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Introduction: Sexual dimorphism in cranial morphology is a significant aspect of

primate evolution, providing insights into evolutionary pressures and mating

systems in different species. This study focuses on cranial sexual dimorphism in

Papio and Theropithecus, two closely related genera within the tribe Papionini.

Methods: Using geometric morphometric techniques, we analyzed 570 cranial

specimens from both genera, with data sourced from various studies and

repositories. Thirty craniofacial landmarks were defined and analyzed through

Geometric Morphometrics tools to evaluate shape variation.

Results: Our findings reveal distinct morphological clusters for each genus and sex,

with Papio and Theropithecus exhibiting significant sexual dimorphism. The results

distinguish genera and sex-based groups, indicating differential impacts of size on

shape across groups. The findings suggest that while sexual dimorphism is stable in

magnitude within each genus, the specific morphological manifestations differ.

Discussion: This research advances our understanding of the evolutionary

mechanisms driving sexual dimorphism and emphasizes the need for further

studies to explore the genetic and environmental factors influencing these

differences. The innovative approach and comprehensive dataset provide a

robust framework for future investigations into primate cranial morphology

and its evolutionary implications.
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Introduction

Sexual dimorphism is a significant aspect influencing

morphological variability and evolution in primates. All African

papionins, which include the genera Cercocebus and Lophocebus

(mangabeys), Mandrillus (mandrills and drills), Papio (baboons),

Rungwecebus (kipunji) and Theropithecus (geladas) (Strasser and

Delson, 1987; Zinner et al., 2013), are characterized by being

sexually dimorphic, resulting in significantly different

morphologies between males and females (Delson et al., 2000;

Smith and Jungers, 1997). In the case of Mandrillus, females

account for 30%-40% of male size, while in the others, they

correspond to 50%-70% of male size (Swedell, 2011). Large-

bodied papionins, Mandrillus, Papio and Theropithecus, share a

series of morphological characteristics such as a high degree of

terrestriality, elongated faces with prominent snout, and being some

of the most visually striking with varied colorations and showy

manes, hypothesized to have evolved through sexual selection

(Setchell and Dixson, 2001; Setchell, 2005; Swedell, 2011). From

this, they are considered a good model for evaluating the dynamics

of sexual selection and its mechanisms, because closely related

species exhibit pronounced variations in sexually selected traits

(Petersdorf et al., 2019).

At the phylogenetic level, molecular data indicate that large-

bodied papionins do not form amonophyletic clade, despite sharing

many morphological characteristics. Instead, mandrills are

phylogenetically grouped with Cercocebus, while baboons cluster

with geladas, arboreal mangabeys (Lophocebus) and kipunji

(Liedigk et al., 2014; Pugh and Gilbert, 2018; Craig et al., 2024). It

has been suggested that, in addition to this closeness, episodes of

intergeneric introgression have occurred between baboons and

geladas during their evolutionary history (Walker et al., 2019;

Caldon et al., 2024), with interbreeding reported in extant wild

and captive populations (Dunbar and Dunbar, 1974; Harris and

Disotell, 1998; Zinner et al., 2011).

Baboons (Papio sp.) have successfully adapted to diverse

habitats, and currently inhabit the coastal areas of the Red Sea in

the Arabian Peninsula and sub-Saharan Africa (Fleagle, 2013). Six

species of Papio are presently recognized under the phylogenetic

species concept: P. anubis (olive), P. cynocephalus (yellow), P.

hamadryas (hamadryas), P. kindae (kinda), P. papio (Guinea),

and P. ursinus (chacma) (Zinner et al., 2009, 2013). Papio species

exhibit a wide range of behavioral patterns and are phenotypically

different (Elton and Dunn, 2020). They show differences in body

size, cranial morphology, color and texture of adult coat, and

sexually selected characteristics such as sexually dimorphic

canines (Fischer et al., 2019; Martinez et al., 2019).

The genus Theropithecus has only one extant species, T. gelada,

with three apparently distinct evolutionary units inhabiting the

highlands of Ethiopia (Gippoliti, 2010; Shotake et al., 2016; Zinner

et al., 2018; Snyder-Mackler et al., 2014; Trede et al., 2020; Caldon

et al., 2024). They live in complex, multi-level societies with units

composed of a reproductive leader male, several adult females and

their young, which then group with other units forming bands,

which in turn group into communities or herds (Snyder-Mackler
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et al., 2012). This species exhibits a high degree of sexual

dimorphism in body size (males weigh on average 16.5-20.5 kg,

and females 8.3-13.8 kg) and appearance, with males having long,

shaggy hair, pronounced facial whiskers, and large canines, while

females have shorter coat and more uniform color (Bergman and

Beehner 2013; Fleagle, 2013).

Geladas, hamadryas and Guinea baboons maintain a complex

multilevel social organization system, where the primary level of

organization of their society is the one-male unit, which

corresponds to the reproductive unit composed of a sexually

active male leader, a variable number of adult females (1–12 in

geladas; 1–6 in Guinea), their offspring and, in some cases, 1 or 2

follower males (Fleagle, 2013; Kummer, 1968). When several units

join together, they form clans, which in turn to constitute bands,

and finally, these gather into communities or troops around

resources such as sleeping sites (Fleagle, 2013; Schreier and

Swedell, 2009). However, they differ in that both baboon species

exhibit male philopatry with limited female dispersal from groups,

whereas geladas display female philopatry with male dispersal from

the natal unit (Jolly, 2020; Fischer et al., 2017; Snyder-Mackler et al.,

2014). They are characterized by polygyny, with intense

competition for female mates, as the group’s leader male

aggressively excludes others and monopolizes females, protecting

his access to mating and offspring (Chowdhury et al., 2015;

Kummer, 1968; Pines et al., 2011).

In contrast, chacma, olive, kinda and yellow baboons, known as

savannah baboons and dubbed “COKY” baboons (Jolly, 2020), live

in multi-male, multi-female groups (parsimoniously hypothesized

as ancestral state of the genus) with female philopatry and male

dispersal, where females remain in the group, constituting its stable

core, and males leave it to join a new one (Fischer et al., 2019). Their

mating system is polygynandrous, meaning that both females and

males have multiple mating partners (Fischer et al., 2017, 2019),

nevertheless, high-ranking males tend to have greater mating and

reproductive success, with this bias manifesting more in chacma

baboons (Bulger, 1993; Alberts et al., 2003, 2006). However, there is

great variation in their degree of sexual dimorphism, reflecting

differences in the intensity of male competition and female mate

choice (Petersdorf et al., 2019).

The genus Papio shows a pronounced variation in the degree

and expression of other sexual traits (Dixson, 2012). An example of

this is body mass, which can range between 17–30 kg in males and

9–16 kg in females, resulting in a ratio that varies between 1.56 and

2.00 (Delson et al., 2000; Dunbar, 1990; Fischer et al., 2017; Swedell,

2011). The kinda baboon is the smallest and most gracile baboon

species, exhibiting the least sexual dimorphism in body size

(Singleton et al., 2017; Petersdorf et al., 2019), while the chacma

baboon is the largest baboon species with the greatest size difference

between sexes (Jolly et al., 2011). Additionally, Papio species in

multi-level/one-male unit (polygynous males) and multi-male-

multi-female (polygynandrous) systems differ in their growth

rates. Polygynous males in the former group (P. papio and P.

hamadryas) tend to accelerate and shorten their growth (thus

growing less). While polygynandrous males in the latter group of

species (P. anubis, P. ursinus and P. cynocephalus) are more likely to
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reach a larger body size (Leigh et al., 2005). An exception to this is P.

kindae, which despite belonging to the second group of baboons,

their growth patterns differ due to differences in their allometry

patterns and size related to shape dimorphism (Singleton et al.,

2017). It can also be observed that adult males of savannah baboons

either lack or have moderately fur capes, whereas hamadryas and

Guinea baboons have prominent capes with multiple light and dark

rings (Jolly, 2020; Petersdorf et al., 2019). Also, differences in

relative testis size have been described, with polygynous species

having smaller adult testis size compared to baboons living in multi-

male, multi-female groups, with larger testis, probably being

selected for in polygynandrous primates (Dixson, 2017).

In most primates and mammals, the observed male-biased

sexual size dimorphism, such as in Papio and Theropithecus,

mirrors the strength of sexual selection acting upon males. In the

past, morphometrics studies of the Papio skull have shown that the

variation in baboons is influenced by various factors that reflect

adaptations to local selection (Leigh and Cheverud, 1991).

However, sexual selection and male competition are the default

hypotheses to explain the pronounced dimorphism of the

craniofacial skeleton, in particular canines (Leigh, 2006). Sexual

selection could be partly responsible for the evolution of other

secondary traits in male baboons or to contribute to female size,

thus driving specific morphological divergence within and between

genera (Gilbert et al., 2009; Leigh, 2006). Moreover, all these male-

biased traits are likely to be informative at the phylogenetic level if

they correlate to shared mating systems (Gilbert and Rossie, 2007).
Male and female baboons follow a common ontogenetic

trajectory during their developmental stages, and in some cases

juvenile cranial forms are indistinguishable between sexes (Collard

and O’Higgins, 2001; Simons et al., 2018). Thus, craniofacial sexual

dimorphism is related to size in African cercopithecines (including

Papio and Theropithecus), and in baboons allometric scaling plays

an important role (Frost et al., 2003; Leigh and Cheverud, 1991;

Leigh, 2006; Singleton, 2002). Allometry plays a significant role in

structuring adult morphological diversity, with variables such as the

rate and/or duration of cranial growth being particularly important

as they substantially contribute to skull shape variation in baboons

(Frost et al., 2003; Frost, 2013). This is because males grow at a

faster rate and for a longer period than females to reach their final

adult size, while females slow their growth much earlier (Leigh and

Bernstein, 2006). In relation to canine’s sexual dimorphism, it has

been found that the male teeth erupts at a later age, at a faster rate

and for a longer duration than in females, while in females, it erupts

with extraordinary speed (Leigh et al., 2005).
Furthermore, there are species-level differences in the patterns

of craniodental sexual dimorphism in Papio, as in the case of P.

kindae (Singleton et al., 2017). Kinda baboons deviate from a

common ontogenetic pathway, showing less pronounced size and

shape dimorphism than other baboon species. It has even been

observed that P. kindae adult cranial size and shape are like those of

subadults in other baboon species (Petersdorf et al., 2019).

Therefore, it has been proposed that less intense sexual selection

may contribute to limit dimorphism and size increase in P. kindae

(Leigh, 2006). However, the pattern of canine dimorphism in P.
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kindae is common to the mean of other Papio species (Singleton

et al., 2017). On the one hand, P. ursinus exhibits higher canine

dimorphism, which reflects the larger size of males (Plavcan, 1998).

On the other hand, P. anubis presents lower canine dimorphism,

which would be linked to increased canine height in females and

low dimorphism in cranial shape (Singleton et al., 2017).

Within this context, this study aims to quantitatively evaluate

and compare cranial sexual dimorphism between the genera Papio

and Theropithecus by means of geometric morphometrics tools. We

aim to describe the size and shape patterns of craniofacial

dimorphism, and whether they manifest in the same way or not

in these genera. Among the large-bodied papionins, these two

genera are the most closely related phylogenetically, enabling new

comparative assessments of cranial morphology and the evolution

of sexual dimorphism in highly dimorphic and related species.
Materials and methods

Sampling and data acquisition

The study comprises 570 cranial specimens analyzed by means

of geometric morphometrics tools using 30 homologous three-

dimensional (3D) landmarks. Table 1 shows the composition of

the sample, with 519 specimens belonging to the six species of the

genus Papio and 51 specimens belonging to the genus

Theropithecus. Among these, the genus Papio includes 384 males

and 135 females, while the genus Theropithecus comprises 29 males

and 22 females (Table 1). The sample combines four different

sources of data representing the baboon craniofacial skeleton: (a)

Dunn et al. (2013) providing 546 individuals with 3D craniofacial

landmark coordinates manually recorded from museum specimens

using a Microscribe (Dunn et al., 2013; Elton and Cardini, 2008); (b)

Martıńez et al. (2019) providing 3D surface models from 8 Papio
TABLE 1 Composition of the sample.

Number of specimens by sex and species

Genus Species Male Female Total

Theropithecus

gelada 29 22 51

Papio

anubis 116 46 162

cynocephalus 46 27 73

hamadryas 35 8 43

kindae 10 8 18

papio 13 1 14

ursinus 67 16 83

sp 97 29 126

Total 413 157 570
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individuals from Gorongosa National Park, Mozambique (Bobe

et al., 2020; Ferreira da Silva et al., 2025; Caldon et al., 2025), these

surface models were generated using a Next Engine Desktop 3D

Scanner from NextEngine, Inc., and digitized using Amira 5.5

software (Mercury Inc. USA); (c) Morphosource (http://

morphosource.org/), a free-access platform (Copes et al., 2016)

from where 10 surface models were downloaded and digitized using

the Landmark v3.2 software; and (d) new scanning data from 6

individuals from the Museo Storia Naturale di Genova (MSNG),

CT-scanned in a Siemens Somatom Sensation Open, multilayer

helicoidal Scan (20 layers) and digitized using the Landmark v3.2

program (see Supplementary Table 1 for details).

The set of thirty (3D) landmarks was selected and filtered from

the configuration of landmarks used in Dunn et al. (2013) and

Martıńez et al. (2019). The Table 2 presents the detailed anatomical

description of the 30 landmarks used in this study. The landmarks

were defined following a protocol that involves eliminating

specimens with a low number of recorded points and excluding

landmarks absent in a significant portion of the group. This

approach allowed for a balanced and representative data set that

could be reliably compared across different individuals and

species (Figure 1).
Morphometric analysis

Geometric morphometric methods were used to study the

variability in cranial shape and size. The landmark-data underwent

Generalized Procrustes analysis (GPA) superimposition, minimizing

the sum of square Euclidean distances between corresponding

landmarks. The scaling method was performed using unit centroid

size (Bookstein, 1991; Slice, 2001). Principal Component Analysis

(PCA) was used to summarize the variance and visualize the

distribution of the entire sample, and for males and females

independently. The PCA reduces the dimensionality of the

morphometric data to a set of uncorrelated components (PCs) and

allows the exploration of distribution trends without prior

assumption about classification. Pooled within-groups (species)

regression analyses were conducted for males and females to assess

the impact of (log) centroid size on cranial shape (Drake and

Klingenberg, 2008), and the magnitude of dimorphism was

measured using boxplots of centroid size. With the aim to further

explore the interaction between size and shape accounting for

differences between genera, we followed another two

methodological procedures. First, the residuals from the regressions

were subjected to a new GPA and PCA. This procedure allows us to

explore the differences between Papio and Theropithecus using shape

components that are size-independent. Finally, we performed natural

log-centroid size regressions for separate species (includingmales and

females together) to compute shape scores for each of them. The

resulting shape scores represent allometric vectors related to sex for

each species that can be then compared by assessing the angular

relation between them (Singleton et al., 2017; Klingenberg and

Marugán-Lobón, 2013). If the observed angle between two vectors

is smaller than expected, the two vectors share some degree of

similarity between them (Klingenberg and Marugán-Lobón, 2013).
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TABLE 2 Anatomical definitions of the thirty, three-dimensional
landmarks used in this study.

Anatomical description of the Landmarks used

Landmark Description

1
Prosthion: antero-inferior point on projection of pre-maxilla
between central incisors.

2
Prosthion2: antero-inferior-most point on pre-maxila,
equivalent to prosthion but between central and lateral incisors

3 Anterior-most point of canine alveolus.

4
Mesial p3: Most mesial point on P3 alveolus, projected onto
alveolar margin

5
Contact Points between adjacent pre-molars/molars, projected
labially onto alveolar margin.

6
Contact Points between adjacent pre-molars/molars, projected
labially onto alveolar margin.

7
Contact Points between adjacent pre-molars/molars, projected
labially onto alveolar margin.

8
Contact Points between adjacent pre-molars/molars, projected
labially onto alveolar margin.

9 Posterior midpoint onto alveolar margin.

10
Contact Points between adjacent pre-molars/molars, projected
lingually onto alveolar margin

11
Contact Points between adjacent pre-molars/molars, projected
lingually onto alveolar margin.

12
Contact Points between adjacent pre-molars/molars, projected
lingually onto alveolar margin.

13
Contact Points between adjacent pre-molars/molars, projected
lingually onto alveolar margin.

14 Anterior-most point of the incisive foramen.

15
Middle-line point of the incisive foramen projected onto
its margin.

16 Posterior-most point of incisive foramen

17 Greater palatine foramen.

18
Point of maximum curvature on the posterior edge of
the palatine.

19 Tip of posterior nasal spine.

20 Anterior tip of the external auditory meatus.

21 Posterior tip of the external auditory meatus.

22 Inion: most posterior point of the cranium.

23
Asterion: Most lateral meeting point of mastoid part of
temporal bone and supraoccipital

24 Nasospinale: inferior-most midline point of piriform aperture.

25 Point corresponding to largest width of piriform aperture.

26 Nasion: midline point on fronto-nasal suture.

27
Glabella: Most forward projecting midline point of frontals at
the level of the supraorbital ridges.

28
Zygo-max superior:antero-superior point of
zygomaticomaxillary suture taken at orbit.

(Continued)
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Finally, we computed an agglomerative clustering tree (Ward’s

method) to visualize the pairwise angular differences between

species’ sexual allometric vectors. Papio papio was not included in

this tree due to its differing sample size of males and females, which is

virtually all males (Table 1). Because males and females Papio and

Theropithecus are drastically different in their cranial morphology, we

perform separate analyses to explore the general trends when

comparing Papio males with Theropithecus males, and Papio

females with Theropithecus females. These comparisons allow us to

independently study the allometric and non-allometric components,

and to specifically compare the allometric vectors related to sex for

each species by assessing the angular relation between these vectors.

All the procedures were performed using MorphoJ version 1.08

(Klingenberg, 2011). Scatterplots were computed in R (R Core

Team, 2017, see Supplementary Data). The clustering tree was

computed using PAST version 4.15 (Hammer et al., 2001).
Frontiers in Ecology and Evolution 05
Results

PCA before adjusting for size

Figure 2 shows the distribution pattern of all the specimens in

the sample, using PCA before adjusting for centroid size. The

principal component 1 (PC1) explains the largest amount of

variation (43.4%), and it is highly correlated with centroid size

(r = 0.91). The PC1 and PC2 together separate the two genera.

Theropithecus samples cluster in a well-defined area of the PC1/PC2

plot. The Theropithecus samples show an important degree of

proximity with Papio, notably with several P. hamadryas males.

Some specimens of the genus Papio (spp. or unknown species) are

confounded with the Theropithecus cloud, but this may be due to

museum/collection mislabeling. The males of the greater sized

species P. anubis, P. ursinus and most of the P. cynocephalus

show a higher level of grouping than females. Whereas P. papio

and P. hamadryas, the medium sized species, are intermediate

between the larger and smaller ones, like P. kindae. The kinda

individuals appear near the negative end of PC1 next to some

specimens of P. cynocephalus. The few P. cynocephalus individuals

clustering with P. kindae are most likely museum/collection

mislabeling due to taxonomic nomenclature that predates the

raise of kinda from subspecies of P. cynocephalus to species per se

(see Martinez et al., 2019). Likewise, T. gelada appears near the same
FIGURE 1

Homology map on the skull of a female Theropithecus gelada (reference individual: 1091; see the Supplementary Material). (A) frontal view.
(B) lateral view. (C) posterior view. (D) inferior view.
TABLE 2 Continued

Anatomical description of the Landmarks used

Landmark Description

29 Center of nasolacrimal foramen (fossa for lacrimal duct)

30 Lambda: Junction of sagital and lamboid sutures.
Source: Martinez et al., 2019.
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values of PC1 as P. kindae but separates from them with higher

scores across the PC2.

Sexual dimorphism produces relevant morphological disparity.

Therefore, we examine the shape patterns within each sex alone

(Figures 3, 4). Figure 3 shows the PC1/PC2 distribution of male

individuals. The species with a greater body size like P. anubis and

P. ursinus show higher values in PC1, grouping in the positive end

of the distribution. P. cynocephalus (also considered big sized

Papionini) appears near the same values but with some specimens

displaced to the medium and negative scores near P. hamadryas and

P. kindae respectively. As in the previous PCA, the male

Theropithecus cluster shows an important degree of proximity

with Papio, notably P. hamadryas males. The PC1/PC2

distribution of females (Figure 4) shows a clearer distinction

between both genera than males.
Multivariate regression on size and PCA
after adjusting for size

Figures 5 and 6 show the multivariate regression on natural log-

centroid size for males and females, respectively. The relationship

between shape and size (Regression Score) is summarized from the

pooled within-groups multivariate regression of Procrustes
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coordinates on the natural log-transformed centroid size. In

males, the regression score accounts for 13.2% of the predicted

variance and 17.6% in females (p < 0.0001).

Figure 7 shows the distribution pattern of male specimens after

adjusting for natural log-centroid size. The principal component 1

(PC1) explains 28.3% and PC2 12.9% of variation. Once the effect of

size is adjusted for, the amount of variation explained by PC1 is

heavily reduced and the Theropithecus clustering now shows a clear

separation with Papio. A similar situation is observed for females in

Figure 8 (PC1/PC2). When the effect of size is removed, the amount

of variation explained by PC1 is reduced and the female

Theropithecus clustering shows a clear distance from the

Papio clustering.
Centroid size comparison and angular
comparison of allometric vectors

We computed a box-plot visualization of centroid size by sex

within species in order to observe the pattern of sex-differences in

craniofacial size (Figure 9). The most important differences in

craniofacial size (centroid size) within species is found (in

descending order) in Papio ursinus, Papio anubis, Papio

cynocephalus, Papio papio, Papio hamadryas and Papio kindae. It
FIGURE 2

Principal component plot with males and females before adjusting for size. Principal Component 1 (PC1) explains the largest amount of variation
(43.4%), significantly more than the variance explained by PC2 (14%).
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FIGURE 4

Principal component plot for females (PC1 35.1%; PC2 19.2%).
FIGURE 3

Principal component plot with males. (PC1 36%; PC2 14.5%).
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is interesting to note that, despite of being the size of P. papiomales

and P. cynocephalus females, Theropithecus gelada shows a

relational difference in craniofacial size between males and

females (i.e. degree of craniofacial sexual dimorphism excluding

canines) that is similar to the smaller Papio kindae.

In order to compute the allometric vectors for each species, we

performed log-centroid size regressions for each separate species,

including males and females together in each of these regressions.

As stated before, by including males and females together, the

resulting shape scores are allometric vectors mostly related to sex

differences. In this manner, by assessing the angular relation

between shape score vectors, we can obtain pairwise species

comparisons of sexual allometric vectors (Singleton et al., 2017;

Klingenberg and Marugán-Lobón, 2013). The results are presented

in Table 3. All the pairwise comparisons are highly significant

(p<0.00001) showing that in all the cases, the observed angle

between the two vectors was smaller than expected, suggesting

some degree of similarity between them (Klingenberg and

Marugán-Lobón, 2013). In order to visualize the magnitude

differences of these angular comparisons, we performed an

agglomerative clustering tree (Ward’s method, Figure 10). We

excluded the P. papio species in the clustering tree due to its low

number of females (only 1 specimen), which distorted the analysis.
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Discussion

This study aimed to compare cranial sexual dimorphism

between the genera Papio and Theropithecus. Using geometric

morphometric methods: PCA, regression, centroid size and

angular comparisons, we described the patterns of size and shape

variation in craniofacial dimorphism and assessed their relationship

to phylogeny and social structure. Our findings corroborate

previous studies that highlighted the importance of allometry in

structuring adult craniofacial morphology in papionins (Singleton,

2002; Frost et al., 2003; Dunn et al., 2013). However, by integrating

data across all extant Papio species and Theropithecus gelada, this

study reveals critical insights into the evolutionary dynamics of

sexual dimorphism that transcend the simple documentation of

morphological differences.

The PCA plots before adjusting for size (Figures 2–4) show

distinct morphological clusters for each genus, although some

degree of overlap is observed. After adjusting for size (Figures 7,

8), a clearer separation emerges, indicating that non-size-related

aspects of craniofacial morphology, particularly in midfacial

projection and neurocranial proportions, retain genus-specific

configurations (Singleton, 2002; Frost et al., 2003). These findings

demonstrate that while size strongly influences craniofacial shape,
FIGURE 5

Regression score (RS) and log centroid size plot for males. RS accounts for 13.2% of the predicted variance (p < 0.0001).
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certain structural features are conserved and diagnostic, reflecting

deeper phylogenetic divergence rather than solely functional or

ecological convergence. This pattern suggests that the evolutionary

history of these lineages has produced distinct morphological

signatures that persist despite similar selective pressures, a finding

consistent with previous research on papionin cranial morphology

(Frost et al., 2003; Singleton, 2002).

The position of T. gelada relative to Papio species provides

particularly novel insights into the evolution of craniofacial

dimorphism. Our results indicate that Theropithecus gelada

represents more than simply another case of sexual dimorphism

already documented in Papio species. Despite cranial size values

comparable to P. papiomales and P. cynocephalus females, T. gelada

exhibits a degree of sexual dimorphism in craniofacial size that is

closer to the smaller P. kindae (Figure 9). This unexpected

convergence in dimorphism magnitude between T. gelada and P.

kindae represents a distinct pattern worth highlighting, as it

challenges the assumption that body size alone predicts the

magnitude of craniofacial dimorphism.

This finding is especially significant when considering the

contrasting social systems of these species. While P. kindae

displays reduced sexual dimorphism associated with lower male-

male competition and a polygynandrous mating system (Petersdorf

et al., 2019), T. gelada lives in a multilevel society with intense male
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competition for reproductive access (Snyder-Mackler et al., 2012,

2014). The convergence in dimorphism magnitude, despite these

contrasting social systems, suggests that multiple evolutionary

pathways can produce similar morphological outcomes. This

challenges simplistic models that directly link social organization

to morphological dimorphism and indicates that the relationship

between social structure and morphology is more complex than

previously recognized.

The shared aspects of shape dimorphism between Papio and

Theropithecus are primarily related to facial elongation, muzzle

robusticity, and neurocranial proportions, consistent with previous

studies (Singleton, 2002; Frost et al., 2003). However, our analysis

reveals that these similarities manifest differently in each genus,

with T. gelada showing distinctive patterns in the relative

proportions of these features. This suggests that while the basic

developmental and functional constraints shaping dimorphism are

conserved across papionins, lineage-specific modifications have

occurred during the separate evolutionary histories of these genera.

The comparison of allometric vectors and the resulting

phenogram (Figure 10) reveal a strong phylogenetic imprint on

craniofacial sexual dimorphism. Species cluster in a manner broadly

consistent with their molecular relationships (e.g., Rogers et al.,

2019; Santander et al., 2022; Mutti et al., 2023), indicating that

evolutionary history constrains morphological trajectories even
FIGURE 6

Regression score (RS) and log centroid size plot for females. RS accounts for 17.6% of the predicted variance (p < 0.0001).
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across lineages with diverse ecological and social adaptations. This

finding supports the hypothesis that phylogenetic history is a

primary driver of sexual dimorphism patterns in papionins,

providing a framework within which functional adaptations can

evolve (Frost et al., 2003; Gilbert et al., 2009).

This observation is important for understanding baboon

evolution and ecology because it demonstrates how ecological

specialization can drive morphological divergence even within a

framework of phylogenetic constraint (Fleagle, 2013). Our findings

address a fundamental evolutionary question: is phylogenetic

history the primary driver of sexual dimorphism patterns, or are

functional factors, such as social organization and ecological

specialization, equally or more influential? Previous studies in

diverse primate groups have demonstrated that ecological

specialization acts as an important driver of morphological

divergence and speciation (Kamilar and Cooper, 2013; Cardini

and Elton, 2008). Specific dietary adaptations have been shown to

have profound effects on primate craniofacial morphology, as

documented by Ross et al. (2012) and Ravosa et al. (2016), who

found that dietary specializations produce significant changes in

mandibular biomechanics and facial structure, even in closely

related lineages. For example, Kamilar and Cooper (2013)

documented how dietary adaptations in primates lead to specific
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craniofacial modifications that can evolve rapidly in response to

ecological pressures, even when phylogenetic constraints exist. The

evidence suggests a complex interplay between these factors, where

the broad conservation of dimorphism patterns across papionins

points to phylogenetic constraint, while the specific manifestations

of dimorphism in each lineage reflect adaptations to particular

ecological and social contexts.

Taken together, our findings demonstrate that craniofacial

sexual dimorphism in these genera is broadly conserved in

magnitude but varies in morphological expression between

lineages. This highlights the importance of considering both

phylogenetic history and functional/ecological context when

interpreting patterns of sexual dimorphism. The case of

Theropithecus gelada is particularly instructive, as it represents a

distinct evolutionary experiment in which similar degrees of

dimorphism to certain Papio species have evolved in the context

of different ecological specializations and social structures.

Understanding how craniofacial features evolve under

competing pressures from sexual selection, ecological adaptation,

and phylogenetic inertia will require future research that integrates

genomic, developmental, and behavioral data. Our study provides a

foundation for these future investigations by demonstrating that the

evolution of sexual dimorphism in closely related primates follows
FIGURE 7

Principal component analysis plot of ‘size adjusted shape (using the regression residuals) for males (PC1 28.3%; PC2 12.9%).
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FIGURE 8

Principal component analysis plot of ‘size adjusted shape (using the regression residuals) for females (PC1 27.1%; PC2 12.8%).
FIGURE 9

Centroid size boxplot distributions for species comparing between male and female individuals. The Papio spp. specimens not assigned to species
were excluded.
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complex pathways that cannot be reduced to simple correlations

with body size or social system. This complexity reflects the

multifaceted nature of selection pressures acting on primate

morphology and underscores the value of comparative studies in

elucidating evolutionary processes.
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