactions include plant defense

against biotic and abiotic stresses, plant communication, fruit

dispersion and pollinator attraction for reproduction (Peñuelas

and Staudt, 2010; Abbas et al., 2017).

To understand the functional role of these BVOCs non-

destructive approaches are often the most relevant to simulate the

ecological environment in which these BVOCs are likely to be

involved. The plant is kept alive and undamaged for the duration of

the experiment. Under controlled or semi-controlled conditions, an

experimental approach is used to vary one or more factors and

monitor the resulting variations in BVOCs emissions. These factors

can be external biotic factors: introduction of phytophagous insects

(Hare, 2011) or pollination (Proffit et al., 2018); external abiotic

factors such as light, temperature, hydric status, development stage;

and/or internal factors like the circadian clock or developmental

stage (Zeng et al., 2017).

In non-destructive approaches, temporal sampling is necessary

to measure the effect of the factor(s) on the BVOCs emission. As the

plant’s response is not necessarily instantaneous, it is coherent to

first establish the temporality of the plant’s response. Similarly, the

plant’s response will not necessarily be binary (presence/absence of

one compound) but rather quantitative (less/more) and possibly

multidimensional (Proffit et al., 2008). Hence, a continuous and

non-invasive sampling method is needed.

Till date, temporal and non-destructive sampling of BVOC on

plants is still challenging because it is necessary to ensure and

control survival conditions (light, air renewal, temperature, air and

substrate humidity). The most frequently used non-invasive BVOC

sampling techniques are divided into static and dynamic headspace

(HS) techniques. Static HS techniques mainly refer to “Headspace

Solid Phase Microextraction” (SPME) and can be used for VOC

emission timewise sampling. The use of temporal sampling has

been previously reported in Agrostis stolonifera and Pennisetum

clandestinum, in which the VOCs were collected from plants that

were subjected to wounding (Perera et al., 2002). Additionally, it

was also used to analyze methyl-salicylate emission by tomato

plants after inoculation with tobacco mosaic virus (Deng et al.,

2004). SPME sampling was also improved in a time-dependent

sampling context, with the adding of an auto-sampler that

automatically exposes the fiber to the sample and introduces it

into the injection port of the Gas Chromatography coupled with a

Mass Spectrometer (GC-MS). This improvement permitted a fine

determination of the daily VOC emission pattern of transgenic lines
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of Arabidopsis thaliana with frequent and regular sampling points

over time (Aharoni et al., 2003). This technique is fast and effective

however it is not the most appropriate technique for quantitative

analysis due to the influence of temperature and sample volume on

the adsorption quantity of the fiber (Yang et al., 2013).

On the other hand, dynamic HS techniques were developed on

BVOCs in the 80s (Curvers et al., 1984; Mookherjee et al., 1989).

Due to the constant gas exchange, this technique avoids the

problem of BVOC accumulation in the HS, a challenge often

encountered with SPME, and is therefore more suitable for

quantitative analysis and tracking continuous variations (Tholl

et al., 2020). Thus, it is often preferred over static HS techniques

for temporal sampling. For instance, it was used to determine the

emission rates of isoprene and monoterpenes of many plant species,

sometimes in response to a temperature or a light intensity gradient

(Kesselmeier and Staudt, 1999). Several studies also investigate the

BVOC emission pattern of a plant after a stress exposure like ozone

(Heiden et al., 1999; Dubuisson et al., 2022) or cadmium (Durenne

et al., 2018). These techniques are powerful to determine BVOCs’

identity if coupled with MS and to quantify rather precisely.

However, depending on the plant species, long sampling time

could be a limitation to obtain several acquisition data per day

(Cáceres et al., 2016). Furthermore, the sample preparation

for dynamic HS extraction is usually delicate and difficult

to automatize.

Another non-invasive VOC sampling technique is Proton

transfer mass spectrometry (PTR-MS): a sensitive analytical

technique that allows for the detection and quantification of trace

gases and VOCs in real-time. It was developed in 1998 (Lindinger

and Jordan, 1998) by connecting chemical ionization technologies

with a flow-drift tube. This technique relies on the chemical

ionization by proton transfer reactions with H3O+ ions. The

connection to a quadrupole permits the ion m/z analysis. Ion

fragmentation is low compared to more classical mass

spectrometer techniques, and the time response is very fast

because VOCs spend less than 1 second in the drift tube (Tholl

et al., 2020). PTR-MS was originally developed for medical purposes

like breath analysis, for food research like ripening control and for

geophysical research like monitoring changes of VOCs in the

ambient air (Lindinger and Jordan, 1998). Subsequently, a PTR-

MS with a time-of-flight mass-spectrometer (TOF-MS) was

developed, replacing the quadrupole. This modification enables

instantaneous detection of whole mass spectra and enhances the

separation of single ions according to their m/z ratio (Ennis et al.,

2005; Tanimoto et al., 2007). A comparison of the different BVOC

sampling methods detailed is shown in Table 1.

The advent of PTR-TOF-MS technology has led to the

diversification of the fields of application. Some potential

applications are atmospheric VOC analysis (Han et al., 2019;

Huang et al., 2020), food analysis like VOC based raspberry

cultivar discrimination (Cappellin et al., 2013), Pinot noir wines

discrimination (Schueuermann et al., 2017) and fingerprinting of

food samples (Cappellin et al., 2012). Similarly, it was used to

discriminate wood-cores from different tree species (Taiti et al.,

2017). PTR-TOF-MS can also be used to sample BVOC emission at
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a whole ecosystem level like the global VOC emission and oxidation

of a ponderosa pine ecosystem canopy in relation to time and light

intensity (Kim et al., 2010; Kaser et al., 2013), or at a whole-year

scale: the seasonal changes of BVOC emissions at different heights

in the amazon forest (Yáñez-Serrano et al., 2015) and in a

Mediterranean oak forest (Yáñez-Serrano et al., 2021). However,

studies deploying PTR-TOF-MS to analyze the individual-scale

temporal variations of VOCs are relatively scarce. It was used to

characterize Arabidopsis thaliana mutants based on VOC emission

profile, especially isoprene emission pattern (Li et al., 2020). PTR-

TOF-MS was used to determine the accuracy of VOC emission

profiles obtained with dynamic chamber systems, testing on

timewise VOC emission of Pinus sylvestris shoot (Kolari et al.,

2012). Plant VOC emission patterns in relation to external factors

were determined using a PTR-TOF-MS for several Mediterranean

plants according to development stage (Bracho-Nunez et al., 2011),

for Populus alba after wounding and darkening (Brilli et al., 2011),

for apple plants after infestation by Pandemis heparana

(Giacomuzzi et al., 2016) and for maize leaves according to

senescence (Mozaffar et al., 2018) and for inflorescence scent

synchrony in Arum maculatum (Marotz-Clausen et al., 2018).

Despite its high accuracy, automation and instantaneity, PTR-

TOF-MS is still rarely used in chemical ecology, even though it is

particularly well suited for non-invasive temporal sampling of

single organism emission. New data-analysis workflows were

developed to improve and democratize the use of this technique

in the medical field, particularly for the chemical analysis of breath

(Roquencourt et al., 2022). However, these workflows are suited for

continuous sampling of a limited diversity of compounds and don’t

handle experimental designs with replicates and different

conditions, as often found in chemical ecology approaches.

Firstly, unlike in the classic chromatography analysis, there is no

compound separation. All the ions are fragmented together,

producing mass spectra corresponding to a sum of parent ions

and fragments of all molecules at once. Thereby making the

identification of individual compound a difficult process. The

issue becomes more acute when the model being studied

produces a complex and diverse blend of VOCs. Various

strategies have been suggested to overcome this challenge, such as

dynamic or static HS intermittent sampling in parallel of the PTR-

TOF-MS, or even a direct coupling of PTR-MS with a GC-MS

(Lindinger et al., 2005). Our proposal involves resolving these issues

by dividing the total fragment ion mass spectrum into sub-spectra
Frontiers in Ecology and Evolution 03
associated with conditions that are relevant to the experimenter.

Breaking down the total spectrum into groups of masses exhibiting

similar behavior under given conditions is another step towards the

systematic identification of chemical species. However, this strategy

requires the application of an effective normalization process to

highlight the trends correctly. This research features several

innovative decision-making tools: a normalization selection

method employing multivariate redundancy analysis, which is

predominantly conducted with visual criteria (Livera et al., 2015;

Misra, 2020), or correlation coefficients (Wulff and Mitchell, 2018),

and a statistical method capable of dividing a spectrum based on the

dynamics of the data (Multivariate Curve Resolution).

In this study we propose a data analysis workflow designed to

handle data from PTR-TOF-MS. This workflow aims to efficiently

compare samples after normalizing for biological and ecological

variability, followed by subsetting the global mass spectra into sub-

spectra of molecules that show similar dynamic patterns under

experimental conditions, and finally it identifies the effects of the

experimental factors. This workflow is designed specially to guide

PTR-TOF-MS data analysis in chemical ecology studies with a focus

on BVOC emission temporal sampling.
2 Materials and equipment

To illustrate our PTR-TOF-MS data analysis process, we used a

simple experimental design to sample the BVOC emitted by

lavender plants over the period of 24h with two varying discrete

factors: day/night and one continuous factor: time, with or without

plant. The experiment was carried out in a greenhouse with natural

light and a controlled temperature of 20°C at night and 25°C during

the day. We used 3-year-old lavender plants (Lavandula

angustifolia Mill. var. diva) in full bloom because lavender

inflorescences are rich in emitted BVOCs. Plants were chosen to

have of the same inflorescence stage, size and inflorescence number.

Each plant was placed in a closed cylindrical dynamic chamber

(Kolari et al., 2012; see Dubuisson et al., 2022 for more details about

the chambers) consisting of a PTFE (polytetrafluoroethylene) disk

of 38 cm in diameter, to which a 50µm-thick PTFE transparent film

was attached. The chamber’s volume capacity was 30L

approximately, and its height could be adjusted according to the

size of the plant. The air was purified using a carbon filter before

entering the chamber and the flow was maintained at 3 L/min with
TABLE 1 Comparison table of different BVOC sampling methods.

Static HS Dynamic HS PTR-TOF-MS

VOC recovery With solvent or solvent free With solvent or solvent free Solvent free

Sampling Fast Sampling time varies according to
species and system (from a few minutes
to several hours)

Instantaneous

Quantitative analysis Not suited suited High accuracy

Automatization No No Yes

Separation of molecular species Yes if coupled with GC-MS Yes if coupled with GC-MS Yes if coupled with GC-MS
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a flowmeter and an air pump (KNF, N816.1.2K.18R, Germany) for

the duration of the experiment. The air inside the chamber was

continuously homogenized by a PTFE fan mounted under the disk.

The chamber was connected to the pump on one side and to the

PTR-TOF-MS on the other, via PTFE tubing. Three independent

chambers were measured in one set: 2 chambers containing one

plant in a pot and an empty chamber as a control (Figure 1). The

PTR-TOF-MS was set to switch chambers every 6min and

automatically with a multiway switch. The PTR-TOF-MS

sampling time was optimized to have a correct m/z resolution: 30

sec per sampling and 12 sample points per chamber, then the

PTRMS switched to the next chamber. All the sample points

between 10:30 am and 6 pm are considered “day samples” and all

the sample points between 10:30 pm and 6 am are considered “night

samples”. Whilst conducting the experiment, the sunset was around

10 pm and sunrise around 6:30 am, the “day samples” could have

cover a longer period of time, but in order not to overcomplicate the

data, we chose to take a time window of identical length for both

day and night. The PTR-TOF-MS m/z parameters were set to cover

m/z from 52 to 205. The whole system was set-up 10 hours

before for the lavender emission to stabilize and the plant’s

evapotranspiration to adapt to the chambers. At the end of each

sampling, the inflorescences were cut, dried for one week in a 50°C

oven, and weighed. The experiment was performed with 6

biological replicates.
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3 Methods

3.1 Data importation

The raw data files created by the PTR-TOF-MS are in

hierarchical data format (HDF), which is an open data format,

characterized by a “.h5” extension. The raw data importation was

done using the function named “import.h5()” from the provoc R

package (Huguenin, 2022). This function uses different arguments

to optimize the data resolution: a baseline correction argument that

corrects the detector fluctuations and reduces the offsets in the m/z

values, an argument that adjusts the peak size width, and the signal-

to-noise ratio “SNR”. We conducted 12 sampling points per

chamber, however, only the 6 last sampling points per chamber

were included in the subsequent analysis. This decision was made

due to possible cross-contamination of the chambers with the

residual air from the previous chamber, resulting from the

chamber-switching settings during sampling. When the data

importation was done, the import.h5 function output gave a list

of multiple objects. In the output list, a matrix automatically named

“peaks” was created which represents the intensity values of m/z

across multiple samples. In the output list, another matrix named

“meta” was created that represents the metadata associated with

each sample. Factors and factor levels were added to the matrix

“meta”. The modified “meta” matrix was reintegrated into the
FIGURE 1

Schematic diagram of the experimental dynamic chamber system.
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output list. All the data importation and data optimization

functions used in this publication were computed in the “provoc”

R package (Huguenin, 2022).
3.2 MCR, a method to extract meaningful
component from the raw data

Multivariate Curve Resolution (MCR) is the generic

denomination referring to a family of methods employed to

provide a chemically meaningful additive bilinear model of pure

contributions solely from the information of an original data matrix

(De Juan et al., 2014). For instance, consider a matrix M, where the

rows represent the sampling time, and the columns represents the

spectral information. Each row in the matrix contains a complete

spectrum recorded at a specific time-point, and each column

represents the evolution of a spectral component (such as

wavelength, m/z, ppm …) over time. The MCR divides the whole

matrix into several sub-spectra (Scomp) and their associated

concentrations over time (Ccomp). Each Ccomp-Scomp

combination is called a component. The particularity of the MCR

and its primary distinction with the other bilinear models (like

PCA), lies in its ability to non-orthogonally divide each spectral part

of the matrix. This characteristic allows MCR to accurately reflect

the natural properties of the chemical entities. Unlike other bilinear

models, where each spectral part can only be considered in its

totality, MCR divides each spectral part into several components.

This method is ideally suited for data obtained by PTR-TOF-MS as

each m/z gives a mixed contribution to the “pure”molecule spectra.

For example, in PTR-TOF-MS fragmentation, the m/z 81 is

characteristic of most monoterpenes fragmentation (unlike m/z

137 characteristic for monoterpenes with GC-MS fragmentation);

the MCR analysis can divide the abundance of the m/z 81 of

different monoterpenes as long as they have different co-varying

patterns. However, MCR doesn’t have a default number of

components, as a consequence of the “ambiguity of permutation”

which implies that there is no priority order in the pure spectra and

their associated concentration. The component number can go

from 2 to infinite. Because of this aspect, setting the number of

components during the analysis is necessary. The MCR method

functions used in this publication are computed in the “provoc” R

package (Huguenin, 2022).
3.3 RDA, a method to evaluate optimal
parameters

Redundancy analysis as explained in Capblancq and Forester

(2021) is a type of asymmetric canonical analysis that combines

ordination and regression. First, a regression is performed on

quantitative variables that are considered as response variables Y,

on a set of explanatory variables X, thereby computing a new matrix

of fitted values Y’. Then ordination is performed on Y’ with

principal components analysis (PCA) for determining new

synthetic composite variables (principal components or PC axes)
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which best capture the variance of the data. The RDA further

partitions the total variance into constrained or factorial variance

(proportion of variance explained by the explanatory variables of

the model X on the dispersion of the response variables Y) and

unconstrained or residual variance. It is usually represented in the

form of a ratio between factorial variance (variance of Y explained

by X) and residual variance (variance of Y not explained by X) and

is termed as the Proportion of Constrained Inertia (PCI) (Oksanen,

2019). RDA is a non-parametric method suited for multivariate

data. It models both multivariate response and multivariate

explanatory variables and is thus particularly useful in the PTR-

TOF-MS data analysis workflow to evaluate the optimal

combination of normalization method and number of

components (i.e. the combination that maximize the factorial

explained variance. The RDA method functions used in this

publication are computed in the “vegan” R package (Dixon, 2003).
3.4 MCR validation by comparison with
randomized dataset

To validate our workflow, we performed randomization of the

data and compare the results of the RDA between randomized dataset

and the real data. A randomized version of the intensity matrix

“peaks” is created, where samples are randomly distributed between

the factor levels (“sample()” function). For each dataset, we performed

theMCR analysis to obtain the components. MCR are performed with

2 to 10 components on the output list containing the raw (or

randomized) data intensity matrix “peaks” and the metadata matrix

“meta”. Then, RDA analysis is performed on the Ccomp objects

resulting from the MCR analysis. The RDA is performed on 2 factors

including their possible interaction: plant/empty and day/night using

the formula: “rda(data~factor1*factor2)”. This RDA measures how

much variation in the m/z intensities of one component is explained

by the explaining factors. ANOVA-like permutation tests anova(RDA)

and MVA.anova(RDA) from package RVAideMemoire (Hervé and

Hervé, 2023) are performed to test the significativeness of the model,

the factors and their interaction.

The greater the factorial variance, the more meaningful the

components are. This allows us to validate the use of MCR to

decompose the data into biologically meaningful component

according to our experimental factors. The workflow for this

method validation is shown in Figure 2.
3.5 Case-by-case workflow optimization
process

This process determines the parameters to be selected, which

are specific to each data set.

3.5.1 Normalization process
Because of the natural inter-individual variability in BVOC

emission, a normalization process must be applied to the raw data

to allow comparison of replicates and minimize residual variance. It
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is important to standardize emissions between samples to reduce

biological variability and better highlight the effect of explanatory

factors. In our workflow of analysis, we have integrated several of

the most widely used standardization methods. One of the most

common relate the emissions to the dry weight of the sample. This

method works if the dry mass is correlated with the surface area and

the number of organs or cells producing and emitting VOCs.

Another normalization method often used for metabolomic

datasets is the normalization of each metabolic fingerprint to a

specific “housekeeping” metabolite, like creatinine (Zacharias et al.,

2018). For PTR-TOF-MS data a “housekeeping” m/z can be used

instead of a “housekeeping” metabolite. Here, the m/z 59 was

chosen because in PTR-TOF-MS fragmentation, the m/z 59

corresponds to acetone (Eerdekens et al., 2009). Acetone is

known to be an oxidation product of isoprene (Jacob et al., 2002;

Eerdekens et al., 2009), which emission is correlated with

photosynthesis activity (Harley et al., 1996; Sharkey and Yeh,

2001). The quantity of the m/z 59 fragment reaches a plateau

during the night, when there is no photosynthesis and when the

emission is stable over time. This plateau defines a basic level that is

specific to each sample. Therefore, a normalization factor is

calculated using the ratio of the m/z 59 basic level of emission.

This method allows to normalize emissions with the photosynthetic

activity of the plant. Many mathematical normalization methods

are also used for RMN (chemical data) or transcriptomic/genomic

datasets. A selection of these methods is tested in our workflow and

detailed in Table 2. In the importation output object, the intensity

matrix “peaks” is normalized according to the different

normalization methods and reintegrated into the output list.

3.5.2 Determining optimal number of
components

To determine the best normalization method and the most

appropriate number of components. The normalization methods

and the number of components were evaluated simultaneously. In
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that aim, the Ccomp data table should be re-organized so that the

component number IDs becomes an explanatory factor (variable in

column). This gives a new “modified Ccomp” matrix. For each

normalization method, we tested the performance of the models

with 2 to 10 components.

RDA are performed on each modified Ccomp matrix resulting

from the MCR analysis. The model has only 1 factor: the

component number ID (data~componentID). Thus, this RDA

measures how much the variations in the m/z intensities behave

in a similar way between day-replicates (low residual variance) and

how well these different patterns of variation are discriminated

between the different components (high factorial variance). The

smaller the residual variance, the more closely the replicates are

aligned with each other Figure 3, and therefore the better the

normalization method is. At the same time, the greater the

factorial variance is, the better the components explain the

pattern of the data. Considering the number of components

evaluation, in theory, we expect the Proportion of Constrained

Inertia (PCI) to follow a hyperbole as a function of the number of

components. This means that adding components helps to increase

the explicative power of the factor up to a certain point where

adding more components is not useful anymore. To determine

which data point is the turning point in the hyperbole (called elbow

or knee) the kneedle algorithm from the R package kneedle is used

(Satopaa et al., 2011). In this study we chose to not go above 10

components because it was enough for the PCI hyperboles to reach

a plateau, however the maximum number of components may need

to be higher than 10, depending on the specificities of handled data.

The schema for this case-by-case workflow is shown in Figure 4.
3.6 Component interpretation

To identify the explanatory factor(s) for each component, we

choose to use bayesian models, however other statistic methods such
frontiersin.or
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TABLE 2 Comparison table of different normalization methods used in this publication.

Normalization approach Acronym Description Reference Package

intensities are divided by the inflorescence’s dry weight of the individual

malizes by applying a correction factor calculated in aligning all samples
nd a m/z that correspond to a metabolite that is assumed to have no
rindividual differences

Zacharias et al., 2018

malizes by applying an affine transformation to calibrate experimental factors
a glog2 transformation for variance stabilization

Huber et al., 2002 vsn

malizes by applying a correction factor obtained from a loess curve fit
ugh a MA plot

Ballman et al., 2004 limma

ost probable quotient between the signals of the corresponding spectrum and
reference spectrum is calculated as normalization factor

Dieterle et al., 2006 Rcpm

h sample is divided by its median and multiplied by the median across
amples

Dillies, 2013 PRECISION.seq

h sample is divided by its upper quartile and multiplied by the mean upper
rtiles across all samples

Dillies, 2013 PRECISION.seq

malization process that follows the Poisson log linear model Li et al., 2012 PRECISION.seq

h sample is divided by the TMM scaling factor: a weighted mean of log ratios
een the test sample and another sample considered as reference

Dillies, 2013 PRECISION.seq

s samples for which the covariates of interest are constant to estimate the
ors of unwanted variation and adjusts for these in a GLM model

Risso et al., 2014 PRECISION.seq

s residuals from a first-pass GLM regression of the unnormalized data on the
riates of interest to estimate the factors of unwanted variation and adjusts
these in a GLM model

Risso et al., 2014 PRECISION.seq
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as a more classic mean-comparison ANOVAmay be used, depending

on the data specificities. Bayesian models allow to visualize more

accurately the difference ranges between conditions. The Bayesian

model, based on prior assumptions, calculates 95% probability

intervals that correspond to the theoretical distribution of our

values. We then compare the areas of overlap between the intervals

for the different conditions to conclude on the significance of the

differences. The Bayesian framework was carried out using the “brm()”

function in the brms package (Bürkner, 2017). Both factors (day/

night) and (plant/without plant) were combined in one (day/night/

control) for a more meaningful graphical representation. The model

used is a mixed model represented by the formula:

“Componentn~factors + (factors|days)” which represent the m/z

intensities of a component as a function of the experimental factors

as fixed effects and considering the variability of experimental factors

per day-replicate as a random effect. The model was computed as

gaussian distribution, and the priors selected are a normal function

with a mean and a standard deviation between 1e+05 and 1e+06

depending on each component intensities for the intercept and a

normal function with amean of 0 and a standard deviation between 1e

+05 and 1e+06 depending on each component intensities for the beta-

coefficient of conditions (b). The function was carried out with a

warmup of 500, 2000 iterations and 3 MCMC (Markov chains Monte

Carlo) chains. Bayesian models are only considered valid if MCMC

chains reach their stationary distribution which is checked by

convergence diagnostic. The convergence of the model was checked

by plotting the variable “b_intercept”.
4 Results

4.1 Step 1 – MCR validation by comparison
with randomized dataset

Faced with the difficulties of processing PTR-TOF-MS data, we

have developed an analysis workflow based on 2 types of analysis: a
Frontiers in Ecology and Evolution 08
MCR-based analysis to decompose the spectra into components

that follow the same variation patterns, and a RDA-based analysis

to assess the quality of the MCR in defining components linked to

the factors. To evaluate the efficiency of the MCR method, we

compared the results of MCR ran on a randomized dataset and

those of MCR obtained from the raw data.

When analyzing the results of MCR analysis on the raw data,

from 2 to 10 components, the RDAmodel demonstrate significance,

indicating that the model’s factors are judicious and capture a

significant share of Y variance. When we look at the significance of

the explanatory factors, both the day/night effect and the

presence of plant (plant/empty) have a significant effect (< 0.001)

for all models (2 to 10 components) tested. In the case of the

randomized data, all the p-values are > 0.05. This indicates

that MCR analysis produce biologically meaningful components

on the raw data compared to random data and can discriminate

between real biological information and factors that are merely

random and not linked to biological differences between the

conditions. Moreover, the Proportions of Constrained Inertia

PCIs for the raw matrix are around 0.6 whereas for the

randomized matrix they are close to insignificant (<0.005) which

means that the factors day/night and plant/empty explain a good

part of the variation of the data inside each component when

compared to chance. All RDA model statistical test outputs are

shown in Supplementary Tables.
4.2 Step 2 – Case-by-case workflow
optimization process

Cross-optimization of normalization method selection and

determination of optimal number of components was performed,

all resulting curves are represented in Figure 5. As expected, most of

the curves follow a hyperbole except VSN, CL and RUVs.

Furthermore, these methods give lower PCI than the non-

normalized data indicating that they are not suited to normalize
FIGURE 3

Schematic representation of replicates normalization. A necessary process to optimize factorial effect within components.
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this dataset. The m/z59, TMM, PQN, PM, UQ, median and RUVr

methods give higher PCI than the non-normalized data which

means their normalization process helps RDA to increase the

percentage of explanatory variance. Indeed, choosing the best

normalization method may increase by a factor of 8 the factorial

variance of the components explained by the factors (PCI=0.05 for

VSN and 0.4 for RUVr). The highest PCI is found for the data

normalized by RUVr method which is therefore selected for the

following analyses. The kneedle algorithm indicates that the PCI

increases less significantly after 5 components for the RUVr

normalized data. The best optimization for this experimental

dataset is a MCR with 5 components using a RUVr

normalized dataset.
4.3 Step 3 – Component interpretation

The intensities associated with each component of the “Ccomp”

table were aligned along the 8 hours sampling period for the day

and night sampling. Start of sampling is then marked as zero

relative hours for both sampling. The LOESS regression layout

(LOcally Estimated Scatterplot Smoothing) is chosen to visualize

the evolution of these concentrations according to time (Figure 6).

Using Bayesian models, the predicted fitted values with 95%

probability interval for each modality of the factor and each

component are represented in Figure 7. Components 1 and 5

display no significant difference between the conditions as the

95% probability credible intervals overlap. Only the concentration

of VOCs emitted during daytime in Component 1 and the

concentration of VOCs in the empty chamber display marginal

differences compared to the other condition: >85% of posterior

distribution is positive (different and superior) compared the other

conditions in both components. These components represent m/z

belonging to the background noise of the global spectrum and

hence cannot be associated with any explaining factors. Component

4 displays a higher intensity in the empty chamber in comparison to

the chambers containing the plants (2.2e+05, 95% CI[1.3e+05, 2.4e

+05]) with 100% of posterior distribution positive compared to the

other conditions. This component visually doesn’t show

variation over time, suggesting that it may correspond to the m/z

mainly present in the ambient air of the greenhouse. The last 2

components display 2 different patterns of BVOCS over time.

Component 2 shows a higher concentration of VOCs emitted

during daytime (3e+06, 95% CI[7.8e+05, 3.9e+06]) with 99% of

posterior distribution positive compared to VOCs emitted during

nighttime. Both night and day distribution are different to control

(100% of posterior distribution positive). Concentration of VOCs

emitted during daytime also visually display gradual increase

peaking after 6 hours of sampling i.e. at 4:30 pm. Component 3

shows a higher concentration of VOCs emitted during nighttime

(9e+04, 95% CI[4e+04, 1.3e+05]) with 100% of posterior

distribution positive compared to VOCs emitted during daytime.

Here daytime and control distribution display no significant

difference between the conditions as the 95% probability credible

intervals overlap.
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5 Discussion

PTR-TOF-MS is an emerging technique in chemical ecology for

temporal and «real-time» tracking VOC emission. Some studies

using this technique for chemical ecology purposes are already

published (Bracho-Nunez et al., 2011; Marotz-Clausen et al., 2018;
Frontiers in Ecology and Evolution 10
Yáñez-Serrano et al., 2021), however the data analysis workflows are

not always clearly detailed. Additionally, analyses are often focused

on single m/z time tracking and not suited for complex VOC

mixture sampling.

In this work, we have developed a generalizable and inter-

operable data analysis workflow that facilitates handling the
FIGURE 5

Redundancy analysis’s inertia proportion constrained with component number ID as explanatory factor depending on component number for all the
normalization methods (detailed information can be found in Table 2).
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datasets with several replicates, explaining factors, and spectral

similarities between compounds. This workflow features multiple

innovative decision-making tools: an optimization process based on

objective statistical analysis with a normalization selection method

using multivariate redundancy analysis, while it is still mainly

performed with visual or subjective criteria (Livera et al., 2015;

Misra, 2020), or correlation coefficients (Wulff and Mitchell, 2018).

We demonstrated that the Multivariate Curve Resolution method is

able to divide a spectrum in biologically meaningful components

related to the explained factors. With this method, a way to

overcome the intrinsic “ambiguity of permutation” by selecting

the optimal component number is proposed, also using multivariate

redundancy analysis. The workflow proposed in this publication

improves PTR-TOF-MS data interpretation. It can be used as an all-

in-hand guide to handle PTR-TOF-MS data analysis more easily

with different evaluation tests throughout the workflow to help

choose the different parameters and adapt the method to the

specificities of the data. Both normalization and component

number selection are performed simultaneously.

There is one main difficulty to promote the use of PTR-TOF-

MS in chemical ecology i.e. the individual compound identification.

The current study addresses this issue by proposing a new way to

decompose the data, therefore reducing the uncertainty. It achieves

this by dividing the whole data in smaller batch of compounds that

exhibit similar patterns and by dividing the total mass spectrum

into several sub-mass spectra associated with these batch of

compounds. To identify the compounds individually, standards
Frontiers in Ecology and Evolution 11
fragmentation spectra are still needed as there are no libraries

available for this technique. Although mass spectra libraries for

PTR-TOF-MS data do not exist yet, nonetheless some publications

have utilized the m/z resulting from the fragmentation of common

molecules as a reference to help with the identification (Lee et al.,

2006; Maleknia et al., 2007; Yáñez-Serrano et al., 2021; Roslund

et al., 2021). For now, the use of standard Headspace GC-MS

sampling is still needed in parallel to identify single compounds that

could fit to the variation patterns obtained by PTR-Tof-MS.

Altogether, we advocate for the widespread use of multi-sampling

approaches to precisely determine VOC emission variations in

complex chemical profiles.

Moreover, the data-analysis workflow has some requirements,

i.e. at least one experimental factor or condition with minimum 2

different levels needed for the evaluation of the components

number, and the normalization methods. It also requires a non-

continuous sampling with regular switching between replicates or

conditions. Lastly, it also requires biological replicates for each

condition to give accurate results, depending on how much inter-

individual variation is found in the studied model.

PTR-TOF-MS is a helpful technique for long time sampling due

to its automatization, especially if the experiment requires a day and

night sampling for several days in a row. The method is also non-

destructive and allows to keep the studied organisms in good

conditions to analyze their emission over a long period of time.

The high accuracy of PTR-TOF-MS sampling associated with the

data analysis workflow proposed here holds potential for numerous
FIGURE 6

Visual representation with LOESS regression layout for each component. Variations in intensity of the m/z sum over 8 hours of sampling for each
condition (control, day and night). Component 1 (A), component 2 (B), component 3 (C), component 4 (D) and component 5 (E).
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applications in chemical ecology and metabolomics. Indeed, even if

data annotation has to be further developed, the present method

remains efficient to compare VOC’s patterns and is a promising

approach for conducting in depth study of BVOC emissions from

biological models with a large metabolome or with low

emission quantities.
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