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Introduction:Machine learning techniques, renowned for their ability to process

complex datasets and uncover key ecological patterns, have become

increasingly instrumental in assessing ecosystem services.

Methods: This study quantitatively evaluates individual services—such as water

yield, carbon storage, habitat quality, and soil conservation—on the Yunnan-

Guizhou Plateau for the years 2000, 2010, and 2020. A comprehensive

ecosystem service index is employed to assess the overall ecological service

capacity, revealing spatiotemporal variations in services and exploring the trade-

offs and synergies among them. Additionally, machine learning models identify

the key drivers influencing ecosystem services, informing the design of future

scenarios. The PLUS model is used to project land use changes by 2035 under

three scenarios—natural development, planning-oriented, and ecological

priority. Based on the land use simulation results for these scenarios, the

InVEST model is applied to evaluate various ecosystem services.

Results: During 2000-2020, ecosystem services on the Yunnan-Guizhou

Plateau exhibited significant fluctuations, driven by complex trade-offs and

synergies. Land use and vegetation cover were the primary factors affecting

overall ecosystem services, with the ecological priority scenario demonstrating

the best performance across all services.

Discussion: The research integrates machine learning with the PLUS model,

providing more efficient data interpretation and more precise scenario design,

offering new insights and methodologies for managing and optimizing

ecosystem services on the Yunnan-Guizhou Plateau. These findings contribute

to the development of more effective ecological protection and sustainable

development strategies, applicable to both the plateau and similar regions.
KEYWORDS

ecosystem services, scenario analysis, ecological protection, machine learning, Yunnan-
Guizhou Plateau, land use
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1 Introduction

Ecosystem services (ESs) are the diverse benefits provided by

natural ecosystems to human societies (Liu et al., 2023). As global

climate change and human activities increasingly affect ecosystems,

understanding the spatiotemporal dynamics of ecosystem services has

become essential. It is critical to examine the interactions between

different ecosystem services and identify their primary drivers, while

also understanding the trends across various scenarios to predict and

mitigate future environmental changes. These insights are crucial for

developing evidence-based environmental policies and management

strategies (Xia et al., 2023).

The study of ecosystem services is a rapidly advancing field within

environmental science, with significant contributions from both

domestic and international researchers (Hasan et al., 2020; Shen et al.,

2021; Jiang et al., 2023; Petsch et al., 2023). Assessment methods have

evolved from traditional ecological surveys and economic valuations to

sophisticated models and comprehensive tools, such as the InVEST

(Fang et al., 2022b; Deng et al., 2024), SoIVES (Zhu, 2022), and ARIES

models (Aznarez et al., 2024; Pashanejad et al., 2024). Among these, the

InVEST model stands out for its ability to provide detailed ecological

and economic data analysis, facilitating the quantification and spatial

visualization of ecosystem services. This makes it a key tool for assessing

the dynamic functions of ecosystem services worldwide (Shi et al., 2023;

Liang et al., 2024; Mondal et al., 2024). The relationships between

different ecosystem services are complex and characterized by trade-offs

and synergies (Deng et al., 2023), which often require balancing to

optimize ecological well-being. To explore these trade-offs and

synergies, researchers commonly apply overlay analysis (Xu et al.,

2021; Zhang et al., 2022a; Zhao and Pan, 2022; Jiayu et al., 2024),

partial correlation analysis (Li et al., 2022b; Shijin and Xiaoqing, 2023;

Simeon et al., 2024), or Spearman correlation coefficients (Wang et al.,

2020; Zeng et al., 2022; Hu et al., 2023). Ecosystems are inherently

adaptive, nonlinear, and multistable, underscoring their complexity.

Traditional methods used to study the drivers of ecosystem services,

such as multiple regression models (Zhang et al., 2023), principal

component analysis (Hu et al., 2022), and geodetectors (Chen et al.,

2020; Bi et al., 2023), often struggle to capture the nonlinear patterns

and complex interactions in ecological data, which limits their

predictive accuracy. As a result, these approaches may fail to

effectively capture the dynamic changes in ecosystem service drivers.

In contrast, machine learning regression methods excel at identifying

nonlinear relationships among variables, handling large and complex

datasets, and uncovering intricate interactions and dynamics within

ecosystem services. By utilizing machine learning models, it is possible

to more accurately track changes in ecosystem services and pinpoint the

most significant environmental, social, or economic drivers (Xu et al.,

2022b; Almeida et al., 2024; Tian et al., 2024; Yang et al., 2024b).

Currently, multi-scenario simulations are a vital tool for assessing how

land-use changes affect ecosystem services across varying socio-

economic development pathways. Commonly used models include

CA-Markov (Beroho et al., 2023), CLUE-S (Gomes et al., 2021; Peng

et al., 2021), FLUS (Qiao et al., 2024), and PLUS (Tian et al., 2022; Xie

et al., 2022). The PLUS model excels in simulating complex land-use

dynamics at a fine spatial scale, providing significant advantages for

forecasting both land-use quantities and spatial distributions over
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extended time series (Liang et al., 2021; Xu et al., 2022a). Analyzing

trade-offs and synergies among ecosystem services, alongside

forecasting land-use changes across multiple scenarios, offers deeper

insights into how these changes influence service capacity, interactions,

and regional benefits. Recently, the PLUS and InVEST models have

been employed to predict and assess future land-use alterations and

ecosystem service functionality, yielding (Wang et al., 2023; Guo et al.,

2024; Pei et al., 2024) robust theoretical results that support regional

development models.

While previous research has contributed significantly to theoretical

understanding, several limitations persist: (1) Much of the existing

work has focused on economically developed eastern regions, arid

northern areas, or urbanized zones, typically at themunicipal scale. The

karst region, one of China’s six major vulnerable ecosystems, is highly

susceptible to degradation and faces considerable ecological and

economic challenges. However, studies focused on multi-scenario

simulations of ecosystem services at a regional scale in the

southwestern karst mountains remain limited; (2) Prior studies often

concentrated on a narrow set of ecosystem services, neglecting a holistic

view of their overall value and interactions, which restricts

understanding of their broader impacts; (3) Different machine

learning models are suited to different types of data and analytical

needs. Proper model selection is crucial for accurate and nuanced

assessments of ecosystem services, yet current research often overlooks

this aspect, potentially hindering precise evaluations of

multidimensional impacts; (4) Previous land-use simulations have

typically relied on standardized or generalized scenarios, overlooking

the unique influencing factors that shape ecosystem services. This gap

may prevent accurate reflection of regional ecological service needs

and advantages.

The Yunnan-Guizhou Plateau, globally renowned for its distinctive

karst landscape, is characterized by unique limestone dissolution

features and extensive groundwater systems. It has a complex land-

use structure and significant geographical and environmental

variability (Hong et al., 2020a). Since 2000, the Chinese

government’s Western Development Strategy has aimed to alleviate

poverty in the southwestern mountainous regions. While this policy

has spurred regional economic development, it has also led to

intensified human activities—such as large-scale infrastructure

construction and mining—that have severely impacted the natural

environment and ecosystems. In response, the government has

strengthened ecological protection through initiatives such as the

Karst Desertification Restoration Project, leading to some

improvements in ecological quality and ecosystem structure in the

plateau. Despite these efforts, the rapid pace of economic growth and

human disturbance has hindered a comprehensive understanding of

the temporal and spatial dynamics of land use and ecosystem services

in the region, leaving a substantial gap in research that underscores the

need for further investigation.

Building on this context, the present study integrates traditional

ecosystem service assessment techniques with advanced machine

learning models, accounting for the unique ecological characteristics

and conservation needs of the southwestern mountainous region. This

approach facilitates a systematic and in-depth exploration of ecosystem

services in the Yunnan-Guizhou Plateau. This study employs

comprehensive indices to assess ecosystem services, incorporating
frontiersin.org

https://doi.org/10.3389/fevo.2025.1539547
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Li et al. 10.3389/fevo.2025.1539547
key factors such as carbon storage, habitat quality, soil conservation,

and water yield. This approach accounts for the interactions and

potential impacts among these services, establishing a baseline for

monitoring their evolution. To improve the accuracy of trend

predictions, the study compares various machine learning models,

ultimately selecting the gradient boosting model to develop a new

framework for analyzing driving mechanisms. This framework

quantifies the contributions of different factors to ecosystem services

and suggests targeted optimization strategies based on these findings.

Finally, the study projects changes in ecosystem services under various

future development scenarios, providing robust theoretical guidance

for enhancing ecosystem management and decision-making processes,

thus advancing regional ecological conservation and promoting

sustainable development.
2 Materials and methods

2.1 Profile of the study area

Located in southwestern China (100°–111° E, 22°–30° N), the

Yunnan-Guizhou Plateau (Figure 1) spans most of Yunnan and

Guizhou provinces and extends into parts of Sichuan, Hunan, Hubei,

Chongqing, and the Guangxi Zhuang Autonomous Region. Covering

approximately 775,400 km², the region boasts an average elevation

exceeding 2,000 m. It serves as a crucial center for biodiversity
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conservation in China, harboring diverse plant and animal species

alongside distinctive ecosystems. The plateau plays a vital role in

regional ecological stability and global environmental sustainability.

However, recent rapid economic growth has exacerbated human-

environment conflicts, significantly threatening the region’s

ecosystem service capacity.
2.2 Data acquisition and handling

This study used four primary categories of data: (1) basic data;

(2) ecosystem service function assessment data; (3) data on the

dominant factors influencing ecosystem services; and (4) data on

land use change driving factors. To ensure consistency and accuracy

across maps, all datasets were resampled to a spatial resolution of

500 meters and projected in the WGS_1984_UTM_Zone_48N

coordinate system. Detailed sources and data processing methods

are outlined in Supplementary Table S1.
2.3 Research methodology

2.3.1 Quantitative approaches to
ecosystem services

Focusing on four key ecosystem services—carbon storage (CS),

habitat quality (HQ), water yield (WY), and soil conservation (SC)—
FIGURE 1

Geographic location and land use dynamics of the Yunnan-Guizhou Plateau.
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the study followed these principles: (1) Ecosystem service classification:

Based on the millennium ecosystem assessment (MA) framework

(Carpenter et al., 2006), these services span regulating, supporting, and

provisioning categories, encompassing primary ecosystem functions to

facilitate a comprehensive assessment of multifunctionality and service

interactions. (2) Regional ecological context: The Yunnan-Guizhou

Plateau is characterized by diverse topography and complex

ecosystems. The selected services reflect the region’s key ecological

features and the primary environmental challenges it faces. Soil

conservation and carbon storage are closely tied to forest and land

management, while habitat quality and water yield are crucial for

biodiversity conservation and water resource management. (3) Data

availability and reliability: Each service is supported by mature

assessment methods and reliable data, ensuring scientific accuracy

and integrity.

The study integrated topography, soil types, and vegetation

cover data into the InVEST model, using GIS spatial analysis tools

to map and quantify ecosystem services. Parameters for each

module were derived from the InVEST Model Manual and

established research (Han et al., 2019; Duan et al., 2020; Niu and

Shao, 2020; Han et al., 2021; Yuan et al., 2021; Fang et al., 2022a; Li

et al., 2022d; Lin et al., 2022; Liu et al., 2022; Pan et al., 2022; Xie and

Zhang, 2023; Yang et al., 2024a). To illustrate evolving trends and

service interactions, mean values of each service were standardized,

eliminating dimensional and magnitude disparities and allowing for

consistent comparison across data.

2.3.2 Quantification of comprehensive
ecosystem services

This study utilized the “comprehensive ecosystem services

(CES)” framework to assess and quantify ecosystem services on

the Yunnan-Guizhou Plateau. Using GIS’s raster calculator, the CES

index was calculated by aggregating normalized values from four

key ecosystem services: carbon storage, habitat quality, water yield,

and soil conservation. A higher index score indicates stronger

ecosystem service functionality. The selection of these services

was guided by the region’s ecological security needs, with each

service representing a critical aspect of ecosystem health. Balancing

these services is essential for ecosystem stability, which is why an

equal-weighting method was employed to ensure each service was

regarded with equal importance. The formula used is as follows:

CES =on
i=1g(a, esi, t) (1)

where CES represents comprehensive ecosystem services, and

g (a, esi, t) denotes the normalized index of the i-th ecosystem

service for pixel a at time t. The indices i = 1, 2, 3, 4 correspond to

the normalized values of each individual ecosystem service.

2.3.3 Measurement of trade-offs and synergies
between ecosystem services

The study utilized Spearman correlation analysis to quantify the

trade-offs and synergistic relationships between ecosystem services.

Unlike methods based on raw data values, Spearman correlation

analysis does not have strict requirements for the type of data

distribution and is a non-parametric statistical testing method aimed
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at evaluating the strength and direction of the correlation between two

variables (Hong et al., 2020b; Karimi et al., 2021; Zhang et al., 2022b).

The correlation coefficient ranges from -1 to +1, where -1 indicates a

completely negative correlation, +1 indicates a completely positive

correlation, and 0 indicates no correlation (King and Eckersley, 2019).

Spearman correlation analysis is particularly suitable for the

evaluation of ecosystem services (Jaligot et al., 2019; Ogbodo et al.,

2023). Firstly, it has strong data adaptability, calculating the

correlation coefficient by comparing the ranking of data values

rather than the original numerical values. Research on ecosystem

services often involves data from multiple sources, these data types

are diverse and often do not meet the conditions for parametric tests

such as normal distribution. The non-parametric nature of

Spearman correlation analysis allows it to be directly applied to

these data, without the need for complex transformations or

processing. For example, in the study of ecosystem services in the

Guangdong-Hong Kong-Macao Greater Bay Area (Wu et al., 2022),

facing multi-source heterogeneous data such as temperature,

precipitation, and changes in land use types, Spearman

correlation analysis can directly mine the association of ecosystem

services in the data without tedious preprocessing, greatly

expanding the scope of data analysis. Secondly, Spearman

correlation analysis can handle potential skewed distribution in

the data, unaffected by outliers, providing a robust tool for revealing

interactions between services (Kumar et al., 2023; Liu et al., 2024a).

Lastly, the results of Spearman correlation analysis are intuitively

interpretable, making it easy to understand and explain the research

results. In the study of ecosystem services, the positive or negative

values of the correlation coefficient can indicate whether the services

are synergistic or in a trade-off relationship, and the larger the

absolute value of the coefficient, the stronger the synergy or trade-

off relationship between these services (Liang et al., 2023). This

intuitive presentation greatly reduces the difficulty of interpreting

research results, and can quickly judge whether different ecosystem

services promote each other, inhibit each other, or have no relation

based on the coefficient, providing clear and effective support for the

formulation of subsequent ecosystem management decisions.

The analysis used raster cells. First, 10,000 random sampling

points were generated across the study area using ArcGIS software,

with a minimum distance of 500 meters between points to mitigate

spatial autocorrelation. Ecosystem service values for each point

were extracted using the “extract values to points” tool, followed by

Z-score standardization to achieve dimensionless values. This

process created the sample database. Statistical data were then

transferred to R programming for Spearman correlation analysis

using the “corrplot” package. Correlation coefficients were tested for

significance at the 0.01 level.

2.3.4 Determining key influencers of ecosystem
services through gradient boosting

To assess the key drivers of ecosystem services, this study

employed the gradient boosting algorithm. Gradient boosting is

an ensemble learning method where weak predictive models are

iteratively trained to form a robust composite model (Natekin and

Knoll, 2013). In each iteration, the new model corrects the errors of
frontiersin.org
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the previous one, minimizing residuals. The predictions from each

newly trained model are weighted by a fixed learning rate and added

to the overall prediction. This iterative process continues until a set

number of iterations is reached or model performance no longer

improves. Gradient boosting’s primary strengths are its high

predictive accuracy and flexibility, reducing overfitting while

accommodating various data types and complex nonlinear

relationships. The algorithm can be summarized by the following

core formula, which includes initialization, iterative updates, and

final model construction.

F0(x) = argmingo
N

i=1
L(yi, g ) (2)

ri,t = −½∂ L(yi, F(xi))= ∂ F(xi)�F(x)=Ft−1(x) (3)

Ft(x) = Ft−1(x) + h · ht(x) (4)

FT(x) = F0(x) + ho
T

t=1
ht(x) (5)

where F0(x) represents the initial model’s prediction function; g
denotes the constant starting value of the prediction, typically the

mean or median of the target variable; L is the loss function used to

evaluate prediction error; yi is the actual target value for the i-th

data point; N is the total number of the observations in the dataset;

ri,t represents the pseudo-residual for the i-th observation at

iteration t; ∂ L(yi, F(xi))= ∂ F(xi) is the partial derivative of the

loss function L with respect to the model prediction F(xi); Ft−1(x)

is the predictive function of the model after the (t − 1)-th iteration.

The learning rate h controls the influence of each weak learner per

iteration. ht(x) denotes the weak learner trained in the t-th iteration;

FT (x) is the final model predictive function after T iterations; and T

represents the total number of iterations.

The selection of appropriate driving factors was crucial for

understanding and predicting ecosystem service functions, as it

directly influenced the assessment of the factors that affect these

services. Drawing on relevant literature (Jia et al., 2022; Li et al.,

2022a; Huang and Wang, 2023), the selection criteria for driving

factors were as follows: (1) Relevance: Factors should clearly reflect

the influence of natural geography, climate, economic, or social

factors on ecosystem services; (2) Quantifiability and independence:

Overlap among factors should be minimized to facilitate

computational analysis; (3) Data accessibility: The precision and

credibility of the final results depend on the quality, completeness,

and geographic and temporal coverage of the data. Accordingly,

nine indicators across four dimensions were selected for analysis of

various ecosystem services: climate (precipitation, temperature,

potential evaporation), topography (elevation, slope), land

characteristics (vegetation fraction, land use), and urbanization

(population density, GDP).

This study applied the gradient boosting algorithm to evaluate

the significance of driving factors. Feature importance was

determined through ranked importance by randomly shuffling the

values of individual features and assessing the resulting decrease in

model performance. This approach identified the dominant
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influences on ecosystem services, based on their contribution to

model performance. After tuning the model, the dataset was split,

allocating 80% for training and 20% for testing. A learning rate of

0.1 and 100 decision trees were used. Model accuracy was evaluated

using root mean square error (RMSE) and the coefficient of

determination (R²), with the following definitions:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=mo

m

i=1
(yi − byi)2

s
(6)

where yi is the i-th observed value, ŷi represents the i-th

predicted value, and m is the total number of observations. Lower

RMSE values indicate higher predictive accuracy, reflecting smaller

deviations between predicted and actual values.

R2 = 1 −on
i=1(yi − byi)2=on

i=1(yi − byi)2 (7)

where, yi represents the mean of all observed values. R² values

typically range from 0 to 1, with values closer to 1 indicating a

stronger model and better alignment with the observed data.

2.3.5 Validation and comparison of machine
learning models

To evaluate the effectiveness of the gradient boosting model in

identifying dominant factors influencing ecosystem services, this

study compared it against several advanced machine learning

models, including XGBoost, Ridge Regression, Support Vector

Machines (SVM), and Random Forest (Table 1) (Sannigrahi et al.,

2019; Morais et al., 2023; Okumus and Terzi, 2023; Zhou et al.,

2024). All models were applied to datasets from 2000, 2010, and

2020, using consistent data splitting ratios and parameter settings.

Model performance was assessed by RMSE and R², with models

showing lower RMSE and higher R² values considered more precise

and reliable (Liu et al., 2024b).

2.3.6 Land use multi-scenario setting for 2035
This study developed land use scenarios for 2035 tailored

specifically to the Yunnan-Guizhou Plateau. Nine driving factors

were selected based on their data availability, relevance, variability,

and quantifiability. These factors, which include aspect, annual

average precipitation, elevation, slope, annual average temperature,

GDP, population density, distance to national highways, and

nighttime lights, combine both natural and socio-economic

elements. The LEAS module of the PLUS model was used to

examine the influence of these factors, informing the creation of

land expansion strategies. Subsequently, the CARS module simulated

the spatial distribution of land use across the study area. This

simulation integrated strategies and predictive outcomes from

LEAS while considering neighboring effects and plot characteristics

through cellular automata rules.

Land use changes on the Yunnan-Guizhou Plateau result from

complex interactions between natural environmental factors and

human activities. These interactions are shaped by geographical

conditions, socio-economic development, and policy regulations. In

light of the plateau’s prevailing conditions, national land and space

planning, and insights from the Gradient Boosting model’s

ecosystem service driver assessment, three land use scenarios for
frontiersin.org
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2035 were developed: natural development, planning-oriented, and

ecological priority.

The natural development scenario assumes that land use

changes from 2000 to 2020 will continue without considering

policy or regulatory constraints. In this scenario, the land use

pattern evolves linearly based on historical trends, serving as a

theoretical baseline for the other scenarios. The planning-oriented

scenario integrates national land use policies, environmental

regulations, and regional development strategies. It prioritizes

policy tools and planning measures to guide land use changes,

ensuring alignment with territorial spatial planning goals. The

ecological priority scenario focuses on enhancing ecosystem

services by prioritizing land use and vegetation cover. Stringent

ecological protection policies are implemented to preserve and

enhance ecosystem functions. Under this scenario, land use

changes undergo thorough ecological impact assessments, with

strict limitations on the expansion of construction land and

encroachment into ecological zones. Measures to increase

vegetation cover and expand water source protection areas are

introduced to improve ecosystem resilience, while ecological

restoration projects, such as converting cropland to forests and

restoring grasslands and wetlands, are promoted.

2.3.7 Parameter settings and accuracy verification
To align with these development scenarios, key parameters of

the PLUS model—including the transfer matrix, neighborhood

weight, land use demand, and areas with restricted conversion—

were defined.
Fron
1. Transfer Matrix: The transfer matrix represents the dynamics

of land use conversion between various types. If a specific land

type is eligible for conversion to another, the corresponding

matrix value is set to 1; otherwise, it is set to 0. As shown in

Supplementary Table S2, the transfer matrix from 2000 to

2020, alongside the Markov transfer probabilities for the study

area, was used to establish matrices for six land types under

different scenarios, reflecting local socio-economic trends and

environmental policies.

2. Land Use Demand: In the natural development scenario,

projections for land use requirements in 2035 were generated

using the linear regression module of the PLUS model, based

on data from 2010 and 2020. For the planning-oriented

scenario, the area control ranges for land use types—such as
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forestland, cropland, and building land—were examined for

the Yunnan-Guizhou Plateau based on policy documents

like the “Guizhou Provincial Territorial Spatial Planning

(2021-2035)” and “Yunnan Provincial Territorial Spatial

Planning (2021-2035).” These documents informed the

simulation of planned land use areas for 2035. The model

assumed a 20% reduction in the transfer of cropland to

forestland and grassland, and a 40% reduction in its

conversion to building land. Conversely, the transfer of

forestland and grassland to cropland was increased by

20%, while the transfer to building land was reduced by

40%. Similarly, the transfer of water bodies to cropland

increased by 30%, while their conversion to building land

decreased by 50%. Transfers from building land to cropland

were boosted by 30%, and unutilized land conversion to

building land was also increased by 30%. In the ecological

priority scenario, ecological protection was emphasized,

particularly for forestland, grassland, and water bodies. The

model further increased the transfer of cropland to

forestland and grassland by 20%, while reducing its

conversion to building land by 50%. Transfers from

forestland and grassland to cropland and building land

were reduced by 40%, while conversion of water bodies to

building land dropped by 60%. The transfer of building land

to cropland was increased by 30%, and unutilized land

conversion to forestland and grassland was raised by 20%,

with a 10% decrease in its conversion to building land. The

anticipated land use demands for 2035 were calculated using

the Markov model, based on these rules for each scenario

(Supplementary Table S3).

3. Neighborhood Weights: Neighborhood weights represent

the relative influence of various driving factors on land use

decisions during simulations of land use change. A higher

weight indicates a stronger influence on land use outcomes,

while a lower weight denotes a lesser effect. These weights

range from 0 to 1. In this study, neighborhood weights for

different land use types across the Yunnan-Guizhou Plateau

were determined by analyzing the expansion of land use

from 2000 to 2020. The calculations were refined iteratively

using the PLUS software, drawing on existing studies (Li

et al., 2022c; Duan et al., 2023) (Supplementary Table S4).

4. Restricted Conversion Areas. Restricted conversion areas

are identified through a binary raster map, where each cell
TABLE 1 Core formulas of various machine learning models.

Model name Core formula Description

XGBoost ŷi =ok
k=1gk(xi)

ŷi is the predicted value, xi  is the feature vector, gk  is the prediction function of
the k-th tree, and k is the total number of trees.

Ridge regression ŷ = X(b) = X(XTX + lI)−1XTy
ŷ is the prediction vector, X is the feature matrix, b is the coefficient vector, l is
the regularization parameter, I is the identity matrix, and y is the target vector.

SVM min
w,b

1=2wTw + Con
i=1max(0, 1 − yi(w

Tj(xi) + b))
w is the weight vector, b is the bias term, C is the regularization parameter, j(xi) is

the feature mapping, and yi is the actual label.

Random Forest
An ensemble of decision trees, each tree’s

formula is ŷi = 1=BoB
b=1Tb(x)

ŷi is the predicted value, B is the number of trees, Tb is the function of the b-th
tree, and x is the input feature.
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Fron
represents a geographic location. A value of 1 indicates that

the land use type in that location can change, while a value

of 0 signifies it remains fixed. In the natural development

scenario, land use changes followed historical trends and

natural dynamics, with no conversion restrictions. In the

planning-oriented scenario, ecological function protection

areas were established as constraints to limit their

conversion to other land types. In the ecological priority

scenario, nature reserves, ecological function protection

areas, and primary river zones were designated as

protected areas, preventing their conversion to other

land uses.

5. Accuracy Verification. Land use data from 2000 and 2010

were used to project the 2020 land use scenario for the

Yunnan-Guizhou Plateau, which was then compared with

actual land use statistics from 2020. The model’s accuracy

was assessed using the Kappa and figure of merit (FoM)

coefficients. The kappa coefficient of 0.860523 indicates

substantial agreement (values above 0.8 are considered

high), while the FoM coefficient of 0.215106 slightly

exceeds the standard range of 0.1-0.2 (Wang et al.,

2022b). These results confirm that the PLUS model

effectively captured land use dynamics in the Yunnan-

Guizhou Plateau, meeting the study ’s accuracy

requirements and proving its utility for forecasting land

use changes through 2035.
2.3.8 Ecosystem services simulation and analysis
of trade-offs/synergies across scenarios

The InVEST model was used to evaluate ecosystem service

performance across different scenarios, reassessing each service

based on the outcomes of land use simulations. Trade-offs and

synergies among ecosystem services were analyzed under various

management and policy scenarios.
3 Results

3.1 Spatial and temporal patterns of
ecosystem service distribution

Figure 2 illustrates the spatial distribution of ecosystem services

across the Yunnan-Guizhou Plateau. Water yield services were more

abundant in the eastern regions, particularly in areas with flat terrain

and ample rainfall, such as Pu’er, Tongren, Zhangjiajie, and Huaihua.

In contrast, central Yunnan, including areas around Kunming, and

much of Guizhou, experienced lower water yields due to terrain

variability and reduced precipitation. Habitat quality patterns

remained generally stable, although low-quality areas expanded

gradually from 2000 to 2020, especially in the densely populated

and economically active central and southern regions, including
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Kunming, Guiyang, Qujing, Zhaotong, Baise, and Bijie. Urban

expansion increasingly threatened cropland, forestland, and

grassland habitats, accelerating the fragmentation of high-quality

habitats near urban centers. Carbon storage distribution aligned

closely with land use types. High carbon storage values were

concentrated in forested and grassland areas, particularly in Enshi

Prefecture and Zhangjiajie, where extensive vegetation cover

enhanced carbon sequestration. Conversely, areas with significant

cropland or urban development, such as Dali Prefecture, Kunming,

Guiyang, Yuxi, Qujing, and Baise, displayed lower carbon storage due

to urbanization’s impact on vegetation and land cover. Soil

conservation services followed a similar trend, with higher values in

areas with robust vegetation cover and lower values in regions with

sparse vegetation. For instance, cities such as Guiyang, Qujing,

Liupanshui, and Bijie saw urban expansion that reduced soil

conservation. Conversely, areas with abundant vegetation, such as

Lincang, Panzhihua, and Liangshan Prefecture, exhibited stronger soil

conservation. Overall, the spatial distribution of ecosystem services

revealed strong heterogeneity, influenced by both natural conditions

and human activities. Areas with high ecosystem service capacity were

concentrated in regions such as Zigui County, Xingshan County, and

Shimen County, where natural vegetation was well-preserved,

biodiversity was rich, and human intervention was minimal. In

contrast, southeastern regions such as Kunming, Dali Prefecture,

and Yuxi displayed weaker ecosystem service capacity, impacted by

lower vegetation cover, land degradation, and intense human

activities such as agriculture, mining, and urban development.

The temporal changes in ecosystem services are summarized in

Table 2. Water yield decreased from 0.3088 in 2000 to 0.2693 in 2010,

then rebounded to 0.3010 by 2020. While it did not return to its 2000

value, a positive trend emerged. Habitat quality slightly declined from

0.7764 in 2000 to 0.7735 in 2010, and further decreased to 0.7596 by

2020, largely driven by increased human activity, land use changes,

and natural habitat degradation. Carbon storage showed a modest

decrease, from 0.8793 in 2000 to 0.8789 in 2010, and further to 0.8716

by 2020, reflecting vegetation degradation and forest loss. Conversely,

soil conservation increased from 0.0405 in 2000 to 0.0442 in 2010,

and further to 0.0557 by 2020, likely due to more effective soil and

water conservation measures and vegetation restoration efforts. The

normalizedmean of comprehensive ecosystem services declined from

2.0052 in 2000 to 1.9661 in 2010, but rebounded to 1.9881 by 2020.

Overall, ecosystem services on the Yunnan-Guizhou Plateau

displayed fluctuations over the past two decades. Water yield and

comprehensive ecosystem services initially declined but later

increased, while habitat quality and carbon storage steadily

declined. In contrast, soil conservation capacity consistently

improved. These trends suggest progress in water protection and

land management, though challenges persist in habitat protection

and carbon storage. Enhanced monitoring and assessment of

ecosystem services are critical to promptly identifying regional

changes and providing a scientific basis for effective conservation

and management strategies.
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3.2 Trade-offs and synergies of
ecosystem services

Figure 3 presents a Spearman correlation analysis revealing six

statistically significant relationships (P < 0.05) among four

ecosystem services. Figures 3A–C show the correlation analysis

for the years 2000, 2010, and 2020, respectively. The analysis

indicates a persistent negative correlation between water yield and

habitat quality (WY-HQ), water yield and carbon storage (WY-CS),

and habitat quality and soil conservation (HQ-SC). In contrast,

positive correlations were observed between habitat quality and

carbon storage (HQ-CS) and between carbon storage and soil
Frontiers in Ecology and Evolution 08
conservation (CS-SC). The strongest correlation was between

habitat quality and carbon storage (HQ-CS), with correlation

coefficients exceeding 0.9 throughout the study period, while the

weakest, and most declining, was the correlation between water

yield and soil conservation (WY-SC). Figure 3D illustrates the

evolving correlations from 2000 to 2020, with blue arrows

indicating synergistic optimization and red arrows showing trade-

off deterioration. Notably, the correlations between water yield and

habitat quality (WY-HQ) and between water yield and carbon

storage (WY-CS) exhibited a trend toward synergy, while other

service pairs showed trade-off dynamics. Over the long term, a

strong synergistic relationship was sustained between habitat
FIGURE 2

Spatial-temporal patterns of ecosystem services.
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quality and carbon storage, while the relationships between water

yield, habitat quality, and carbon storage, although optimizing,

continued to exhibit some trade-offs. The relationship between

soil conservation and other services revealed more complex

dynamics, exhibiting both synergies and trade-offs.
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3.3 Validation results of machine
learning models

An analysis of various machine learning models, as presented in

Table 3, reveals their performance in addressing multiple ecosystem

service drivers. Overall, gradient boosting consistently

outperformed other models across various time points and

ecosystem service indicators, demonstrating the lowest RMSE and

highest R². This indicates superior predictive accuracy and model

fit, particularly for the carbon storage (CS) indicator, where

gradient boosting consistently achieved exceptionally high

predictive accuracy across all years. In comparison, other models

such as XGBoost performed well on certain indicators, achieving an

R² of 0.9408 for the water yield (WY) in 2000. However, their
FIGURE 3

Correlations among ecosystem services from 2000 to 2020.
TABLE 2 Normalized mean values of ecosystem services from 2000
to 2020.

Year WY HQ CS SC CES

2000 0.3088 0.7764 0.8793 0.0405 2.0052

2010 0.2693 0.7735 0.8789 0.0442 1.9661

2020 0.3010 0.7596 0.8716 0.0557 1.9881
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overall performance did not match that of gradient boosting, likely

due to constraints in parameter tuning and model complexity. As a

linear model, ridge regression generally exhibited weaker

performance, particularly in terms of R², which tended to be

lower than that of other models. Support vector machines (SVM)

displayed higher RMSE and lower R² values, with notable

overfitting on the CS indicator, as evidenced by negative R²

values. Random Forest showed strong performance in some cases,

such as achieving an R² of 0.9999 for the CS indicator in 2000, but

its overall performance still lagged behind gradient boosting.

In summary, gradient boosting’s exceptional performance

underscores its reliability and effectiveness in assessing ecosystem

service drivers. This success can be attributed to its iterative error-

correction process and high adaptability to complex data

relationships. While other models had strengths, gradient

boosting was the clear leader in this specific application, making

it the primary machine learning tool for this research.
3.4 Assessment of the importance of
ecosystem service driving factors

The gradient boosting model was used to derive relative

importance scores for nine explanatory variables influencing five

ecosystem service response variables in 2000, 2010, and 2020. As

shown in Table 4, precipitation emerged as the primary

determinant of water resource generation, directly influencing

annual water yield. Land use consistently proved the dominant

factor affecting habitat quality and carbon storage, with scores

exceeding 1.8 and approaching 2.0 for these services, highlighting
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its crucial role in optimizing ecosystem services. Vegetation cover

was identified as a key factor for soil conservation, effectively

preventing soil erosion and emerging as the main driver of this

service. Notably, scores for vegetation cover exceeded 1.5 in both

2000 and 2010, underscoring the importance of protecting and

enhancing vegetation to mitigate soil erosion. Overall, land use

diversity and management significantly impacted multiple

ecosystem services, with high vegetation cover generally linked to

better service outcomes. Consequently, land use and vegetation

cover were identified as the critical factors influencing

comprehensive ecosystem services. Although precipitation had

some influence on ecosystem services, its effect was secondary to

that of land use and vegetation cover. This importance assessment

improves understanding of ecosystem service trends and provides a

foundation for defining ecological priority scenarios in the

PLUS model.
3.5 Quantitative prediction of ecosystem
services under multiple scenarios

3.5.1 Multi-scenario land use simulation
Projections for land use in 2035 were developed across three

scenarios: natural development, planning-oriented, and ecological

priority. As shown in Table 5, the natural development scenario

predicted growth in cropland and built-up land, accompanied by a

decrease in forestland area, suggesting that natural development

would lead to some forestland conversion. In the planning-oriented

scenario, both cropland and forestland areas showed slight

increases, indicating that sustainable policies are supporting
TABLE 3 Validation results of machine learning models.

Year ES
XGBoost Ridge regression SVM Random Forest Gradient boosting

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

2000

WY 0.2428 0.9408 0.6084 0.6279 0.7643 0.4128 0.1153 0.9866 0.0999 0.9900

HQ 0.2240 0.9503 0.7286 0.4737 0.9674 0.0722 0.1170 0.9864 0.1179 0.9862

CS 0.2092 0.9535 0.8159 0.2927 1.1344 -0.3671 0.0075 0.9999 0.0056 1.0000

SC 0.4219 0.8338 0.4519 0.8093 0.5501 0.7173 0.3492 0.8861 0.3509 0.8850

CES 0.2232 0.9504 0.6634 0.5621 0.8641 0.2571 0.1094 0.9881 0.1073 0.9885

2010

WY 0.2586 0.9294 0.5767 0.6489 0.6676 0.5295 0.1272 0.9829 0.1254 0.9834

HQ 0.2278 0.9483 0.7699 0.4094 0.9764 0.0500 0.1186 0.9860 0.1163 0.9865

CS 0.2069 0.9561 0.8288 0.2960 1.1365 -0.3237 0.0007 1.0000 0.0000 1.0000

SC 0.4303 0.8218 0.4558 0.8000 0.5643 0.6935 0.3703 0.8680 0.3679 0.8697

CES 0.2297 0.9477 0.7029 0.5106 0.8837 0.2264 0.1152 0.9869 0.1143 0.9871

2020

WY 0.2464 0.9365 0.5113 0.7267 0.5684 0.6623 0.1532 0.9755 0.1296 0.9824

HQ 0.2400 0.9428 0.8045 0.3568 0.8821 0.2268 0.1465 0.9787 0.1411 0.9802

CS 0.2245 0.9494 0.8651 0.2484 1.0077 -0.0198 0.0004 1.0000 0.0000 1.0000

SC 0.4373 0.8249 0.4856 0.7841 0.5590 0.7139 0.3542 0.8851 0.3794 0.8682

CES 0.2355 0.9457 0.7381 0.4668 0.8065 0.3634 0.1300 0.9835 0.1284 0.9839
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agricultural development and forest conservation. Additionally, the

expansion of built-up land was limited to 10,711 km², less than in

the natural development scenario, highlighting efforts to control

urban sprawl. The ecological priority scenario, focused on

ecological protection, saw increases in forestland and grassland

areas to 454,417 km² and 126,817.75 km², respectively, emphasizing

the conservation and expansion of these ecologically sensitive areas.

In contrast, cropland and built-up land areas were reduced to

176,805.5 km² and 9,277.25 km², respectively, reflecting a policy

prioritizing the protection of natural resources, ecosystem services,

and biodiversity.

Figure 4 illustrates the spatial distribution of land use across

different scenarios. In the natural development scenario, land use

followed historical trends. Cropland was scattered, with a

concentration in central areas. Forestland covered a large expanse,

while urban areas expanded significantly around major cities,

reflecting accelerated urbanization. In the planning-oriented

scenario, although cropland increased in area, its distribution

became more concentrated and organized, particularly in regions

suitable for agriculture. Forestland expanded slightly in ecologically

sensitive and border areas, reflecting enhanced conservation efforts.

The growth of urban areas was more controlled, consistent with

urban planning and land use policies. In the ecological priority

scenario, forestland had the greatest coverage, particularly in the

western and northern regions. Cropland decreased, concentrating

in areas with poor ecological conditions or minimal environmental

impact. Urban expansion was strictly controlled, confined to

existing urban zones, reducing encroachment on natural areas.

Water bodies and grasslands were well protected, especially in

ecological function zones and biodiversity hotspots.
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3.5.2 Variations in ecosystem services across
space and time under various scenarios for 2035

Based on the simulated land use types for 2035 under different

scenarios in the PLUS model, and considering data consistency and

availability, the 2020 climate data was used to calculate the water

yield, habitat quality, carbon storage, and soil conservation of the

Yunnan-Guizhou Plateau for 2035. The cumulative ecosystem

service value (Table 6) was then calculated and compared with

the historical period. In the natural development scenario,

ecosystem services were weak. Water yield was slightly lower than

in 2020, with no significant improvement. Habitat quality declined

slightly, suggesting that without substantial policy intervention,

habitats could degrade due to human activities and natural

development trends. Carbon storage also declined marginally,

while soil conservation improved slightly. Overall, the ecosystem

services score was slightly lower than in 2020. In the planning-

oriented scenario, ecosystem services showed slight improvements

compared to the natural development scenario. Habitat quality and

soil conservation were enhanced, indicating that strategic land use

and conservation measures could improve habitat conditions and

reduce soil erosion. Carbon storage remained close to 2020 levels,

reflecting the effectiveness of forestland protection efforts. The

overall ecosystem services score improved, demonstrating the

benefits of integrated land management. In the ecological priority

scenario, all ecosystem service indicators showed the greatest

improvement. Water yield, habitat quality, carbon storage, and

soil conservation all exceeded 2020 levels, highlighting the

advantages of prioritizing ecological protection. Comprehensive

ecological restoration efforts significantly enhanced ecosystem

service quality.
TABLE 4 Scores of dominant factors for each ecosystem service.

Year ES pre tem pet dem slope fvc lucc pop gdp

2000

WY 1.3402 0.0003 0.0879 0.0005 0.0030 0.0000 0.9581 0.0000 0.0001

HQ 0.0001 0.0001 0.0005 0.0013 0.0013 0.0001 1.8980 0.0013 0.0004

CS 0.0000 0.0000 0.0000 0.0001 0.0000 0.0003 1.9842 0.0000 0.0001

SC 0.1941 0.0101 0.0078 0.0712 0.0027 1.5446 0.0084 0.0026 0.0025

CES 0.2619 0.0001 0.0191 0.0008 0.0019 0.0275 1.3939 0.0004 0.0002

2010

WY 1.3050 0.0014 0.0856 0.0003 0.0004 0.0003 0.8917 0.0001 0.0000

HQ 0.0002 0.0001 0.0006 0.0008 0.0014 0.0001 1.8809 0.0032 0.0002

CS 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001 1.9925 0.0000 0.0000

SC 0.2129 0.0082 0.0078 0.0492 0.0062 1.5673 0.0011 0.0023 0.0017

CES 0.2443 0.0003 0.0181 0.0002 0.0043 0.0286 1.3763 0.0008 0.0001

2020

WY 1.2604 0.0017 0.0656 0.0002 0.0001 0.0003 0.6602 0.0000 0.0000

HQ 0.0002 0.0002 0.0005 0.0006 0.0029 0.0002 1.8498 0.0038 0.0001

CS 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 1.9974 0.0000 0.0001

SC 0.1884 0.0038 0.0137 0.1260 0.0054 1.4047 0.0051 0.0064 0.0025

CES 0.2498 0.0010 0.0156 0.0010 0.0024 0.0410 1.3654 0.0009 0.0002
fr
pre, precipitation; tem, temperature; pet, potential evaporation; dem, digital elevation model; fvc, fractional vegetation cover; lucc, land use and cover change; pop, population density; gdp, gross
domestic product.
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Spatial patterns of ecosystem service functions in 2035 exhibited

distribution characteristics similar to those from 2000 to 2020

(Figure 5). In all scenarios, water yield remained low in the

central and southern regions, with high-value areas concentrated

in the northeast, including Changde, Yichang, Zhangjiajie, Luzhou,

and Yibin. Habitat quality improved in the ecological priority

scenario, especially in well-managed areas such as Zunyi,

Tongren, and Zigui. Carbon storage variation across scenarios

was minimal, with low-value regions in central areas such as

Anshun, Bijie, and Guiyang. Soil conservation showed slight

improvements in all scenarios, with low-value areas in central and
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western regions, including Guiyang, Bijie, Qujing, Kunming, and

Chuxiong. In the natural development scenario, ecosystem service

distribution followed past trends. The planning-oriented scenario

saw improvements in ecosystem service capacity, particularly in

Baise, Qiandongnan, and Guiyang, reflecting the benefits of

planning measures. The ecological priority scenario demonstrated

optimal ecosystem service performance, serving as an ideal model

for how enhanced ecological protection and sustainable

management can improve services, particularly in regions such as

Dali, Chuxiong, Yuxi, and Kunming, where initial ecological value

was low.
FIGURE 4

Simulation results of land use in 2035 across multiple scenarios.
TABLE 5 Dynamic changes in land use area from historical periods to 2035 under multiple scenarios.

Land use type

Historical period

2000 2010 2020

Area (km²) Proportion (%) Area (km²) Proportion (%) Area (km²) Proportion (%)

Cropland 170110.36 21.94 168491.24 21.73 172519.78 22.25

Forestland 462164.76 59.62 467461.05 60.30 458603.25 59.16

Grassland 134084.70 17.30 127990.71 16.51 127462.24 16.44

Water body 4912.40 0.63 5663.69 0.73 7174.25 0.93

Building land 3381.45 0.44 5153.59 0.66 8959.82 1.16

Unutilized land 581.09 0.07 483.85 0.06 482.19 0.06

Land use type

2035

Natural development Planning-oriented Ecological priority

Area (km²) Proportion (%) Area (km²) Proportion (%) Area (km²) Proportion (%)

Cropland 181229.25 23.38 182866.00 23.59 176805.50 22.81

Forestland 446180.25 57.55 451386.75 58.22 454417.00 58.61

Grassland 124765.50 16.09 121417.75 15.66 126817.75 16.36

Water body 9250.50 1.19 7530.75 0.97 8463.50 1.09

Building land 13433.00 1.73 10711.00 1.38 9277.25 1.20

Unutilized land 413.25 0.05 426.75 0.06 423.50 0.05
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3.5.3 Trade-offs and synergies of ecosystem
services under different development scenarios

The 2035 predictions revealed that different development

scenarios affected the trade-offs and synergies between ecosystem

services in distinct ways (Figure 6). In the natural development

scenario, the trade-off between HQ-WY and HQ-CS slightly

intensified compared to 2020, while synergies between HQ-CS

and CS-SC weakened. This shift likely resulted from the absence

of interventions in the natural development scenario. In the

planning-oriented scenario, although negative correlations

persisted between HQ-WY and CS-WY, the competitive

dynamics were somewhat reduced. Positive correlations among

CS-HQ, SC-HQ, and SC-CS were stronger than in the natural

development scenario, suggesting that proper planning and

management can mitigate service conflicts and enhance synergies.

The ecological priority scenario demonstrated the most favorable

outcome for fostering synergies between ecosystem services, with

higher levels of synergy observed in HQ-CS, HQ-SC, and CS-SC.

Moreover, trade-offs between WY-HQ, WY-CS, and WY-SC were

somewhat alleviated. This scenario emerged as the most effective in

balancing ecosystem services.
4 Discussion

4.1 Validation against previous research

The PLUS-InVEST model was used to assess and predict future

developments and ecosystem services in the study area, consistent

with the methodologies of Huang et al (Huang et al., 2023a, 2023;

Kulaixi et al., 2023; Wu et al., 2024). Temporal and spatial analyses

of ecosystem services show that carbon storage is predominantly

concentrated in land types with high vegetation cover, such as

forests. As forestland areas fluctuate, carbon storage in the Yunnan-

Guizhou Plateau correspondingly increases or decreases,

supporting the findings of Wang Rongyao et al (Wang et al.,

2022a). Land use strongly influences temporal and spatial

variations in habitat quality on the Plateau. The rapid expansion

of urban areas increases habitat fragmentation, reducing

connectivity, a trend partially corroborated by Xie Bo et al (Xie

and Zhang, 2023). Vegetation stabilizes soil through its root

systems, thus reducing erosion. Consequently, vegetation coverage

is a critical factor in soil conservation. In the economic hub of the

Plateau, where vegetation cover is sparse and human impact is

significant, soil conservation capacity is limited, aligning with the

findings of Chen Ran et al (Ran et al., 2020). Water production is
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constrained by various factors. In the eastern region, with its gentle

terrain and extensive grasslands, the area functions as the primary

watershed of the Plateau. Li Jinghao et al. (Jinghao et al., 2024)

demonstrated that water production services are higher in the east

and lower in the west, a pattern consistent with this study’s results.

Overall, ecosystem service functions in the area initially declined

before rebounding, echoing the findings of Zhang Hao et al. (Zhang

et al., 2020) regarding ecosystem health in southwestern China.

The trade-off and synergy analysis revealed that, both historically

and in future projections, a trade-off exists between water yield and

habitat quality, carbon storage, and soil conservation in the Yunnan-

Guizhou Plateau. This trade-off is due to disturbances in the natural

ecological environment caused by water regulation and the expansion

of water bodies. However, strong synergistic relationships were

observed between habitat quality, carbon storage, and soil

conservation. In particular, habitat quality and carbon storage are

highly synergistic, with regions of high habitat quality typically

exhibiting greater biodiversity. Diverse plant communities enhance

carbon fixation and storage, highlighting the interdependence of

biodiversity, ecosystem services, and vegetation health. These

findings are consistent with the research by Zhang Mei et al

(Zhang et al., 2015). The identification of key drivers influencing

ecosystem services shows that land use practices and vegetation cover

directly impact the types and quality of services ecosystems provide.

Extensive forests and grasslands deliver rich biodiversity, effective

carbon storage, and water conservation services. In contrast,

unchecked urban expansion and agricultural development lead to

habitat fragmentation, diminishing the ecosystem’s natural

regulatory capacity, supporting the conclusions of Schirpke et al

(Schirpke et al., 2023).
4.2 Advantages of integrating machine
learning models with the PLUS model

Traditional land use simulations typically rely on empirical

methods or broad macro-level policy frameworks. While these

approaches offer foundational planning insights, they often lack

robust data support, resulting in substantial uncertainty in decision-

making. As a result, management strategies may be overly

generalized, lacking specificity. This study addresses this gap by

incorporating the Gradient Boosting model, which enables the

identification and quantification of key drivers influencing

ecosystem services. This data-driven model, which utilizes

machine learning algorithms to analyze large-scale data, identifies

the most significant factors impacting various ecosystem services.

By providing a precise foundation for scenario design, it enhances

the accuracy of future land management simulations. The research

found that, in the ecological priority scenario, ecosystem service

performance exceeded that of both the natural development and

planning-oriented scenarios. This suggests that scenario designs

incorporating the advantages of key driving factors offer substantial

implementation value. By adjusting the distribution of dominant

factors and optimizing land use structures, ecosystem services were

not only enhanced but also promoted greater inter-service synergy,

reducing trade-offs between services. Compared to traditional
TABLE 6 Normalized mean values of ecosystem services under different
development scenarios in 2035.

Development
scenario

WY HQ CS SC CES

Natural development 0.3009 0.7547 0.8671 0.0558 1.9785

Planning-oriented 0.2990 0.7583 0.8711 0.0562 1.9846

Ecological priority 0.3048 0.7650 0.8745 0.0566 2.0009
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empirical approaches, this data-driven optimization is more precise

and efficient.

The integration of machine learning techniques with ecological

models in this study provides a scientific framework for future

ecosystem service management, with potential applications in other

regions. In complex ecosystems, identifying the dominant factors

influencing ecological service systems enables the application of

tailored management strategies, improving the precision of scenario

designs. Future landmanagement efforts should prioritize not just the
Frontiers in Ecology and Evolution 14
optimization of individual services but also the management of

multifunctional land uses. This includes strategically managing

agricultural and urban areas to protect and restore ecological

functions, thereby enhancing a broad range of ecosystem services.

Relying on quantitative models and dynamic monitoring will help

ensure that land use optimization delivers both immediate benefits

and long-term ecosystem stability. This approach will improve policy

formulation and implementation, addressing complex ecological

challenges while promoting sustainable environmental development.
FIGURE 5

Spatial distribution of ecosystem services under multiple scenarios in 2035.
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4.3 Limitations and prospects

This study combined the InVEST, Gradient Boosting, and

PLUS models. While the model’s accuracy has been validated and

meets the research requirements, several issues warrant

further attention:

First, the InVEST model’s parameter settings were primarily

based on literature from the Yunnan-Guizhou Plateau. While these

parameters provide a scientific foundation for the assessment, the

region’s ecosystem services are influenced by various factors, and

the dynamics of ecosystem processes and human activities may

result in discrepancies between model parameters and actual

conditions. Future work should focus on refining these

parameters, potentially through detailed field surveys and data

collection, to ensure the InVEST model accurately reflects the

region’s ecological realities, thus enhancing the reliability of

the assessments.

Second, the study analyzed the impact of individual driving

factors on ecosystem services in isolation, overlooking the complex

interactions among these factors. These interactions—whether

synergistic, suppressive, or feedback-driven—can significantly

influence ecosystem outcomes. Future research should adopt a

multifactorial approach to better understand the interrelationships

among driving factors, offering a more comprehensive understanding

of ecosystem service dynamics.

The distribution and variation of ecosystem services vary across

different spatial scales. This study, primarily focused on random

sampling points for analysis, may not fully capture the

comprehensive changes in ecosystem services. Future research

should incorporate high-resolution remote sensing data and

advanced raster analysis techniques, integrated with regional

ecological characteristics. By adapting research scales dynamically

according to specific objectives, it will be possible to explore internal

disparities in ecosystem services, providing more precise evidence

for policy development.
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In conclusion, future studies should continue to innovate in

areas such as localizing model parameter optimization,

incorporating multifactor interaction effects, and enhancing the

precision and adaptability of spatial scales. These advancements will

support a more comprehensive assessment and sustainable

management of ecosystem services, not only in the study area but

also in other regions.
5 Conclusion

This study focused on the Yunnan-Guizhou Plateau, analyzing the

spatiotemporal evolution of habitat quality, water yield, soil

conservation, carbon storage, and overall ecosystem services between

2000 and 2010. Projections for 2035 were made under three scenarios:

natural development, planning-oriented, and ecological priority. The

analysis evaluated the changes in ecosystem services across these

scenarios, highlighting trade-offs and synergies. The findings

underscore the impact of different management strategies on

ecosystem services, with the key conclusions summarized below:
5.1 Spatiotemporal characteristics of
ecosystem services

Ecosystem services in the Yunnan-Guizhou Plateau fluctuated

over the past two decades. Water yield and overall ecosystem services

initially declined but later increased, while habitat quality and carbon

storage showed a steady decline. In contrast, soil conservation

improved continuously. These trends suggest progress in water

conservation and land management, but challenges persist in

habitat protection and carbon storage. Future ecological planning

should prioritize expanding nature reserves, forest restoration, and

converting farmland to forest in areas with low carbon storage to

stabilize key ecosystems and enhance carbon storage.
FIGURE 6

Correlation among ecosystem services under multi-scenario development in 2035.
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5.2 Identification of dominant factors
influencing ecosystem services

The analysis identified land use and vegetation cover as critical

factors influencing ecosystem services. Optimizing land use and

enhancing vegetation cover are essential for boosting the region’s

ecological service capacity, providing a solid foundation for future

land management. Additionally, precipitation influences certain

ecosystem services, necessitating dynamic land management

strategies that respond to natural changes like precipitation

variations, ensuring flexibility in policy adaptation.
5.3 Ecosystem service performance under
scenario simulations

Simulation results across different scenarios highlight the

importance of policy direction and ecological protection measures

in improving ecosystem services. In the natural development

scenario, ecosystem services remained weak due to the lack of

effective policy intervention, with declines observed in some areas.

The planning-oriented scenario saw improvements through land

use adjustments and policy interventions, particularly in habitat

quality and soil conservation. The ecological priority scenario

demonstrated the most significant improvement in ecosystem

services, particularly in carbon storage and habitat quality,

reinforcing the effectiveness of strengthened ecological protection

policies and restoration efforts. Future land use and ecological

management should emphasize scientific planning, area-specific

ecological strategies, and precise protection measures.
5.4 Trade-offs and synergistic effects of
ecosystem services

In the natural development scenario, conflicts and trade-offs

among ecosystem services were prominent, particularly between

water conservation and both carbon storage and habitat quality. The

planning-oriented scenario, guided by policy, alleviated some of these

conflicts and enhanced synergies. The ecological priority scenario,

however, yielded the best results in fostering synergistic interactions.

This scenario achieved strong coordination among services, especially

in the interactions between water conservation, habitat quality, and

carbon storage, all of which significantly improved. Therefore,

strengthening ecological priority policies, fostering synergistic effects

among services, and introducing collaborative management

mechanisms are crucial in ensuring coordinated development.

Additionally, dynamic monitoring and regulation of ecosystem

service relationships are essential for long-term success.
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